Au-Ni-V基高温活性钎料连接氮化硅陶瓷的工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅陶瓷以其优异的高温力学性能被广泛应用于航空航天等领域,为了扩展Si_3N_4陶瓷的应用范围,Si_3N_4陶瓷的连接成为急待解决的问题。本文利用Au-Ni-V钎料对Si_3N_4陶瓷进行钎焊,研究钎料成分和工艺参数变化对接头显微组织和性能的影响;深入探讨接头的显微组织与力学性能之间的关系;揭示含V活性钎料连接Si_3N_4陶瓷的界面反应机理;并在Au-Ni-V钎料中加入第四组元Pd或者Mo,讨论第四组元的加入对接头显微组织,力学性能以及连接机理的影响。
     研究发现,利用Au-Ni-V钎料连接得到的Si_3N_4/Si_3N_4陶瓷接头主要由三部分组成:Si_3N_4陶瓷母材,由Au[Ni]固溶体和富Ni相构成的焊缝合金区,以及陶瓷母材和焊缝合金区之间的VN界面反应层。当钎焊条件为1373K/30min时,钎料合金中V含量在一定范围内增加,VN界面反应层增厚,使得界面结合强度增加,对接头的力学性能有利,但V含量超过15 at.%时,焊缝合金区中的脆性相Ni_2SiV_3不断增多,这种脆性化合物的形成导致接头中的残余应力增大,接头的力学性能下降。当钎焊条件为1423K/30min时,在一定范围内增加V含量,界面反应层增厚,焊缝合金区由Au[Ni]和均匀分布的颗粒状Ni[Si,V,Au]固溶体构成,接头的抗弯曲性能提高,V含量达到20 at.%,Ni基固溶体中将析出Ni_3Si相,对接头的性能不利。
     通过对钎焊工艺的探索发现,在一定范围内提高钎焊温度或者延长保温时间,VN界面反应层增厚,对接头的性能有利。可是当钎焊温度过高(1473K)或保温时间过长(90min),焊缝合金区中的Ni[Si,V,Au]固溶体转变为大块的金属间化合物Ni_3Si,Ni_3Si的形成对接头的力学性能不利。采用Au58.7Ni_36.5V4.8 at.%钎料在1423K保温60min连接得到的Si_3N_4/Si_3N_4陶瓷获得了最高接头性能,其平均三点弯曲强度为249MPa。接头具有良好的高温性能,当试验温度达到973K,接头的抗弯曲性能仍保持在200MPa以上,在973K的大气氛围下保温100h后,接头的室温抗弯曲性能为269MPa。
     在Au-Ni-V钎料中加入第四组元Pd,随着添加的Pd含量增加,接头的界面反应层增厚,Ni基固溶体中的Si含量不断增加,最终形成多种Ni-Si化合物。利用Au54.1Ni_36.1V4.8Pd5钎料在1423K保温60min连接得到的Si_3N_4/Si_3N_4陶瓷接头性能最高,室温强度为264.4MPa,试验温度提高到1073K,接头的平均抗弯曲强度仍保持在221MPa。在Au-Ni-V钎料中添加1 at.%的Mo颗粒,Mo颗粒与Ni、V和Si发生了反应,形成四元化合物Ni_2Si(VMo)_3,该化合物的生成对接头性能不利。
     本文阐明了利用含V的活性钎料连接Si_3N_4陶瓷的界面连接机理:在钎焊加热过程中,钎料合金熔化,Si_3N_4陶瓷母材/液相钎料界面处的V与Si_3N_4发生反应,生成反应产物VN,Si从界面反应中释放出来,熔入液相钎料合金中。随着钎焊温度增加或者保温时间的延长,界面处形成的VN晶粒长大并互相连接,VN与Si_3N_4晶粒之间没有特定的位相关系。界面反应层的厚度变化与保温时间满足线性定律,说明反应层的生长速率是由V与Si_3N_4之间的反应速率控制的。通过动力学计算可知,利用Au58.7Ni_36.5V4.8钎料连接Si_3N_4陶瓷,VN界面反应的活化能为329.5 kJ/mol,在该钎料合金中添加了5 at.%的Pd之后,活化能降低至255.9 kJ/mol,证明Pd的加入不仅可以提高钎料合金的熔点,还可以改变界面反应活化能,有效促进界面反应。
Silicon nitride ceramics with excellent mechanical properties at high temperature have been widely used in aerospace and other fields. It is extremely necessary to join the Si_3N_4 ceramics for extending the application of Si_3N_4. In this research, Au-Ni-V filler alloy was used to braze Si_3N_4 ceramics. The effect of filler alloy content and brazing parameters on microstructure and mechnical properties of joint has been studied and the effect of microstructure on mechanical properties was analyzed in detail. The mechanism of interfacial reaction between active filler metal of V and Si_3N_4 ceramics was studied deeply. Furthermore, the fourth element of Pd or Mo was added into Au-Ni-V filler alloy to reveal the effect of addition of fourth element on the microstructure, mechanical properties and the mechanism of the joint formation.
