电致化学发光新材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致化学发光(Electrochemiluminescence,简称ECL)是在化学发光基础上发展起来的一种新的分析方法,是化学发光与电化学结合的新的技术。它同时具有化学发光与电化学技术的优点,比如灵敏度高、选择性好、背景信号低、线性范围宽,反应可控等特点。本论文的研究主要为了解决目前电致化学发光体系相对较少的问题,研究了一些新材料,主要包括离子液体介质、碳量子点发光体、发光试剂Nafion膜载体、亚锡离子共反应物、氧化亚锡纳米颗粒共反应物等材料在电致化学发光中的应用,开发了一些新的ECL体系并对其ECL机理进行了详细的研究和探讨。
     本论文分为四个部分,共六章。论文的第一部分,也是第一章,进行文献调研和综述,主要对ECL的发展概况、基本原理、特点、分类及其在分析化学领域中的应用,同时还对本课题的研究目的和意义做了概述。
     论文的第二部分即第二章,主要是以离子液体作为反应介质,研究了三联吡啶钌/三乙胺电致化学发光体系在这种高粘度、高离子强度的反应介质中的电致化学发光行为。以该反应体系在中性pH缓冲溶液中的电致化学发光行为作为参照。研究发现该体系在离子液体介质中的电化学和电致化学发光行为与其在水溶液中的大不相同,在阳极扫描过程中有两个ECL发光过程,电化学上没有出现明显的催化电流。讨论了该体系在离子液体介质中的反应机理及反应介质的离子强度及粘度对扩散速率、催化效率和电致化学发光强度的影响。
     论文的第三部分即第三章,通过简单有效的电化学电势扫描方法,在中性水溶液中将具有ECL活性的碳量子点从石墨电极中释放出来。在电解过程中,随着电解时间的增加,电致化学发光信号先逐渐增强后达到稳定值,溶液从无色透明逐渐加深最后变成黄棕色。将电解后的溶液超滤离心分离,可以得到具有荧光和电致化学发光性质的碳量子点。通过透射电镜表征,所制备的碳量子点分散性良好、直径大小为2nm左右球状颗粒。其荧光最大发射波长为455nm左右。对制得的碳量子点的电致化学发光行为进行了研究,发现在-1.5~1.8V电位范围内扫描过程中,它在阳极和阴极过程中都可以产生电致化学发光信号。加入过硫酸根作为共反应物,可以增强碳量子点的阴极电致化学发光信号。同时,其电致化学发光最大发射波长为535nm,相比于荧光最大发射波长有红移现象。我们对碳量子点从石墨上电化学释放机理及碳量子点的电致化学发光机理作了详细的探讨。
     论文的第四部分(包括了第四、五、六章)主要是发现和研究一些Ru(bpy)_3~(2+)新型ECL共反应物。在第四章中,氧气可以作为Nafion/Ru(bpy)_3~(2+)修饰电极在中性pH缓冲溶液中的共反应物增强其ECL信号。当修饰电极在+1.5~-1.0V电位范围内扫描过程中,可以观察到3个发光过程,包括两个电位依赖的峰(ECL-1和ECL-2),一个与电位无关的发光(CL-P)。ECL-2产生于扫描电位低于-0.5V的电位范围,这是基于氧气还原产物和Ru(bpy)33+电子转移的发光。在产生ECL-2的过程中,Nafion膜内的疏水性条件在稳定Ru(bpy)33+和氧气自由基负离子(O2·-)方面起着重要的作用。我们讨论了ECL-2的反应机理以及在电化学扫描过程中发光体和共反应物在Nafion膜内浓度分布。和以前大多数ECL的过程不同,ECL-2的发光峰电位跟共反应物溶解氧气的还原电位有关,而与发光体Ru(bpy)_3~(2+)的氧化还原电位无关,我们提出了“还原-还原”型ECL机理。ECL技术为探讨电化学反应中的O2还原反应机理及其还原产物的稳定性提供了一种有效的方法。
     在第五章中研究发现氯化亚锡可以明显增强Ru(bpy)_3~(2+)在水溶液中的ECL信号,在循环伏安曲线上,可以观察到明显的催化电流。亚锡离子(Sn~(2+))是第一个被发现可以作为Ru(bpy)_3~(2+)ECL共反应物的金属离子。我们以目前最常用的Ru(bpy)_3~(2+)/TPrA共反应体系作为研究Ru(bpy)_3~(2+)/Sn~(2+)性质的参考体系。发现在同一条件下,Ru(bpy)_3~(2+)/Sn~(2+)所产生的ECL更强更稳定,而且可以在更宽的pH范围内保持优良的ECL活性,还可以在多种电极材料上产生强的ECL信号。同时,我们还对Ru(bpy)_3~(2+)/Sn~(2+)共反应体系的ECL机理进行了详细的研究,提出了可能的反应机理。新ECL共反应体系的开发对拓展ECL应用范围和寻找其他金属离子类型ECL共反应物有重要的意义。
     在第六章中我们以多壁碳纳米管作为载体,利用水相共沉淀法制备了氧化亚锡纳米颗粒包裹的碳纳米管复合材料,通过XRD和透射电镜表征,可以观察到氧化亚锡纳米颗粒成功地负载在碳纳米管表面,所合成的氧化亚锡纳米大小为4nm左右。将这种纳米复合材料修饰到玻碳电极表面,发现这种修饰电极可以使联吡啶钌产生很强的ECL信号,说明氧化亚锡纳米颗粒可以作为纳米共反应物,与联吡啶钌之间发生快速电子转移,产生强烈的ECL反应。这种ECL纳米共反应物的发现及研究对拓宽电致化学发光基础理论研究和扩展其在生物传感等领域的应用有重大的意义。
Electrochemiluminescence (ECL) analysis is a new analytical method, which isdeveloped based on the combination of electrochemisty (EC) withChemiluminescence (CL). This method has many advantages of electrochemistry andchemiluminescence, such as high sensitivity, high selectivity, low background signal,wide linear response range, and easy control. In this dissertation, studies were focusedon finding new materials (e.g. ionic liquids, quantum dot luminophores, nanomaterialcoreactants) for ECL, revealing possible new ECL mechanisms, and applyingsensitive, selective and environmentally benign ECL systems in chemosensing andbiosensing.
     This dissertation consists of four parts, or six chapters. Chapter1is also the firstpart. In this chapter, the general introduction, the mechanisms of ECL, the historicalperspective and classificationss of ECL, developing direction of ECL and the pruposeand signification of this disserataion were described based on the investigation ofliteratures in the field of ECL.
     The second part is chapter2. In this part, the ECL behaviors of Ru(bpy)_3~(2+)/TEA in1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) ionic liquid wereinvestigated and compared with those in aqueous solution (pH7.0PBS) at a goldelectrode. The electrochemical and ECL behaviors of Ru(bpy)_3~(2+)/TEA were muchdifferent with those in aqueous solution. It was found that the Ru(bpy)_3~(2+)/TEA systemgave rise to one small and one large peak ECL peak at anodic process and thecatalytic current of Ru(bpy)_3~(2+)/TEA system was disappeared in ionic liquid. Theeffects of viscosity and ionic strength of ionic liquid on diffusion coefficients,catalytic efficiency, and ECL intensity were investigated and discussed to reveal theECL mechanism of Ru(bpy)_3~(2+)/TEA system in the ionic liquid of BMIPF6.
     The third part is chapter3. In this part, a simple and effective method for preparingwater-soluble carbon nanocrystals (CNCs) with ECL activity by applying a scanningpotential at graphite rods were reported, and the ECL behaviors of the as-preparedCNCs were observed and studied in detail. The cathodic ECL intensity increased withthe number of potential cycles before reaching a constant value after30cycles. With increasing the electrolysis time, the color of the electrolyte solution changed fromcolorless to yellow and finally dark brown. A colorless CNC solution was obtained byultrafiltering the dark brown solution with10k Da molecular weight cutoff (MWCO)membrane. High-resolution transmission electron microscopy (HRTEM) indicatedthat the obtained CNCs were monodispersed, spherical-shaped particles with averagesize of2.0nm. The maximum PL emission wavelength of CNCs is455nm. Bothanodic and cathodic ECL emission of the CNCs werer observed when the potentialwas cycled between+1.8and-1.5V. Additionally, in the presence of peroxydisulfate(S2O82-), the ECL intensity of CNCs in the presence of S2O82-was greatly enhanced.The maximum ECL emission wavelength (535nm) was substantially red-shifted fromPL maximum. The ECL emission of CNCs was attributed to the formation of excitedstate CNCs (R*) via electron transfer between negatively charged CNCs (R·-) andpositively charged CNCs (R·+) or SO·-4.
