阳极氧化铝纳米孔洞形成过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统理论认为“酸性场致溶解”是多孔阳极氧化铝(简称PAA)孔洞产生和孔道发展的主要原因,但是“酸性场致溶解”理论对PAA的六棱柱元胞和半球形底部结构无法给出合理解释。为进一步探讨PAA的形成机理,本文研究了不同电解液中铝的阳极氧化过程,利用电化学阳极氧化曲线测试系统和扫描电子显微镜等仪器,对铝的阳极氧化V-t曲线和氧化膜表面形貌进行了表征。结果表明:“酸性”这个因素并不是产生多孔的必要条件,在酸性较弱的磷酸二氢铵电解液中也能得到类似孔道。
     在致密型电解液中(癸二酸铵的乙二醇溶液)也能形成多孔,且随着磷酸加入量的增大孔道密度增加。氧气析出是由于碰撞电离系数α和初始雪崩电子电流j0的增加引起的。在此基础上提出了新的PAA生长模型:认为孔道的形成是“氧气泡模具效应”的结果,并且对阳极氧化的V-t曲线进行了新的解释。
     本文提出的“氧气泡模具效应”对PAA梅花状结构的自组织过程和锯齿型孔道进行了诠释。其中锯齿型孔道的PAA结构可以作为纳米材料的新型模板。
Traditional theory claims that the main mechanism for the formation of porous anodic alumina (PAA) is acidic electricfield-assisted dissolution, but it cannot give a reasonable explanation for the structure of hexagonal cells and hemispherical pore base in PAA. In order to study the growth mechanism of PAA, we chose several electrolytes to perform aluminum anodization. The anodization process and PAA films were characterized by means of Voltage-time curves. The result indicates that acidity of electrolyte is not the necessary condition. We also find the regular porous in NH4H2PO4 electrolyte.
     PAA can also be observed in barrier film-forming electrolyte (ammonium sebacate solution in ethylene glycol) and the pore channels will be much denser with the H_3PO_4 increasing. Augment of constantαand j_0 induces O_2 separating out. Besides we present a new growth model and formation mechanism of PAA, i.e. oxygen bubble mould effect results in regular channels of PAA films. We also give a new explanation for the V-t curve of anodization.
     Oxygen bubble mould effect can explain the formation mechanism of the plum blossom patterns on PAA and serrated nanopore. The serrated nanopore arrays in PAA could also be used in a wide range of future nanostructure fabrications.
引文
[1]S.Wernick and R.Pinner,Surface Treatment and Finishing of Aluminum and its Alloys Robert Draper Ltd.Teddington,UK,1964
    [2]W.Hubner and C.Th.Speiser,Die Praxis der anodischen Oxidation des Aluminum,Aluminum-Verlag,Dusseldorf,Germany,1988
    [3]郭鹤桐,王为.铝阳极氧化膜的回顾与展望.材料保护.2002,33(1):43-45
    [4]Foss J r C A.,Hornyak G L.,Stockert J.A.,et al..Template-synthesized nanoscopic gold particles.Optical spectra and the effects of particle size and shape.Phys.Chem.,1994,98:2963-2971
    [5]Sandrock M.L.,Foss C.A.J r..Synthesis and linear optical properties of nanoscopic gold particle pair structures.Phys.Chem.B,1999,103:11398-11406
    [6]Black M.R.Padi M.Cronin S.B.,et a.Inter-subband transitions in bismuth nanowires.Appl.Phys.Lett.2000,77(25):4142-4144
    [7]Zeng H.,Zheng M.,Skomski R.,et al.Magnetic properties of self- assembled Co nanowires of varying length and diameter J.Appl.Phys.,2000,87(9):4718-4720
    [8]Tanase M.,Bauer L.A.,Hultgren A.,et al..Magnetic alignment of fluorescent nanowires Nano.Lett.,2001,1(3):155-158
    [9]Fan S.S.,Chapline M.G.,Franklin N.R.,et al..Self- oriented regular arrays of carbon nanotubes and their field emission properties.Science,1999,283(5401):512-514
    [10]Kyotani T.,Tsai L.F.,Tomita A..Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film.Chem.Mater.,1996,8(8):2109-2113
    [11]Xu D.S.,Guo G.L.,Gui L.L.,et al..Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates.Appl.Phys.Lett.,199,75(4):481-483
    [12]Yuan Z.H.,Huang H.,Dang H.Y.,et al..Field emission property of highly ordered monodispersed carbon nanotube arrays.Appl.Phys.Lett.,2001,78(20):3127-2129
    [13]Shelimov K.B.,Davydov D.N.,Moskovits M..Template-grown high-density nanocapacitor arrays.Appl.Phys.Lett.,2000,77(11):1722-1724
    [14]Parthasarathy R.V.,Martin C.R..Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization.Nature,1994,369(6478):298-301
    [15] Ishikawa Y. , Matsumoto Y. . Electrodeposition of TiO_2 photocatalyst into nano-porous of hard alumite. Electrochim Acta., 2001, 46(18):2819-2824
    