     The results show that the Si_3N_4/Si_3N_4 joint brazed with Au-Ni-V filler alloy consists of three parts: Si_3N_4 ceramic substrates, filler alloy seam composed of Au[Ni] solid solution and Ni-rich phases, and VN reaction layer between substrates and filler alloy seam. Under brazing parameter of 1373K/30min, with V content in filler alloy increasing in a certain range, the thickness of VN reaction layer increases, resulting in the improvement of bonding strength and mechanical properties of the joints. However, when V content exceeds 15 at.% , the brittle alloy phase Ni_2SiV_3 increases, leading to the rise of residual stress in the joint and decrease of mechanical properties of joint. Under brazing condition of 1423K/30min, with the increase of V content in a certain range, reaction layer thickness increases and the filler alloy seam is composed of Au[Ni] solid solution and granular Ni[Si,V,Au] solid solution distributed uniformly. The mechanical properties of joint can be improved. However, Ni_3Si phases precipitated from Ni-base solid solution, and the properties of joint decreased when V content is too high.
     According to the study of brazing parameters, it can be found that the VN reaction layer was thickened and the mechanical properties of joint was improved with brazing temperature or holding time increasing in certain ranges. However, when the brazing temperature is too high (1473K) or the holding time is too long (90min), Ni[Si,V,Au] solid solution transformed to an intermetallic compound of Ni_3Si in the filler alloy seam, which leads to the decrease of mechanical properties of joints. Therefore, the average three-point bending strength of Si_3N_4/Si_3N_4 joint brazed using Au58.7Ni_36.5V4.8 at.% at 1423K for 60min reaches the maximum value of 249MPa at room temperature. The joint has good high-temperature performance. When testing temperature increased to 973K, the bending strength of joint is more than 200MPa and when the joint was annealed in air at 973K for 100h, bending strength of joint increases to 269MPa.
     In this research, the fourth element of Pd was added into Au-Ni-V filler alloy to improve the mechanical properties of joint. The results show that with increasing Pd content, the thinckness of VN reaction layer increases and the Ni-based solid solution grows because the Si content increases continuously. Finally, Ni-Si compounds are formed in the joint. Therefore, the average three-point bending strength of Si_3N_4/Si_3N_4 joint brazed using Au54.1Ni_36.1V4.8Pd5 at 1423K for 60min reaches the maximum value of 264MPa at room temperature. When testing temperature increases to 1073K, the average bending strength of joint is 221MPa. As 1 at.% Mo particles is added into Au-Ni-V filler alloy, Ni, Si and V react with Mo to form tetradic compound of Ni_2Si(VMo)_3. The formation of Ni2Si(VMo)3 phase leads to a sharp decrease of the bending strength of joint.
     This paper illustrates the formation mechanism of Si_3N_4 ceramics joint brazed with filler alloy containing activity of V. During heating process, the filler alloy melted and V at the interface at Si_3N_4 ceramic/liquid filler alloy reacted with Si_3N_4 and formed the VN compound. Si atoms were produced by decomposition from Si_3N_4 and dissolved continuously into the molten brazing alloy. With increasing the brazing temperature or holding time, the VN grain grew and connected with each other. There is no specific crystal orientation relationship between VN and Si_3N_4. The increase of the VN reaction layer with holding time obeys the linear law, indicating that the growth rate of the reaction layer is controlled by the reaction between V and Si_3N_4. Based on the dynamics calculation, the activation energy of VN reaction layer formation of joint brazed using Au58.7Ni_36.5V4.8 is 329.5 kJ/mol. But when 5 at.% Pd is added into this filler alloy, the activation energy of reaction layer formation reduces to 255.9 kJ /mol, which indicates that the addition of Pd not only improve the melting point of filler alloy, but also change the activation energy of interfacial reaction between V and Si_3N_4, which leads to the effective promotion of interfacial reaction.
引文
[1]张杰.氮化硅陶瓷活性钎焊工艺与连接机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2004:61-76.