     The fourth part includes chapters4-6. In this part, some new efficient coreactants ofRu(bpy)_3~(2+)were found, and their ECL behaviors and ECL reaction were stuied indetail. In chapter4, O2was found to act as a new coreactant for Ru(bpy)_3~(2+)ECL inNafion film, resulting in a strong ECL light emission. ECL experiments were carriedout at a Ru(bpy)_3~(2+)/Nafion film-modified glassy carbon electrode (GCE) immersing inair-saturated phosphate buffer solution (pH7.4). Scanning in the potential range of+1.5to-1.0V resulted in three luminescent processes, including twopotential-dependent luminescence peaks (ECL-1and ECL-2), and onepotential-independent persistent luminescence emission (CL-P). Therein, ECL-2occurring at potential less than-0.5V was demonstrated to be a newchemiluminescent reactions between O2and Ru(bpy)_3~(2+). In ECL-2, Nafion film playsimportant roles in stabilizing Ru(bpy)33+and O2-radical essentially for producing thenew ECL. Unlike previously reported ECL processes, ECL-2peak potential wasdependent on the reduction potential of the coreactant (i.e., O2) rather than the redoxpotentials of the luminopore, Ru(bpy)_3~(2+), which would provide a useful way to probeO2, O2-radical, and their stabilities in electrochemical reactions.
     In chapter5, we found that stannous chloride could significantly enhance theelectrochemiluminescence (ECL) of tris (2,2'-bipyridyl) ruthenium (II)(Ru(bpy)_3~(2+))in aqueous solution. An obvious electrocatalytic oxidation current of Sn~(2+)byRu(bpy)_3~(2+)was observed. Sn~(2+)was the first reported metal ion that could serve as anexcellent ECL coreactant of Ru(bpy)_3~(2+). ECL properties of Sn~(2+)were evaluated by comparison with a common ECL coreactant, tripropylamine (TPrA). TheRu(bpy)_3~(2+)-Sn~(2+)ECL coreactant system produces stronger and more stable ECLsignals, can keep its excellent ECL activity in a wider pH range and have morechoices in using electrode materials than Ru(bpy)_3~(2+)/TPrA ECL coreactant system.Moreover, the coreactant ECL mechanism between Ru(bpy)_3~(2+)and Sn~(2+)was alsostudied in detail. This study would be very useful for finding and understaning othermetal ion-based coreatants for Ru(bpy)_3~(2+)ECL.
     In chapter6,the SnO nanoparticles deposited multiwall carbon nanotubes (SnONPs@MCNTs) were synthesised in aqueous solution by hydrolyzing Sn~(2+)and usingMCNTs as carriers. The XRD pattern and HRTEM images indicated that SnO NPswith an average size of ca.4.0nm were well coated at MWCNTs. In the experiment, aGC electrode was coated with SnONPs@MCNTs composites, and inserted into anECL cell containing Ru(bpy)_3~(2+)solution (pH7.4). A very strong ECL signal wasobserved when the electrode was applied a potential higher than+1.0V. This strongECL signals indicate there is a highly effective electron transfer process between SnOnanoparticles and Ru(bpy)33+. The high ECL sensitivity, easy labeling, convenientassembly at the electrode and low toxicity, suggest promising application of the nanocoreactant-Ru(bpy)_3~(2+)system in sening, and electron transfer probing fornanomaterials.
引文
[1] Richter M. M. Electrochemiluminescence. Chemical Reviews,2004,104(6):3003-3036.
    [2] Miao W. Electrogenerated Chemiluminescence and its Biorelated Applications. ChemicalReviews,2008,108(7):2506-2553.
    [3]陈国南,林振宇.生物活性物质的电致化学发光检测.世界科技研究与发展,2004,26(4):66-74.
    [4]陈国南.电致化学发光的最新进展.福州大学学报(自然科学版),1999,27:1.
    [5] Dufford R. T., Nightingale D., Gaddum L. W. Luminescence of Grignard Compounds inElectric and Magnetic Fields and related Electrical Phenomena. Journal of American ChemicalSociety,1927,49(8):1858-1864.
    [6] Harvey N. Luminescence During Electrolysis. Journal of Physical Chemistry,1929,33(10):1456-1459.
    [7] Kuwana T., Epstein B., Seo E. Electrochemical Gengeration of Solution Luminescence.Journal of Physical Chemistry,1963,67(10):2243-2244.
    [8] Feldberg S. W. Theory of Controlled Potential Electrogeneration of Chemiluminescence.Journal of the American Chemical Society,1966,88(3):390-393.
    [9] Cruser S. A. Bard A. J. Electrogenerated Chemiluminescence. III. Intensity-time andConcentration-intensity Relation and the Lifetime of Radical Cations of AromaticHydrocarbons in N, N-dimethylformamide Solution. Journal of the American ChemicalSociety,1969,91(2):267-275.
    [10] Faulkner. L. R., Bard A. J. Electrogenerated Chemiluminescence. I. Mechanism ofAnthracene Chemiluminescence in N, N-dimethylformamide Solution. Journal of theAmerican Chemical Society,1968,90(23):6284-6290.
    [11] Faulkner. L. R., Bard A. J. Electrogenerated Chemiluminescence. IV. Magnetic Field Effectson the Electrogenerated Chemiluminescence of Some Anthracenes. Journal of the AmericanChemical Society,1969,91(1):209-210.
    [12] Maloy J. T., Prater K.B., Bard A. J. Electrogenerated Chemiluminescence. V.Rotating-ring-disk Electrode. Digital Simulation and Experimental Evaluation. Journal of theAmerican Chemical Society,1971,93(23):5959-5968.
    [13] Maloy J. T., Bard A. J. Electrogenerated chemiluminescence. VI. Efficiency and Mechanismsof9,10-diphenylanthracene, Rubrene, and Pyrene Systems at a Rotating-ring-disk Electrode.Journal of the American Chemical Society,1971,93(23):5968-5981.
    [14] Parshin G. S., Bulgakov R. G., Kazakov V. P., et al. Chemiluminescence during the CathodicReduction of Solutions of Uranyl and Ozone in5M H2SO4. High Energy Chemistry,1973,7(20):160-161.
    [15] Bulgakov R. G., Kazakov V. P., Parshin G. S., et al. Electrochemiluminescence of UranylSolutions in Perchloric Acid. Russian Chemical Bulletin,1974,8:1916-1917.
    [16] Tokel N. E., Bard A. J. Electrogengerated Chemiluminescence. IX. Electrochemistry andEmmission from Systems Containing Tris(2,2'-bipyridine) Ruthenium (Ⅱ) Dichloride.Journal of the American Chemical Society,1972,94(8):2862-2863.
    [17] Knight A. W. A Review of Recent Trends in Analytical Applications of ElectrogeneratedChemiluminescence. Trends in Analytical Chemistry,1999,18(1):47-62.
    [18] F hnrich K. A., Pravda M. and Guilbault G. G. Recent Applications of Electro-generatedChemiluminescence in Chemical Analysis. Talanta,2001,54:531-559.
    [19] Yin X. B., Wang E. K. Capillary Electrophoresis Coupling with ElectrochemiluminescenceDetection, a review. Analytica Chimica Acta,2005,533(2):113-120.
    [20] Lee W. Y. Tris (2,2'-bipyridyl) Ruthenium (II) Electrogenerated Chemiluminescence inAnalytical Science. Microchimica Acta,1997,127(1-2):19-39.
    [21] Marquette C. A., Blum L. J. Electro-chemiluminescent Biosensing. Analytical andBioanalytical Chemistry,2008,390(1):155-168.
    [22] Sassolas A., Leca-Bouvier B. D., Blum L. J. DNA Biosensors and Microarrays. ChemicalReviews,2008,108(1):109-139.
    [23] Li J. G., Zhao F. J., Ju H. X. Simultaneous Determination of Psychotropic Drugs in HumanUrine by Capillary Electrophoresis with Electrochemiluminescence Detection. AnalyticalChimica Acta,2006,575(1):57-61.
    [24] Hu L., Xu G. B. Applications and Trends in Electrochemiluminescence. Chemical SocietyReviews,2010,39:3275-3304.
    [25] Ding Z. F., Quinn B. M., Haram S. K., et al. Electrochemistry and ElectrogeneratedChemiluminescence from Silicon Nanocrystal Quantum Dots. Science,2002,296(5571):1293-1297.
    [26] Tachikawa H., Bard A. J. Electrogenerated Chemiluminescence. Effect of Solvent andMagnetic Field on ECL of Rubrene Systems. Chemical Physics Letters,1974,26(2):246-251.
    [27]Pighin A. Conway B. E. A Correlation Between the Quantum Efficiency of ElectrogeneratedChemiluminescence and the Redox Potentials of Rubrene in Various Solvents. Journal of TheElectrochmical Society,1975,122(5):619-624.
    [28]Maricle D. L., Maurer A. Pre-annihilation Electrochemiluminescence of Rubrene. Journal ofthe American Society,1967,89(1):188-189.
    [29] Santhanam K. S. V., Bard A. J. The Chemiluminescence of Electrogenerated9,10-Diphenylanthracene Anion Radical. Journal of the American Chemical Society,1965,87(1):139-140.