    [16] Kondo K. , KawanishiT. , Ikenaga N., et al . . Alumina plate - loaded ruthenium catalyst for coal liquefaction. Fuel, 2001, 80 (7):1015-1020
    
    [17] Che G., Lakshmi B.B., Martin C. R., et al.. Chemical vapor depositio (CVD) - based synthesis of carbon nanotubes and nanofibers using a template method. Chem.Mater., 1998,10 (1):260-267
    
    [18] Karmhag R. , Tesfamichael T. , Wackelgard E. , et al. . Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix. Solar Energy, 2000, 68 (4):329-333
    
    [19] Nielsch K. , Wehrspohn R.B. , Barthel J . , et al. . Hexagonally ordered 100 run period nickel nanowire arrays. Appl.Phys. Lett., 2001, 79 (9):1360-1362
    
    [20] Routkevitch D., Bigioni T. , Moskovits M., et al. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J. Phys. Chem.,1996, 100 (33): 14037-14047
    
    [21] Xu D. S. , Chen D. P., Xu Y. J . , et al . Preparation of II - VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates. Pure Appl. Chem., 2000, 72(1-2):127-135
    
    [22] Che G., Lakshmi B. B., Fisher E. R. , et al. . Carbon nanotubule membranes and possible applications to electrochemical energy storage and production. Nature,1998,393(6683):346-347
    
    [23] Hennesthal C., Drexler J., Steinem C. Membrane-suspended nanocompartments based on ordered porous in alumina. ChemPhysChem., 2002, 3(10):885-889
    
    [24] F.Keller, M.S.Hunter, D.L.Robinson. Structural features of oxide coatings on aluminum. J.Electrochem. Soc. 1953, 100:411—419
    
    [25] Murphy J F, Michelson C E. A theory for the formation of anodic coatings on aluminum. A.D.A. Conference on Anodizing of aluminum, Nottingham, England,1961
    
    [26] O'Sullivan J . P., Wood G. C. . The morphology and mechanism of formation of porous anodic films on aluminum. Proc. Roy. Soc. London, 1970, A317:511-543
    
    [27] K.V.Heber., Studieson. Porous Al_2O_3 Growth. Pt. 1 .Physical Model, Electrochim. Acta., 1978,23(2):127-133
    