    [2]曹优明,郑仕远. Si_3N_4陶瓷与Si_3N_4陶瓷及金属连接的研究进展[J].材料开发利用,2002,17(5):7-16.
    [3]张俊计,刘学建等.氮化硅基陶瓷连接技术的研究进展[J].陶瓷学报,2003,23(2):130-133.
    [4]张春雷,施克人.压力钎焊改善Si_3N_4/40Cr钢接头强度的试验研究[J].中国有色金属学报,1999,9(2):283-259.
    [5]陈辛尘.结构陶瓷——一个需要耐心的行业[J].材料导报,1995,5:12-15.
    [6]周玉.陶瓷材料学[M].哈尔滨工业大学出版社,1995:315-378.
    [7]卡恩R W,哈森,E J.克雷默.陶瓷的结构与性能.材料科学与技术丛书,第11卷.郭景坤,译. 1998:110-111.
    [8]宗保重行.近代陶瓷.池文俊,译.上海:同济大学出版社,1988:20-21.
    [9]于思远,姜培兰,任成组,陈锡让.工程陶瓷材料研究动态[J].新材料新工艺,1994,5:4.
    [10]肖晖.氮化硅陶瓷材料及其精研加工[J].轴承,1999,4:35-37.
    [11]刘会杰,冯吉才.陶瓷与金属的连接方法及应用[J].焊接学报,1999,(6):5-9.
    [12] Zhang J, Sun Y, Liu C F, Zhang H W. Interfacial Microstructure of Si_3N_4/Si_3N_4 Joint Brazed Using Au-Ni-V Filler Alloy[J]. J. Mater. Sci., 2010, 45:2188-2193.
    [13]刘春凤.活性钎料连接氮化硅陶瓷的接头组织及性能[D].哈尔滨:哈尔滨工业大学硕士学位论文,2002:6-9.
    [14] Fernie J A, Drew L R A, Knowles K M. Joining of Engineering Ceramics[J]. Inter. Mater. Reviews, 2009, 54:283-331.
    [15]胡军峰,杨建国,方洪渊,万鑫.陶瓷高温活性钎焊研究综述[J].宇航材料工艺,2003,5:1-7.
    [16]成田敏夫.せラミックス[J].·金属接合の進歩.まてりあ,1997,36(9):933-936.
    [17] Tillmannb W, Lugscheider W, Schlimbach W, Manter C, Indacochea I E.Heat–Resistant Active Brazing of Silicon Nitride Part 2: Metallurgical Characterization of the Braze Joint[J]. Weld. Res., 1998, 3:103-109
    [18] Tillmann W, Lugscheider E. Heat-Resistant Active Brazing of Silicon Nitride: Part 1: Mechanical Evaluation of Braze Joint[J]. Weld. Res., 1997, Supplement (8):301-304
    [19]张德库,吴爱萍,邹贵生.采用复合钎料钎焊Si_3N_4陶瓷[J].焊接学报,2005,26(10):59-62.
    [20] Prokopenko A A, Zhuravlrv V S, Naidich Y V. Brazing of Si_3N_4 by Cu-Ga-Ti Filler Allay[J]. J. Mater. Sci. Lett., 1998, 17:2121-2123.
    [21] Lee C, Huang W F, Shie J S. Wafer Bonding by Lowtemperature Soldering[J]. Sens. Actuat., 2000, A 85:330-334.
    [22] Selverian J H, Kang S. Ceramic to Metal Joints Brazed with Palladium Alloys[J]. Weld J., 2002, 71(1):25-33.
    [23] Gremillard L, Saiz E, Radmilovic V R, Tomsia A P. Role of Titanium on the Reactive Spreading of Lead-Free Solders on Alumina[J]. J. Mater. Res., 2006, 21:3222-3233.
    [24] Tillmann W, Lugscheider E, Schlimbach K, Manter C, Indacochea J E. Heat-Resistant Active Brazing of Silicon Nitride, Part1: Mechanical Evalution of Braze Joints[J]. Weld. J., 1997, 76(8):300-304.
    [25] Zhang J, Liu C F, Naka M, Meng Q C, Zhou Y. A TEM Analysis of the Si_3N_4/Si_3N_4 Joint Brazed with a Cu-Zn-Ti Filler Metal[J]. J. Mater. Sci., 2004, 39:4587-91.
    [26] Peteves S D, Paulasto M, Ceccone G, Stamos V. The Reactive Route to Ceramic Joining: Fabrication, Interfacial Chemistry and Joint Properties[J]. Acta Metall., 1998 (46):2407-2414.