    [30] Beideman F. E., Hercules D. M. Electrogenerated Chemiluminescence from9,10-diphenylanthracene Cations Reacting with Radical Anions. Journal of Physical Chemistry,1979,83(17):2203-2209.
    [31] Faulkner L. R., Tachikawa, H., Bard, A. J. Electrogenerated Chemiluminescence. VII.Influence of an External Magnetic Field on Luminescence Intensity. Journal of AmericanChemical Society,1972,94(3):691-699.
    [32] Chang M. M., Saji T., Bard A. J. Electrogenerated Chemiluminescence.30. ElectrochemicalOxidation of Oxalate Ion in the Presence of Luminescers in Acetonitrile Solutions. Journal ofthe American Chemical Society,1977,99(16):5399-5403.
    [33] Rubinstein I., Bard A. J. Electrogenerated Chemiluminescence.37. Aqueous ECL SystemsBased on Ru(2,2'-bipyridine)32+and Oxalate or Organic Acids. Journal of the AmericanSociety,1981,103(3):512-516.
    [34] Noffsinger J. B., Danielson N. Generation of Chemiluminescence upon Reaction of AliphaticAmines with Tris (2,2'-bipyridine)ruthenium(III). Analytical Chemistry,1987,59(6):865-868.
    [35] Leland J. K., Powell M. J. Electrogenerated Chemiluminescence: An Oxidative-ReductionECL Reaction Sequence Using Tripropyl Amine. Journal of the Electrochemical Society,1990,137(10):3127-3131.
    [36]Zu Y. B., Bard A. J. Electrogenerated Chemiluminescence.66. The Role of Direct CoreactantOxidation in the Ruthenium Tris (2,2')bipyridyl/Tripropylamine System and the Effect ofHalide Ions on the Emission Intensity. Analytical Chemistry,2000,72(14):3223-3232.
    [37] Kanoufi F. K., Zu Y. B., Bard A. J. Homogeneous Oxidation of Trialkylamines by MetalComplexes and its Impact on Electrogenerated Chemiluminescence in theTrialkylamine/Ru(bpy)32+System. The Journal of Physical Chemistry B.2001,105(1):210-216.
    [38] Gross E. M., Pastore P., Wightman R. M. High-Frequency ElectrochemiluminescentInvestigation of the Reaction Pathway between Tris (2,2’-bipyridyl) Ruthenium(II) andTripropylamine Using Carbon Fiber Microelectrodes. The Journal of Physical Chemistry B,2001,105(37):8732-8738.
    [39] Miao W. J., Choi J. P., Bard A. J. Electrogenerated Chemiluminescence69: The Tris (2,2'-bipyridine) ruthenium (II),(Ru(bpy)2+3)/Tri-n-propylamine (TPrA) System Revisiteds: ANew Route Involving TPrA*+Cation Radicals. Journal of the American Chemical Society,2002,124(48):14478-14485.
    [40] White H. S., Bard A. J. Electrogenerated Chemiluminescence.41. ElectrogeneratedChemiluminescence and Chemiluminescence of the Ru(2,2'-bpy)2+23-S2O-8System inAcetonitrile-Water Solutions. Journal of the Ameriacn Chemcial Society,1982,104(25):6891-6895.
    [41] Sung Y. E., Gaillard F., Bard A. J. Demonstration of Electrochemical Generation ofSolution-Phase Hot Electrons at Oxide-Covered Tantalum Electrodes by DirectElectrogenerated Chemiluminescence. The Journal of Physical Chemistry B,1998,102(49):9797-9805.
    [42] Gaillard F., Sung Y. E., Bard A. J. Hot Electron Generation in Aqueous Solution atOxide-Covered Tantalum Electrodes. Reduction of Methylpyridinium and ElectrogeneratedChemiluminescence of Ru(bpy)2+3. The Journal of Physical Chemistry B,1999,103(4):667-674.
    [43] Kulmala S., Kleme T. A., V re L., et al. Hot Electron-induced ElectrogeneratedLuminescence of Tl(I) at Disposable Oxide-covered Aluminum Electrodes. AnalyticaChimica Acta,1999,398(1):41-47.
    [44] Kankare J., Haapakka K., Kulmala S. Immunoassay by Time-resolved ElectrogeneratedLuminescence. Analytica Chimica Acta,1992,266(2):205-212.
    [45] Kankare J., Falden K., Kulmala S., et al. Cathodically Induced Time-resolved Lanthanide(III)Electroluminescence at Stationary Aluminium Disc Electrodes. Analytica Chimica Acta,1992,256(1):17-28.
    [46] Kleme T. A., Kulmala S., V re L., et al. Hot Electron-Induced ElectrogeneratedChemiluminescence of Ru(bpy)2+3Chelate at Oxide-covered Aluminum Electrodes.Analytical Chemistry,1999,71(24):5538-5543.
    [47] Jiang Q., Hakansson M., Spehar A. M., et al. Hot Electron-induced Time-resolvedElectrogenerated Chemiluminescence of a Europium(III) Label in Fully Aqueous Solutions.Analytica Chimica Acta,2006,558(2):302-309.
    [48]李云辉,王春燕.电化学发光.化学工业出版社,2007,3-5.
    [49] Bruno J. G., Cornette J. C. An Electrochemiluminescence Assay Based on the Interaction ofDiaminotoluene Isomers with Gold(I) and Copper(II) Ions. Microchemical Journal,1997,56:305-314.
    [50] Zu Y. B., Bard A. J. Electrogenerated Chemiluminescence.67. Dependence of Light Emissionof the Tris(2,2')bipyridylruthenium(II)/Tripropylamine System on Electrode SurfaceHydrophobicity. Analytical Chemistry,2001,73(16):3960-3964.
    [51] Gao F. G., Bard A. J. High-Brightness and Low-Voltage Light-Emitting Devices Based onTrischelated Ruthenium(II) and Tris(2,2'-bipyridine)osmium(II) Emitter Layers and LowMelting Point Alloy Cathode Contacts. Chemistry of Materials,2002,14(8):3465-3470.
    [52] Kane-Maguire N. A. P., Guckert J. A., O’Neill P. J. Electrogenerated Chemiluminescence ofHexacyanochromate(III) and Tris(2,2'-bipyridine)chromium(III) in Aprotic Solvents.Inorganic Chemistry,1987,26(14):2340-2342.
    [53] Taverna P. J., Mayfield H., Andrews A. R. J. Determination of Cadmium Ions in Water by aNovel Electrochemiluminescence Method. Analytica Chimica Acta,1998,373(3):111-117.
    [54] Whitchurch C., Anrews A. R. J. Ligand and Surfactant Effects on a NovelElectrochemiluminescent Reaction Involving Cadmium. Analytica Chimica Acta,2002,454(1):45-51.
    [55] Tokel-Takvoryan N. E., Bard A. J. Electrogenerated Chemiluminescence. XVI. ECL ofPalladium and Platinum α, β, γ, δ-tetraphenylporphyrin Complexes. Chemical Physics Letters,1974,25(2):235-238.
    [56] Bonafede S., Ciano M., Bolletta F., et al. Electrogenerated Chemiluminescence of anOrtho-Metalated Platinum(II) Complex. The Journal of Physical Chemisrtry,1986,90(16):3836-3841.
    [57] Luong J. C., Nadjo L., Wrighton M. S. Ground and Excited State Electron Transfer Processesinvolving Fac-Tricarbonylchloro(1,10-phenanthroline)-rhenium(I). ElectrogeneratedChemiluminescence and Electron Transfer Quenching of the Lowest Excited State. Journal ofthe American Chemical Society,1978,100(18):5790-5795.
    [58] Richter M. M., Debad J. D., Striplin D. R., et al. Electrogenerated Chemiluminescence.59.Rhenium Complexes. Analytical Chemistry,1996,68(24):4370-4376.
    [59] Bruce D., Richter M. M. Green Electrochemiluminescence from Ortho-Metalated Tris(2-phenylpyridine)iridium(III). Analytical Chemistry,2002,74(6):1340-1342.
    [60] Rodman G. S., Bard A. J. Electrogenerated Chemiluminescence.52. Binuclear Iridium(I)Complexes. Inorganic Chemistry,1990,29(23):4699-4702.
    [61] Nocera D. G., Gray H. B. Electrochemical Reduction of Molybdenum(II) and Tungsten(II)Halide Cluster Ions. Electrogenerated Chemiluminescence of Mo2-6Cl14. Journal of theAmerican Chemical Society,1984,106(3):824-825.
    [62] Mussel R. D., Nocera D. G. Effect of Long-Distance Electron Transfer onChemiluminescence Efficiencies. Journal of the American Chemical Society,1988,110(9):2764-2772.
    [63] Ouyang J., Zietlow T. C., Hopkins M. D., et al. Electrochemistry and ElectrogeneratedChemiluminescence of Mo2Cl4(PMe3)4. The Journal of Physical Chemistry,1986,90(16):3841-3844.