    
    [28] Parkhutik V. P., Shershulsky V. I.. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D: Appl.Phys., 1992, 25(8): 1258-1263
    [29]Thompson G.E.Porous anodic alumina:fabrication,characterization and applications.Thin Solid Films.1997,297:192-201
    [30]K,Shimizu,K.Kobayashi,G.E.Thompson,et al.The Mechanism of Porous Anodic Oxide Growth on Aluminum.Science and Engineering of Light Metals,1991,RASELM 91:335-340
    [31]Yi L,Shimada H,Sakairi M,et al.Formation and breakdown of anodic oxide films on aluminum in boric acid/borate solutions.J.Electrochem Soc.1997,144(3):866-875
    [32]Xu Y.,Thompson G.E.,Wood G.C..Mechanism ofanodic film formation on aluminium.Trans.Inst.Met.Finish.,1985,63:98-103
    [33]Jessensky O.,MOiler F.,GEsele U..Self- organized formation of hexagonal pore arrays in anodic alumina.Appl.Phys.Lett.,1998,72(10):1173-1175
    [34]Asoh H,Ono S,Masuda H,et al.Growth of anodic porous alumina with square cells.Electrochimica.Acta.2003,48:3171-3174
    [35]Asoh H,Nakao M,Masyda.Condition for fabrication of ideally ordered anodic porous alumina using pretexture Al.Electrochem.Soc 2001,148(4):B152-B156
    [36]Yanagishita T,Sasaki M,Nishio K Masuda H.Carbon nanobutes with a triangular cross-section Fabricated using anodic porous alumina as the template.Adv.Mater.2004,16:429-432
    [37]姚素薇,张璐,孔亚西,宋兆爽.铝阳极氧化膜纳米孔阵列的微细结构.材料研究学报.2005,19(6):567-572
    [38]张璐,姚素薇,张卫国,王宏智.氧化铝纳米线的制备及其形成机理.物理化学学报.2005,12(11):1254-1258
    [39]姚素薇,孔亚西,张璐.高度有序多孔氧化铝膜形成机理的探讨.功能材料.2006,37(1):113-116
    [40]孙秀玉,徐法强,李宗木,张旺.阳极氧化铝模板的结构和性能表征及形成机理.中国科技大学学报.2006,36(4):432-435
    [41]巩运兰,王为,郭鹤桐等.铝阳极氧化膜纳米孔阵列结构的自组织过程分析.物理化学学报.2004,20(2):199-201
    [42]刘虹雯,郭海明,王业亮等.阳极氧化铝模板表面自组织条纹的形成.物理学报.2004,53(2):656-660
    [43]王刚,阎康平,周川等.阳极氧化铝模板法制备纳米电子材料.电子元件与材料,2002,21(5):27-30
    [44]王爱,华管荻华,周维亚等 多孔氧化铝有序膜的制备研究.无机化学学报, 2002,18(5):447-450
    [45]Sachiko Ono,Noboru Masuda.Evalution of pore diameter of anodic porous films formed on aluminum.Surface and Coatings Technology.2003,169-170:139-142
    [46]杨培霞,安茂忠,田兆清.高度有序多孔阳极氧化铝模板的制备.材料科学与工艺.2007,15(1):87-91
    [47]杨培霞,安茂忠,郑铁帅.硫酸/草酸混酸电解液中阳极氧化法制备多孔阳极氧化铝模板.无机化学学报.2005,21(12):1907-1912
    [48]王为,高建平等.磷酸浓度对铝阳极氧化研究简报多孔膜阻挡层形成过程的影响.化工学报.2000,51(2):256-258
    [49]徐金霞,黄新民.制备工艺对氧化铝阵列模板的影响.材料保护.2001,34(12):28-29
    [50]刘建刚,范新会等.阳极氧化工艺对氧化铝模板孔径的影响.西安工业学院学报.2005,25(6):575-579.
    [51]Masuda H.,Yamada H.,Satoh M.,et al..Highly ordered nanochannelarray architecture in anodic alumina.Appl.Phys.Lett.,1997,71(19):2770-2772
    [52]Thompson G.E.,Funeaux R.C.,Wood G.C.Electron microscopy of ion beam thinned porous anodic films formed on aluminium.Corros.Sci.,1978,18:481-498
    [53]徐源,Thompson G E,Wood G.PAA型氧化铝膜孔洞形成过程的研究.中国腐蚀与防护学报.1989,9(1):37-39
    [54]章葆澄.电镀工艺.北京:北京航空航天大学出版社.1993
    [55]曹小龙,车永莉,王伟等.多孔氧化铝模板的制备及性质研究.激光技术.2006,30(4):415-417
    [56]李淑英,宋琛.多孔阳极氧化铝的最佳制备工艺研究.表面技术.2006,35(3):33-35
    [57]任刚,许如清,韩立等.利用扫描电镜和原子力显微镜测量纳米微孔阳极氧化铝膜.物理学报.2003,32(1):36-41
    [58]郭等柱,侯士敏,薛增泉等.铝表面条纹准状结构的AFM研究.物理化学学报.2001.17(11):961-965
    [59]Parkhutik V P,Despic A.Electrochemistry of aluminum in aqueous solutions and physics of its anodic oxide.Modern Asepects of Electrochemistry(20).New York:Plenum Press,1989
    [60]王为,朱静,巩运兰等.甘油对铝阳极氧化多孔膜纳米孔形成过程的影响.材料保护.2005,38(1):20-23
    [61]宋晔,宁宏,王新龙等.工作电解液闪火电压的计算机测试系统.电子元
    `?件与材料.2001,20(2):8-9
    
    [62]林学清,洪雪宝.铝电解电容器工程技术.第1版.厦门:厦门大学出版社.2002
    [63]陈国光,曹婉真.铝电解电容器.第2版.西安:西安交通大学出版社.1994
    [64]朱绪飞,刘霖,赵宝昌.阳极氧化铝膜在有机电解质中的击穿机理和影响因素.中国有色金属学报.2003,13(4):1031-1035
    [65]Zhuravlyova E,Skeldon P,Thompson G E,et al.Oxygen evolution within barrier oxide films.Corrosion Science.2002,44:2153-2159
    [66]Albella J M,Montero I & Martinez-Duart J M.A theory of avalanche breakdown during anodic oxidation.Electrochim.Acta.1987,32:255-258
    [67]Li J,Papadopoulos C,Xu J M.Growing Y-junction carbon nanotubes.Nature.1999,402:253-254
    [68]马春兰.高质量规则多孔氧化铝模板的制备.物理学报.2004,53(6):1952-1955
    [6E]王伟,梁淑敏,周淑清.多孔阳极氧化铝膜的制备工艺研究.应用材料.2006,33(4):60-62
    [70]Liu Y,Alwitt R S,Shimizu K.Cellular porous anodic alumina grown in neutral organic electrolyte.J.Electrochem.Soc,2000,147(4):1382-1385
    [71]Li F Y,Zhang L,Metzger R M.On the growth of highly ordered porous in anodized aluminium oxide.Chem.Mater.1998,10:2470-2480
    [72]Garcia-Vergara S J,et al.Mechanical instability and pore generation in anodic alumina.Proc.R.Soc.2006,A462:2345-2358
    [73]Wu Y Y,Cheng G S,Katsov K,et at.Composite mesostructures by nano-comfinement.Nature Materials.2004,3:816-822
    [74]Yamaguchi A,Uchida T,Tanamura Y,et al.Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrance.Nature Materials.2004,3:337-341
    [75]Thompson G E,Wood G C.Porous anodic film formation on aluminium.Nature.1981,290:230-232
    [76]Eun J B,Won B C,Kwang S J,et al.Selective growth of carbon nanotubes on pre·patterned porous anodic aluminum oxide.Advanced Materials.2002,14(4):277-279
    [77]Skeldon P,Thompson G E,Garcia-Vergara S J,Iglesias-Rubianes L &Blanco-Pinzon C E.A tracer study of porous anodic alumina.Electrochemical and Sold-State Letters.2006,9:B47-B51
    [78] Hideki Masuda, Kenji Fukuda. Change of hole size of Pd hole-array electrodes in a controlledfashion by cathodic polarization in acidic electrolyte. Electro Chemistry.1999,473:240-244
    
    [79] Masuda H, Hasegawa F, Ono S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. Electrochem. Soc. 1997,144:L127-L130
    
    [80] Nielsch K, Schwirn K, Gosele U, et al. Self-ordering regimes of porous alumina: The 10wt% porosity rule. Nano Letters. 2002, 2:677-680
    
    [81] Masuda H, Asoh H, Watanabe M, et al. Square and triangular nanohole array architectures in anodic alumina. Advanced Materials. 2001,13(3): 189-192
    
    [82] Lee W, Ji R, Gosele U & Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Mater, 2006, 5:741-747
    
    [83] Sui Y C, Jose M Saniger. Characterization of anodic porous alumina by AFM.Materials Letters, 2001(48):127-136
    
    [84] Guo D Z, Hou S M, Xue Z Q. Preparation and annealing-induced structural transition of self-organized nanostripes on the electropolished aluminium surface.Chinese Physics Letters, 2002,19(3):385-388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700