    [64] Vogler A., Kunkely H. Electrochemiluminescence of Organometallics and other TransitionMetal Complexes. In High Energy Processes in Organometallic Chemistry. Suslick, K. S.,Ed.; ACS Symposium Series333; American Chemical Society: Washington, DC,1987; p155.
    [65] Hemingway R. E., Park S. M., Bard A. J. Electrogenerated Chemiluminescence. XXI. EnergyTransfer from an Exciplex to a Rare Earth Chelate. Journal of the American Chemical Society,1975,97(11):2978-2985.
    [66] McCall J, Bruce D, Workman S, et al. Electrochemiluminescence of Copper(I)Bis(2,9-dimethyl-1,10-phenanthroline). Analytical Chemistry,2001,73(19):4617-4620.
    [67] Gross E. M., Anderson J. D., Slaterbeck A. F., et al. Electrogenerated Chemiluminescencefrom Derivatives of Aluminum Quinolate and Quinacridones: Cross-Reactions withTriarylamines Lead to Singlet Emission through Triplet-Triplet Annihilation Pathways.Journal of the American Chemical Society,2000,122(20):4972-4979.
    [68] Muegge B. D., Brooks S., Richter M. M. Electrochemiluminescence of Tris (8-hydroxyquinoline-5-sulfonic acid) Aluminum(III) in Aqueous Solution. Analytical Chemistry,2003,75(5):1102-1105.
    [69] Zhou, M., Robertson, G. P., Roovers, J. Comparative Study of Ruthenium(II) Tris(bipyridine)Derivatives for Electrochemiluminescence Application. Inorganic Chemistry,2005,44(23):8317-8325.
    [70] Shin I. S., Kim J. I., Kwon T. H., et al. Efficient Electrogenerated Chemiluminescence fromBis-Cyclometalated Iridium(III) Complexes with Substituted2-Phenylquinoline Ligands.The Journal of Physical Chemistry C,2007,111(5):2280-2286.
    [71] Maness K. M., Terrill R. H., Meyer T. J., et al. Solid-State Diode-like ChemiluminescenceBased on Serial, Immobilized Concentration Gradients in Mixed-ValentPoly[Ru(vbpy)3](PF6)2Films. Journal of the American Chemical Society,1996,118(43):10609-10616.
    [72] Elliott C. M., Pichot F., Bloom C. J., et al. Highly Efficient Solid-state ElectrochemicallyGenerated Chemiluminescence from Ester-substituted Tris-bipyridineruthenium(II)-basedPolymers. Journal of the American Chemical Society,1998,120(27):6781-6784.
    [73] Hu L., Bian Z., Li H., et al.[Ru(bpy)2dppz]2+Electrochemiluminescence Switch and itsApplications for DNA Interaction Study and Label-free ATP Aptasensor. AnalyticalChemistry,2009,81(23):9807-9811.
    [74] Hercules D. M., Lytle F. E., Chemiluminescence from Reduction Reactions. Journal of theAmerican Chemical Society,1966,88(20):4745-4746.
    [75] Liu X., Shi L., Niu W., et al. Environmentally Friendly and Highly Sensitive Ruthenium(II)Tris(2,2′-bipyridyl) Electrochemiluminescent System Using2-(Dibutylamino)ethanol asCo-Reactant. Angewandte Chemie,2007,119(3):425-428.
    [76]陶颖,林志杰,陈晓梅,等.联吡啶钌修饰电极固相电致化学发光.化学进展,2008,20(2):362-367.
    [77]苏小东,贾云.离子交换聚合物固定三联吡啶钌电致化学发光传感器的研究进展.光谱实验室,2008,25(3):345-350.
    [78]丁收年,徐静娟,陈洪渊. Ru(bpy)2+3电致化学发光技术的若干进展.中国论文在线,2007,2(8):595-606.
    [79] Miller C. J, McCord P, Bard A. J. Study of Langmuir Monolayers of Ruthenium Complexesand their Aggregation by Electrogenerated Chemiluminescence. Langmuir.1991,7(11):2781-2787.
    [80] Zhang X, Bard A. J. Electrogenerated Chemiluminescent Emission from an Organized (L-B)Monolayer of a Tris (2,2’-bipyridine) Ruthenium (2+)-based Surfactant on Semiconductorand Metal Electrodes. The Journal of Physical Chemistry.1988,92(20):5566-5569.
    [81] Obeng Y. S, Bard A. J. Electrogenerated Chemiluminescence.53. Electrochemistry andEemission from Adsorbed Monolayers of a Tris(bipyridyl)ruthenium(II)-based Surfactant onGold and Tin Oxide Electrodes. Langmuir,1991,7(1):195-201.
    [82] Rubinstein I., Bard A. J. Polymer-Films on Electrodes.4. Nafion-Coated Electrodes andElectrogenerated Chemiluminescence of Surface Attached Ru (bpy)2+3. Journal of theAmerican Chemical Society,1980,102(21):6641-6642.
    [83] Rubinstein I., Bard A. J. Polymer-Films on Electrodes.5. Electrochemistry andChemiluminescence at Nafion-Coated Electrodes. Journal of the American Chemical Society,1981,103(17):5004-5013.
    [84] Shultz L. L., Stoyanoff J. S., N ieman T. A. Temporal and Spatial Analysis ofElectrogenerated Ru (bpy)33+Chemiluminescent Reactions in Flowing Streams. AnalyticalChemistry,1996,68(2):349-354.
    [85] Downey T. M., Nieman T. A. Chemiluminescence Detection Using Regenerable Tris (2,2′-Bipyridyl) Ruthenium (II) Immobilized in Nafion. Analytical Chemistry,1992,64(3):261-268.
    [86] Khramov A. N., Collinson M. M. Electrogenerated Chemiluminescence of Tris (2,2′-Bipyridyl) Ruthenium (II) Ion-Exchanged in Nafion-Silica Composite Films. AnalyticalChemistry,2000,72(13):2943-2948.
    [87] Choi H. N., Choi S. H., Lee W. Y. Electrogenerated Chemiluminescence from Tris (2,2′-Bipyridyl) Ruthenium (II) Immobilized in Titania-Perfluorosulfonated Ionomer CompositeFilms. Analytical Chemistry,2003,75(16):4250-4256.
    [88] Zhuang Y. F., Ju H. X. Study on Electrochemiluminesce of Ru(bpy)32+Immobilized in aTitania Sol-Gel Membrane. Electroanalysis,2004,16(17):1401-1405.
    [89] Guo Z. H., Dong S. J. Electrogenerated Chemiluminescence from Ru(bpy)32+Ion-Exchangedin Carbon Nanotube/Perfluorosulfonated Ionomer Composite Films. Analytical Chemistry,2004,76(10):2683-2688.
    [90] Martin A. F., N ieman T. A. Chemiluminescence Biosensors Using Tris (2,2′-Bipyridyl)Ruthenium (II) and Dehydrogenases Immobilized in Cation Exchange Polymers. Biosensorsand Bioelectronics,1997,12(6):479-489.
    [91] Wang H. Y., Xu G. B., Dong S. J. Electrochemiluminescence Sensor Using Tris (2,2′-Bipyridyl) Ruthenium (II) Immobilized in Eastman-AQ55D-Silica Composite Thin Films.Analytica Chimica Acta,2003,480(2):285-290.
    [92] Du Y., Qi B., Yang X. R., et al. Synthesis of Pt NPs/AQ/Ru(bpy)32+Colloid and itsApplication as a Sensitive Solid-State Electrochemiluminescence Sensor Materia. TheJournal of Physical Chemistry B,2006,110(43):21662-21666.
    [93] Dvorak O., Dearmond M. K. Electrode Modification by the Sol-gel Method. Journal ofPhysical Chemistry,1993,97(11):2646-2648.
    [94] Ding S. N., Xu J. J., Chen H. Y. Electrogenerated Chemiluminescence ofTris(2,2′-bipyridyl)ruthenium(II) Immobilized in Humic Acid-Silica-Poly(vinyl alcohol)Composite Films. Electroanalysis,2005,17(17):1517-1522.
    [95] Yi C. Q., Tao Y., Wang B., et al. Electrochemiluminescent Determination ofMethamphetamine based on Tris(2,2′-bipyridine) Ruthenium(II) Ion-association inOrganically Modified Silicate Films. Analytica Chimica Acta,2005,541(2):73-81.
    [96] Sun X. P., Du Y., Dong S. J., et al. Method for Effective Immobilization of Ru(bpy)2+3on anElectrode Surface for Solid-State Electrochemiluminescene Detection. Analytical Chemistry,2005,77(24):8166-8169.
    [97] Richter M. M., Bard A. J. Electrogenerated Chemiluminescence.62. Enhanced ECL inBimetallic Assemblies with Ligands that Bridge Isolated Chromophores. AnalyticalChemistry,1998,70(2):310-318.
    [98] Wang S. J., Milam J., Ohin A., et al. Electrochemical and ElectrogeneratedChemiluminescent Studies of a Trinuclear Complex,[((phen)2Ru(dpp))2RhCl+2]5and itsInteractions with Calf Thymus DNA. Analytical Chemistry,2009,81(10):4068-4075.
    [99] Staffilani M., Hoss E., Giesen U., et al. Multimetallic Ruthenium(II) Complexes asElectrochemiluminescent Labels. Inorganic Chemistry,2003,42(24):7789-7798.
    [100] Bruce D., Richter M. M. Green Electrochemiluminescence from Ortho-MetalatedTris(2-phenylpyridine)iridium(III). Analytical Chemistry,2002,74(6):1340-1342.
    [101] Cole C., Muegge B. D., Richter M. M. Effects of Poly(ethylene glycol) Tert-OctylphenylEther on Tris(2-phenylpyridine)iridium(III) Tripropylamine Electrochemiluminescence.Analytical Chemistry,2003,75(3):601-604.
    [102] Muegge B. D., Richter M. M. Multicolored Electrogenerated Chemiluminescence fromOrtho-Metalated Iridium(III) Systems. Analytical Chemistry,2004,76(1):73-77.
    [103] Jim J. I., Shin I. S., Kim H., et al.Efficient Electrogenerated Chemiluminescence fromCyclometalated Iridium(III) Complexes. Journal of the American Chemical Society,2005,127(6):1614-1615.
    [104] Shin I. S., Kim J. I., Kwon T. H., et al. Efficient Electrogenerated Chemiluminescence fromBis-Cyclometalated Iridium(III) Complexes with Substituted2-Phenylquinoline Ligands.Journal of Physical Chemistry C,2007,111(5):2280-2286.
    [105] Zanarini S., Rampazzo E., Bonacchi S., et al. Iridium Doped Silica PEG Nanoparticles:Enabling Electrochemiluminescence of Neutral Complexes in Aqueous Media. Journal ofthe American Chemical Society,2009,131(40):14208-14209.
    [106] Richards T. C, Bard A. J. Electrogenerated chemiluminescence.57. Emission from Sodium9,10-diphenylanthracene-2-sulfonate, Thianthrenecarboxylic acids, and Chlorpromazine inAqueous Media. Analytical Chemistry,1995,7(18):3140-3147.
    [107] Girotti S., Ferri E. N., Ghini S. F., et al. Luminescent Techniques Applied to Bioanalysis,Chemicke Listy,1997,91(7):477-482.
    [108] Dodeigne C., Thunus L., Lejeune R., et al. Chemiluminescence as Diagnostic Tool. AReview. Talanta,2000,51(3):415-439.
    [109] Zhu R., Kok W. T. Post-column Derivatization for Fluorescence and ChemiluminescenceDetection in Capillary Electrophoresis. Journal of Pharmaceutical and Biomedical Analysis,1998,17(6-7):985-999.
    [110] Wróblewska A., Reshetnyak O.V., Koval’chuk E. P., et al. Origin and Features of theElectrochemiluminescence of Luminol–Experimental and Theoretical Investigations.Journal of Electroanalytical Chemistry,2005,580(1):41-49.
    [111] Qi H. L., Zhang Y., Peng Y. G., et al. Homogenous Electrogenerated ChemiluminescenceImmunoassay for Human Immunoglobulin G Using N-(aminobutyl)-N-ethylisoluminol asLuminescence Label at Gold Nanoparticles Modified Paraffin-impregnated GraphiteElectrode. Talanta,2008,75(3):684-690.
    [112] Tian D. Y., Duan C. F., Wang W., et al. Sandwich-Type ElectrochemiluminescenceImmunosensor Based on N-(aminobutyl)-N-ethylisoluminol Labeling and GoldNanoparticle Amplification. Talanta,2009,78(2):399-404.
    [113] Yang M. L., Liu C. Z., Qian K. J., et al. Study on the Electrochemiluminescence Behavior ofABEI and its Application in DNA Hybridization Analysis. Analyst,2002,127(9):1267-1271
    [114] Littig J. S., Nieman T. A. Quantitation of Acridinium Esters Using ElectrogeneratedChemiluminescence and Flow Injection. Analytical Chemistry,1992,64(10):1140-1144.
    [115] Richter M. M., Fan F. F., Klavetter F., et al. Electrochemistry and ElectrogeneratedChemiluminescence of Films of the Conjugated Polymer4-methoxy-(2-ethylhexoxyl)-2,5-polyphenylenevinylene. Chemical Physics Letters,1994,226(1-2):115-120.
    [116] Zhang C. X., Zhou G. J., Zhang Z. J., et al. Highly Sensitive Electrochemical LuminescenceDetermination of Thiamine. Analytica Chimica Acta,1999,394(2-3):165-170.
    [117] Legg K. D., Hercules D. M. Electrochemically Generated Chemiluminescence of Lucigenin.Journal of the American Chemical Society,1969,91(8):1902-1907.
    [118] Lin J. M., Yamada M. Electrogenerated Chemiluminescence of Methyl-9-(p-formylphenyl)Acridinium Carboxylate Fluorosulfonate and its Applications to Immunoassay.Microchemical Journal,1998,58(1):105-116.
    [119] Lee W. I., Bae Y. J., Bard A. J. Strong Blue Photoluminescence and ECL fromOH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles. Journal of theAmerican Chemical Society,2004,126(27):8358-8359.
    [120] Medintz I. L., Uyeda H. T., Goldman E. R, Mattoussi H. Quantum Dot Bioconjugates forImaging, Labelling and Sensing. Nature materials,2005,4:435-446.
    [121] Myung N., Ding Z. F., Bard A. J. Electrogenerated Chemiluminescence of CdSeNanocrystals. Nano Letters.2002,2(11):1315-1319.
    [122] Bae Y., Myung N., Bard A. J. Electrochemistry and Electrogenerated Chemiluminescence ofCdTe Nanoparticles. Nano Letter,2004,4(6):1153-1161.
    [123] Myung N., Lu X. M., Johnston K. P., et al. Electrogenerated Chemiluminescence of GeNanocrystals. Nano Letters,2004,4(1):183-185.
    [124] Myung N., Bae Y., Bard A. J. Effect of Surface Passivation on the ElectrogeneratedChemiluminescence of CdSe/ZnSe Nanocrystals. Nano Letters,2003,3(8):1053-1055.
    [125] Sun L. F., Bao L., Hyun B. R., et al. Electrogenerated Chemiluminescence from PbSQuantum Dots. Nano Letters,2009,9(2):789-793.
    [126] Jiang H., Ju H. X. Electrochemiluminescence Sensors for Scavengers of Hydroxyl RadicalBased on Its Annihilation in CdSe Quantum Dots Film/Peroxide System. AnalyticalChemistry,2007,79(17):6690-6696.
    [127] Han E., Ding L., Jin S., et al. Electrochemiluminescent Biosensing ofCarbohydrate-functionalized CdS Nanocomposites for in Situ Label-free Analysis of CellSurface Carbohydrate. Biosensors and Bioelectronics,2011,26(5):2500-2505.
    [128] Mei Y. L., Wang H. S., Li Y. F., et al. Electochemiluminescence of CdTe/CdS QuantumDots with Triproprylamine as Coreactant in Aqueous Solution at a Lower Potential and itsApplication for Highly Sensitive and Selective Detection of Cu2+. Electranalysis,2010,22(2):155-160.
    [129] Hua L. J., Han H.Y., Zhang X. J. Size-dependent Electrochemiluminescence Behavior ofWater-soluble CdTe Quantum Dots and Selective Sensing of L-cysteine. Talanta,2009,77(5):1654-1659.
    [130] Zou G. Z., Ju H. X. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Filmand its Sensing Application in Aqueous Solution. Analytical Chemistry,2004,76(23):6871-6876.
    [131] Jiang H., Ju H. X. Enzyme–quantum Dots Aarchitecture for Highly SensitiveElectrochemiluminescence Biosensing of Oxidase Substrates. Chemical Communications,2007,404-406.
    [132] Liu X., Jiang H., Lei J. P., et al. Anodic Electrochemiluminescence of CdTe Quantum Dotsand its Energy Transfer for Detection of Catechol Derivatives. Analytical Chemistry,2007,79(21):8055-8060.
    [133] Wang X. F., Zhou Y., Xu J. J., et al. Signal-On Electrochemiluminescence Biosensors Basedon CdS–Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline andAcetylcholine. Advanced Functional Materials,2009,19(9):1444-1450.
    [134]储海虹,齐莹莹,徐杨,等.中性介质中I-对鲁米诺电化学发光的增敏作用及机理研究.光谱学与光谱分析,2005,25(5):675-677.
    [135]屠一锋,黄炳强,郭文英,等.中性体系中鲁米诺电化学发光行为.分析化学研究简报,2002,30(6):729-731.
    [136]丁红春,郑行望,章竹君,等.电化学发光法测定铁.分析试验室,2004,23(2):18-20.
    [137] Haapakka K. E., Kankare J. J. Application of the Electrochemiluminescence of Luminol tothe Determination of Copper. Analytica Chimica Acta,1980,118(2):333-340.
    [138]郑行望,章竹君,王琦,等分析化学研究简报,2003,31(9):1076-1078.
    [139] Xu G. B., Dong S. J. Electrochemiluminescence of the Ru(bpy)32+/S2O82-System in PurelyAqueous Solution at Carbon Paste Electrode. Electroanalysis,2000,12(8):583-587.
    [140] Liu X., Guo L. Cheng L. X., et al. Determination of Nitrite Based on its Quenching Effecton Anodic Electrochemiluminescence of CdSe Quantum Dots. Talanta,2009,78(3):691-694
    [141] Cheng X. L., Liu X., Lei J. P., et al. Low-Potential Electrochemiluminescent Sensing Basedon Surface Unpassivation of CdTe Quantum Dots and Competition of Analyte Cation toStabilizer. Analytical Chemistry,2010,82(8):3359-3364.
    [142] Sun Y. G., Cui H., Lin X. Q., et al. Flow Injection Analysis of Pyrogallol with EnhancedElectrochemiluminescent Detection. Analytica Chimica Acta,2000,423(2):247-253.
    [143] Zhang G. F., Chen H. Y., Studies of Polyluminol Modified Electrode and its Application inElectrochemiluminescence Analysis with Flow System. Analytica Chimica Acta,2000,419(1):247-253.
    [144]齐莹莹,吴莹,狄俊伟,等电化学发光淬灭法测定谷胱甘肽.光谱学与光谱分析,2005,25(20):195-197.
    [145] Zhu L. D., Li Y. X., Tian F. M., et al. Electrochemiluminescent Determination of Glucosewith a Sol–gel derived Ceramic–carbon Composite Electrode as a Renewable Optical FiberBiosensor. Sensors and Actuators B,2002,84(2):265–270.
    [146] Bruce S. N., Bobbitt D. R., Role of Electron-Donating/Withdrawing Character, pH andStoichiometry on the Chemiluminescent Reaction of Tris(2,2’-bipyridyl)ruthenium(I I I)with Amino Acids. Analytical Chemistry,1992,64(2):166-170.
    [147] Chen G. N., Lin R. E., Zhao Z. F., et al. Electrogenerated Chemiluminescence forDetermination of Indole and Tryptophan. Analytica Chimica Acta,1997,341(2):251-256.
    [148]陈曦,佐藤昌宪.氨基酸和肽的电致化学发光流动注射分析.分析科学学报,1998,14(4):278-282.
    [149] Chi Y. W., Duan J. P., Lin S. D., et al. Flow Injection Analysis System Equipped with aNewly Designed Electrochemiluminescent Detector and its Application for Detection of2-Thiouracil. Analytical Chemistry,2006,78(5):1568-1573.
    [150] Greenway G. M., Knight P. J. Determination of Oxprenolol by ElectrogeneratedChemiluminescence. Analytical Proceedings,1995,32(7):251-253.
    [151] Greenway G. M., Dolman S. J. L. Analysis of Tricyclic Antidepressants UsingElectrogenerated Chemiluminescence. Analyst,1999,124(5):759-762.
    [152] Li F., Cui H., Lin X. Q. Determination of Adrenaline by Using Inhibited Ru(bpy)32+Electrochemiluminescence. Analytica Chimica Acta,2002,471(2):187-194.
    [153] Xu G. B., Dong S. J. Electrochemiluminescent Detection of Chlorpromazine by SelectivePreconcentration at a Lauric Acid-Modified Carbon Paste Electrode UsingTris(2,2’-bipyridine)ruthenium(II). Analytical Chemistry,2000,72(21):5308-5312.
    [154] Martin A. F., Nieman T. A. Chemiluminescence Biosensors Using Tris(2,2′-bipyridyl)ruthenium(II) and Dehydrogenases Iimmobilized in Cation ExchangePolymers. Biosensors and Bioelectronics,1997,12(6):479-489.
    [155] Liu X. Ju H. X. Coreactant Enhanced Anodic Electrochemiluminescence of CdTe QuantumDots at Low Potential for Sensitive Biosensing Amplifiedby Enzymatic Cycle. AnalyticalChemistry,2008,80(14):5377-5382.
    [156] Blackburn G. F., Shah H. P., Kenten J. H., et al. Electrochemiluminescence Detection forDevelopment of Immunoassays and DNA Probe Assays for Clinical Diagnostics. ClinicalChemistry,1991,37(9):1534-1539.
    [157] Yuan A. S., Morris M. L., Yin K.C., et al. Development and Implementation of anElectrochemiluminescence Immunoassay for the Determination of an AngiogenicPolypeptide in Dog and Rat Plasma. Journal of Pharmaceutical and Biomedical Analysis,2003,33(4):719-724.
    [158] Merirll G. A., Rivera V. R., Neal D. D., et al. A Quantitative ElectrochemiluminescenceAssay for Clostridium Perfringens Alpha Toxin. Analytical Biochemistry,2006,357(2):181-187.
    [159] Miao W. J., Bard A. J. Electrogenerated Chemiluminescence.72. Determination ofImmobilized DNA and C-Reactive Protein on Au(111) Electrodes UsingTris(2,2’-bipyridyl)ruthenium(II) Labels. Analytical Chemistry,2003,75(21):5825-5834.
    [160] Miao W. J., Bard A. J. Electrogenerated Chemiluminescence.80. C-Reactive ProteinDetermination at High Amplification with Ru(bpy)32+-Containing Microspheres. AnalyticalChemistry,2004,76(23):7109-7113.
    [161] Arai K., Takahashi K., Kusu F. An Electrochemiluminescence Flow-Through Cell And itsApplications to Sensitive Immunoassay Using N-(Aminobutyl)-N-ethylisoluminol.Analytical Chemistry,1999,71(11):2237-2240.
    [162] Meng D. X., Tetsuya T., Eiry K., et al. Electrochemical Luminescence Immunosensor forα-fetoprotein. Sensors and Actuators B: Chemical,1996,36(3):458-462.
    [163] Jie G. F., Huang H. P., Sun X. L., et al. Electrochemiluminescence of CdSe Quantum Dotsfor Immunosensing of Human Prealbumin. Biosensors and Bioelectronics,2008,23(12):1896-1899.
    [164] Jie G. F., Zhang J. J., Wang D. C., et al. Electrochemiluminescence Immunosensor Based onCdSe Nanocomposites. Analytical Chemistry,2008,80(11):4033-4039.
    [165] Jie G. F., Li L. L., Chen C., et al. Enhanced Electrochemiluminescence of CdSe QuantumDots Composited with CNTs and PDDA for Sensitive Immunoassay. Biosensors andBioelectronics,2009,24(11):3352-3358.
    [166] Kenten J. H., Casadei J., Link J., et al. Rapid Electrochemiluminescence Assays ofPolymerase ChainReaction Products. Clinical Chemistry,1991,37(9):1626-1632.
    [167] Miao W. J., Bard A. J. Electrogenerated Chemiluminescence.77. DNA HybridizationDetection at High Amplification with Ru(bpy)32+-Containing Microspheres. AnalyticalChemistry,2004,76(18):5379-5386.
    [168] Motans K., Raus J., Vandevyver C. Quantification of Cytokine Messenger RNA inTransfected Human T Cells by RT-PCR and an AutomatedElectrochemiluminescence-based Post-PCR Detection System. Journal of ImmunologicalMethods,1996,190(1):107-116.
    [169] Zhang J., Qi H. L., Li Y., et al. Electrogenerated Chemiluminescence DNA Biosensor Basedon Hairpin DNA Probe Labeled with Ruthenium Complex. Analytical Chemistry,2008,80(8):2888-2894.
    [170] Wang X. Y., Yun W., Dong P., et al. A Controllable Solid-State Ru(bpy)2+3Electrochemiluminescence Film Based on Conformation Change of Ferrocene-LabeledDNA Molecular Beacon. Langmuir,2008,24(5):2200-2205.
    [171] Dennany L., Forster R. J., Rusling J. F. Simultaneous Direct Electrochemiluminescence andCatalytic Voltammetry Detection of DNA in Ultrathin Films. Journal of the AmericanChemical Society,2003,125(17):5213-5218.
    [172] Wei H., Du Y., Kang J. Z., et al. Label Free Electrochemiluminescence Protocol forSensitive DNA Detection with a Tris(2,20-bipyridyl)ruthenium(II) Modified EelectrodeBased on Nucleic Acid Oxidation. Electrochemistry Communications,2007,9(7):1474-1479.
    [173] Yang M. L., Liu C. C., Qian K. J., et al. Study on the Electrochemiluminescence Behaviorof ABEI and its Application in DNA Hybridization Analysis. Analyst,2002,127(9):1267-1271.
    [174] Shan Y., Xu J. J., Chen H. Y. Distance-dependent Quenching and Enhancing ofElectrochemiluminescence from a CdS:Mn Nanocrystal Film by Au Nanoparticles forHighly Sensitive Detection of DNA. Chemical Communications,2009,(8):905-907.
    [175] Saito K., Murakami S., Yamazaki S., et al. Detection of Active Methylene CompoundsHaving Cyano and Carbonyl Groups with Chemiluminescent Reaction UsingTris(2,2’-bipyridine)ruthenium(III) Prepared by On-line Electrochemical Oxidation.Analytica Chimica Acta,1999,378(1-3):43-46.
    [176] Skotty D. R., Lee W. Y., Nieman T. A. Determination of Dansyl Amino Acids and Oxalateby HPLC with Electrogenerated Chemiluminescence Detection UsingTris(2,2‘-bipyridyl)ruthenium(II) in the Mobile Phase. Analytical Chemistry,1996,68(9):1530-1535.
    [177] Choi H. N., Cho S. H., Lee W. Y. Electrogenerated Chemiluminescence fromTris(2,2’-bipyridyl)ruthenium(II) Immobilized in Titania Perfluorosulfonated IonomerComposite Films. Analytical Chemistry,2003,75(16):4250-4256.
    [178] Forbes G. A., Nieman T. A., Sweedler J. V. On-line Eelectrogenerated Ru(bpy)3+3Chemiluminescent Detection of β-blockers Separated with Capillary Electrophoresis.Analytica Chimica Acta,1997,347(3):289-293.
    [179] Dickson J. A., Ferris M. M., Milofsky R. E. Tris (2,2′-bipyridyl) Ruthenium (III) as aChemiluminescent Reagent for Detection in Capillary Electrophresis. Journal of HighResolution Chromatography,1997,20(12):643-646.
    [180] Arora A., Eijkel J. C. T., Morf W. E., et al. A Wireless Electrochemiluminescence DetectorApplied to Direct and Indirect Detection for Electrophoresis on a Microfabricated GlassDevice. Analytical Chemistry,2001,73(14):3282-3288.
    [181] Du Y., Wei H., Kang J. Z., et al. Microchip Capillary Electrophoresis with Solid-StateElectrochemiluminescence Detector. Analytical Chemistry,2005,77(24):7993-7997.
    [182] Galinski M., Lewandowski A., Stepniak I. Ionic Liquids As Electrolytes. ElectrochimicaActa,2006,57(26):5567-5580.
    [183] Bonhote P., Dias A. P., Papageorgiou N., et al. Highly Conductive Ambient-TemperatureMolten Salts. Inorganic Chemistry,1996,35(5):1168-1178.
    [184] Tokuda H., Hayamizu K., Ishii K., et al. Watanabe M. Physicochemical Properties andStructures of Room Temperature Ionic Liquids.1. Variation of Anionic Species. The Jouralof Physical Chemistry B,2004,108(42):16593-16600.
    [185] Tokuda H., Hayamizu K., Ishii K., et al. Watanabe M. Physicochemical Properties andStructures of Room Temperature Ionic Liquids.2. Variation of Alkyl Chain Length inImidazolium Cation.The Joural of Physical Chemistry B,2005,109(13):6103-6110.
    [186] Liu H. T., He P., Li Z. Y., et al. An Ionic Liquid-type Carbon Paste Electrode and itsPolyoxometalate-modified Properties. Electrochemistry Communications,2005,7(12):1357-1363.
    [187] Wang S. F., Chen T., Zhang Z. L., et al. Direct Electrochemistry and Electrocatalysis ofHeme Proteins Entrapped in Agarose Hydrogel Films in Room-Temperature Ionic Liquids.Langmuir,21(20):9260-9266.
    [188] Quinn B. M., Ding Z. F., Moulton R., et al. Novel Electrochemical Studies of Ionic Liquids.Langmir,2002,18(5):1734-1742.
    [189] Kanoufi F., Bard A. J. Electrogenerated Chemiluminescence.65. An Investigation of theOxidation of Oxalate by Tris(polypyridine) Ruthenium Complexes and the Effect of theElectrochemical Steps on the Emission Intensity. The Joural of Physical Chemistry B,1999,103(47):10469-10480.
    [190] Bard, A. J., Faulkner, L. R., Electrochemical Methods-Fundamentals and Applications,2nded.; John Wiley&Sons Inc.: New York,2001.
    [191] Nicholson R. S., Shain I. Theory of Stationary Electrode Polarography. Single Scan andCyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. AnalyticalChemistry,1964,36(4):706-723.
    [192] Wightman R. M., Forry S. P., Maus R., et al. Rate-Determining Step in the ElectrogeneratedChemiluminescence from Tertiary Amines with Tris(2,2’-bipyridyl)ruthenium(II). TheJoural of Physical Chemistry B,2004,108(50):19119-19125.
    [193] Atkins P. W. Physical Chemistry,6th ed.; Oxford University Press: Oxford,1998.
    [194] Zu Y. B., Bard A. J. Electrogenerated Chemiluminescence.66. The Role of DirectCoreactant Oxidation in the Ruthenium Tris(2,2’)bipyridyl/Tripropylamine System and theEffect of Halide Ions on the Emission Intensity. Analytical Chemistry,2000,72(14):3223-3232.
    [195] Li F., Zu Y. B. Effect of Nonionic Fluorosurfactant on the ElectrogeneratedChemiluminescence of the Tris(2,2’-bipyridine)ruthenium(II)/Tri-n-propylamine System:Lower Oxidation Potential and Higher Emission Intensity. Analytical Chemistry,2004,76(6):1768-1772.
    [196]徐科.量子点在生物化学分析中的应用.辽宁化工,2010,39(10):1034-1037.
    [197]蒋飞荣,贾文婷,张兴,等.荧光量子点探针及其标记技术.生命科学,2010,22(4):391-395
    [198] Huang H. P., Zhu J. J. DNA Aptamer-based QDs Electrochemiluminescence Biosensor forthe Detection of Thrombin. Biosensors and Bioelectronics,2009,25(4):927-930.
    [199] Baker S. N., Baker G. A. Luminescent Carbon Nanodots: Emergent Nanolights. AngewandteChemie International Edition.2010,49(38):6726-6744.
    [200] Xu X. Y., Ray R., Gu Y. L., et al. Electrophoretic Analysis and Purification of FluorescentSingle-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society,2004,126(40):12736-12737.
    [201] Cao L., Wang X., Meziani M. J., et al. Carbon Dots for Multiphoton Bioimaging. Journal ofthe American Chemical Society,2007,129(37):11318-11319.
    [202] Hu S. L., Niu K. Y., Sun J. et al. One–step Synthesis of Fluorescenct Carbon Nanoparticlesby Laser Irradiation. Journal of Mateials Chemistry.2009,19(4):484-488.
    [203] Sun Y. P., Wang X., Lu F. S. et al. Doped Carbon Nanoparticles as a New Platform forHighly Photoluminescent Dots. The Journal of Physical Chemistry C,2008,112(47):18295-18298.
    [204] Sun Y. P. Zhou B., Lin Y. et al. Quantum-Sized Carbon Dots for Bright and ColorfulPhotoluminescence. Journal of the American Chemical Society,2006,128(24):7756-7757.
    [205] Wang X., Cao L., Lu F. S., et al. Photoinduced Electron Ttransfers with Carbon Dots.Chemical Communications,2009,(25):3774-3776.
    [206] Yang S. T., Cao L., Luo P. G, et al. Carbon Dots for Optical Imaging in Vivo. Journal of theAmerican Chemical Society,2009,131(32):11308-11309.
    [207] Yang S. T., Wang X., Wang H. F., et al. Carbon Dots as Nontoxic and High-PerformanceFluorescence Imaging Agents. The Journal of Physical Chemistry C,2009,113(42):18110-18114.
    [208] Lu J., Yang J. X., Wang J. Z., et al. One-Pot Synthesis of Fluorescent Carbon Nanoribbons,Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano,2009,3(8):2367-2375.
    [209] Zhao Q. L., Zhang Z. L., Huang B. H., et al. Facile Preparation of Low CytotoxicityFluorescent Carbon Nanocrystals by Electrooxidation of Graphite. ChemicalCommunications,2008,41:5116-5118.
    [210] Zhou J. G., Booker C., Li R. Y., et al. An Electrochemical Avenue to Blue LuminescentNanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). Journal of the AmericanChemical Society,2007,129(4):744-745.
    [211] Bourlinos A. B., Stassinopoulos A., Anglos D., et al. Photoluminescent Carbogenic Dots.Chemistry of Materials,2008,20(14):4539-4541.
    [212] Liu H. P., Ye T., Mao C. D., et al. Fluorescent Carbon Nanoparticles Derived from CandleSoot. Angewandte Chemie International Edition,2007,46(34):6473-6475.
    [213] Ray S. C., Saha A., Jana N. R., et al. Fluorescent Carbon Nanoparticles: Synthesis,Characterization and Bioimaging Application. The Journal of Physical Chemistry C,2009,113(43):18546-18551.
    [214] Tian L., Ghosh D., Chen W., et al. Nanosized Carbon Particles from Natural Gas Soot.Chemistry of Materials,2009,21(13):2803-2809.
    [215] Liu R. L., Wu D. Q., Liu S. H., et al. An Aqueous Route to Multicolor PhotoluminescentCarbon Dots Using Silica Spheres as Carriers. Angewandte Chemie International Edition,2009,121(25):4668-4671.
    [216] Wang W., Xiong T., Cui H. Fluorescence and Electrochemiluminescence ofLuminol-Reduced Gold Nanoparticles: Photostability and Platform Effect. Langmuir,2008,24(6):2826-2833.
    [217] Hool K., Nieman T. A. Immobilized Luminol Chemiluminescence Reagent System forHydrogen Peroxide Determinations in Flowing Streams. Analytical Chemistry,1988,60(9):834-837.
    [218] W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson. Imaging of Phosphorescence: a NovelMethod for Measuring Oxygen Distribution in Perfused Tissue. Science,1988,241(4873):1649-1651.
    [219] Cui H., Zou G. Z., Lin X. Q. Electrochemiluminescence of Luminol in Alkaline Solution at aParaffin-Impregnated Graphite Electrode. Analytical Chemistry,2003,75(2):324-331.
    [220] Zheng H. Z., Zu Y. B. Emission of Tris(2,2’-bipyridine)ruthenium(II) by CoreactantElectrogenerated Chemiluminescence: From O2-Insensitive to Highly O2-Sensitive. TheJoural of Physical Chemistry B,2005,109(24):12049-12053.
    [221] Maruyama J., Inaba M., Ogumi Z. Rotating Rring-disk Electrode Study on the CathodicOxygen Reduction at Nafion@-coated Gold Eelectrodes. Journal of ElectroanalyticalChemistry,1998,458(1):175-182.
    [222] Lide D. R. CRC Handbook of Chemistry Physics,76th.; CRC Press: Boca Raton, FL,1995.
    [223] Hercules D. M., Lytle F. E. Chemiluminescence from Reduction Reactions. Journal of theAmerican Chemical Society,1966,88(20):4745-4746.
    [224] Martin J. E., Hart E. J., Adamson A. W., et al. Chemiluminescence from the Reaction of theHydrated Electron with Tris(bipyridyl)ruthenium(III). Journal of the American ChemicalSociety,1972,94(26):9238-9240.
    [225] Sawyer D. T., Roberts J. L. Electrochemistry of Oxygen and Superoxide Ion inDimethylsulfoxide at Platinum, Gold and Mercury Electrodes. Journal of ElectroanalyticalChemisry,1959,12(2):90-101.
    [226] Parthasarathy A., Srinivasan S., Appleby A. J. Temperature Dependence of the ElectrodeKinetics of Oxygen Reduction at the Platinum/Nafion@Interface—A MicroelectrodeInvestigation. Journal of the Electrochemical Society,1992,139(9):2530-2537.
    [227] Lee P. C., Meisel D. Luminescence Quenching in the Cluster Network of PerfluorosulfonateMembrane. Journal of the American Chemical Society,1980,102(17):5477-5481.
    [228] Buttry D. A., Anson F. C. Electrochemical Control of the Luminescent Lifetime ofRu(bpy)2+3*incorporated in Nafion Films on Graphite Electrodes. Journal of the AmericanChemical Society,1982,104(18):4824-4829.
    [229] Garcia-Fresnadillo D., Marazuela M. D., Moreno-Bondi M. C., et al. Luminescent NafionMembranes Dyed with Ruthenium(II) Complexes as Sensing Materials for DissolvedOxygen. Langmuir,1999,15(19):6451-6459.
    [230] Chae K. J., Choi M., Ajayi F. F., et al. Mass Transport through a Proton ExchangeMembrane (Nafion) in Microbial Fuel Cells. Energy Fuels,2008,22(1):169-176.
    [231] Liu H., Logan B. E. Electricity Generation Using an Air-Cathode Single Chamber MicrobialFuel Cell in the Presence and Absence of a Proton Exchange Membrane. EnvironmntalScience Technology,2004,38(14):4040-4046.
    [232] Kim J. R., Cheng S. A., Oh S. E., et al. Power Generation Using Different Cation, Anionand Ultrafiltration Membranes in Microbial Fuel Cells. Environmntal Science Technology,2007,41(3):1004-1009.
    [233] Martin C. R., Rubinstein I., Bard A. J. Polymer Films on Electrodes.9. Electron and MassTransfer in Nafion Films Containing Tris(2,2'-bipyridine)ruthenium(2+). Journal of theAmerican Chemical Society,1982,104(18):4817-4824.
    [234] Gange M. E., Parratt S. C., Jones P., et al. Chemiluminescence From the Reaction of Tin(II)with Tris(2,2′-bipyridyl) Ruthenium(III). Analyst,2009,134(12):2397-2399.
    [235] Knight A. W., Greenway G. M. Electrogenerated Chemiluminescent Determination ofPyruvate Using Tris (2,2'-bipyridine) Ruthenium(II). Analyst,1995,120(10):2543-2547.
    [236] Zu Y. B., Bard A. J. Electrogenerated Chemiluminescence.67. Dependence of LightEmission of the Tris(2,2')bipyridylruthenium(II)/Tripropylamine System on ElectrodeSurface Hydrophobicity. Analytical Chemistry,2001,73(16):3960-3964.
    [237] Hu J. Q., Ma X. L., Shang N. G., et al. Large-Scale Rapid Oxidation Synthesis of SnO2Nanoribbons. The Journal of Physical Chemistry B,2002,106(15):3823-3836.
    [238] Stirrup B. N., Hampson N. A. Anodic Passivation of Tin in Sodium Hydroxide Solutions.Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1976,67(1):45-56.
    [239] Hammarstrom S., Falardeau P. Resolution of Prostaglandin Endoperoxide Synthase andThromboxane Synthase of Human Platelets. Proceedings of the National Academy ofSciences of the United States of America,1977,74(9):3691-3695.
    [240] Logar M., Horvat M., Akagi H., et al. Simultaneous Determination of Inorganic Mercuryand Methyl-mercury Compounds in Natural Waters. Analytical and Bioanalytical Chemistry,2002,374(6):1015-1021.
    [241] Sun Y. P., Fu K. F., Lin Y. Functionalized Carbon Nanotubes: Properties and Applications.Accounts of Chemical Research,2002,35(12):1096-1104.
    [242] Lau C. H., Cervini R., Clarke S. R., et al. The Effect of Functionalization on Structure andElectrical Conductivity of Multi-Walled Carbo Nanotubes. Journal of NanoparticleResearch,2008,10(1):77-88.
    [243] Wang C., Waje M., Wang X., et al. Proton Exchange Membrane Fuel Cells with CarbonNanotube Based Electrodes. Nano Letter,2004,4(2):345-348.
    [244] Ago H., Kugler T., Cacialli F., et al. Functions and Surface Functional Groups of MultiwallCarbonn Nanotubes. The Journal of Physical Chemistry B,1999,103(38):8116-8121.
    [245] Sumanasekera G. U., Allen J. L., Fang S. L., et al. Electrochemical Oxidation of Single WallCarbon Nanotube Bundles in Sulfuric Acid. The Journal of Physical Chemistry B.1999,103(21):4292-4297.
    [246] Masahito S., Ayumi K., Junko O., et al. Ring Closure of Carbon Nanotubes. Science,2001,293(5533):1299-1301.
    [247] Wang J. X., Li M. Q., Shi Z. J., et al. Direct Electrochemistry of Cytochrome c at a GlassCarbon Electrode Modified with Single-wall Carbon Nanotubes. Analytical Chemistry,2002,74(9):1993-1997.
    [248] Musameh M., Lawrence N. S., Wang, J., et al. Electrochemical Activation of CarbonNanotubes. Electrochemistry Commmunications,2005,7(1):14-18.
    [249] Ye J. S., Liu X., Cui H. F., et al. Electrochemical Oxidation of Multi-Walled CarbonNanotubes and its Application to Electrochemical Double Layer Capacitors.Electrochemistry Commmunications,2005,7(3):249-255.
    [250] Luo H. X., Shi Z. J., Li N. Q., et al. Investigation of the Electrochemical and ElectrocatalyticBehavior of Single-Wall Carbon Nanotube Film on a Glass Carbon Electrode. AnalyticalChemistry,2001,73(5):915-920.
    [251] Jia Z. J., Wang Z. Y., Liang J., et al. Production of Short Multi-Walled Carbon Nanotubes.Carbon,1999,37(6):903-906.
    [252] Kim B., Sigmund W. M. Functionalized Multiwall Carbon Nanotube/Gold NanoparticleComposites. Langmuir,2004,20(19):8239-8242.
    [253] Fang H. T., Sun X., Qian L. H., et al. Synthesis of Tin (II or IV) Oxide Coated MultiwallCarbon Nanotubes with Controlled Morphology. The Journal of Physical Chemistry C,2008,112(15):5790-5794.
    [254] Vijh A. K., Conway B. E. Electrode Kinetic Aspects of the Kolbe Reaction. ChemicalReviews,1967.67(6):623-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700