    [27] Zhang J, He Y M, Sun Y, Liu C F. Microstructure Evolution of Si_3N_4/Si_3N_4 Joint Brazed with Ag–Cu–Ti~+SiCp Composite filler[J]. Ceram. Inter., 2010, 36:1397-1404.
    [28]袁颖,黄庆,郭瑞松,袁启明. Si_3N_4/Si_3N_4陶瓷连接的研究进展[J].陶瓷学报,1999,20(4):23-23.
    [29] Lee W C. Joint Strength and Interfacial Microstructure in Silicon Nitride/Nickel-Based Inconel 718 Alloy Bonding[J]. J. Mater. Sci., 1997, 32:221-228.
    [30] Chen J H, Wang G Z. The Metallurgical Behavior During Brazing of Ni-Base Alloy Inconel 600 to Si_3N_4 with Ag_(71)Cu_(22)Ti_2 Filler Metal. J. Mater. Sci., 1993, 28:2933-2942.
    [31] Voytovych R, Ljungberg L Y, Eustathopoulos N. The Role of Adsorption and Reaction in Wetting in the Cu-Ag-Ti/alumina System[J]. Scrip. Mater., 2004, 51:431-435.
    [32] Voytovych R, Robaut F, Eustathopoulos N. The Relation between Wetting and Interfacial Chemistry in the Cu-Ag-Ti/Alumina System[J]. Acta Mater., 2006, 54:2205-2214.
    [33] Janickovic D, Sebo P, Duhaj P, Svec P. The Rapidly Quenched Ag-Cu-Ti Ribbons for Active Joining of Ceramics[J]. Mater. Sci. Eng., 2001, A304-306:569-573.
    [34] Guedes A, Pinto A, Vieira M, Viana F. The Effect of Brazing Temperature on the Titanium/Glass-Ceramic Bonding[J]. J. Mater. Process Technol., 1999, 92-93:102-106
    [35] Nomura M, Iwamoto C, Tanaka S I. Nanostructure of Wetting Triple Line in a Ag–Cu–Ti/Si_3N_4 Reactive System[J]. Acta Mater., 1999, 47:407-413.
    [36] Iwamoto C, Tanaka S. Interface Nanostructure of Brazed Silicon Nitride[J]. J. Am. Ceram. Soc., 1998, 81:363-368.
    [37] Abed A, Jalham I S, Hendry A. Wetting and Reaction betweenβ-sialon, Stainless Steel and Cu–Ag Brazing Alloys Containing Ti[J]. J. Eur. Ceram. Soc., 2001, 21:283-290.
    [38] Naka M, Zhang J, Fang H Y. Effect of Ti Content on Thermicro Ttructure and Properties of Si_3N_4/Si_3N_4 Joint Brazed Using Cu-Zn-Ti Alloy[J]. Acta Metall. Sin., 2000, 13(1):23-24
    [39] Nicholas M G. Joining processes [J]. Dordrecht, Kluwer Academic Publishers. 1998:78-91
    [40] Wang L, Aldinger F. Joining of Advanced Ceramics in Green State[J]. Mater. Lett., 2002, 54:93-97.
    [41] Zheng J, Akine M. Green State Joining of SiC without Applied Pressure[J]. J. Am. Ceram. Soc., 2001, 84:2479-2483.
    [42] Gao H, Liu J, Du H, Liu M, Wang L, Huo W. Effects of Interlayer Composition on Joining of 25% CePO4/ZrO2–ZrO2 Ceramics on GreenState[J]. Ceram. Int., 2004, 30:823-827.
    [43] Ozturk K, Basu R N, Randall C A, Mayo M J. Diffusion Bonding of Rigid Zirconia Pieces using Electrophoretically Deposited Particulate Interlayers[J]. Scr. Mater., 1999, 41:1191-1195.
    [44] Gopal M, Jonghe L D, Thomas G. Silicon Nitride Joining Using Rare-Earth Reaction Sintering. Scripta Materialia[J]. 1997, 36(4):455-460.
    [45] Gopal M, Sixta M, Jonghe L D, Thomas G. Seamless Joining of Silicon Nitride Ceramics[J]. J. Am. Ceram. Soc., 2001, 84:708-712.
    [46] Akselsen O M. Review Diffusion Bonding of Ceramics[J]. J. of Mater. Sci., 1992, 27:569-579.
    [47] Lemus J, Drew L A L. Diffusion Bonding of Silicon Nitride to Titanium[J]. British Ceram. Trans., 2000, 99:200-205.
    [48] Fukai T, Naka M, Schuster J C. Interfacial Microstructure and Reaction Phases of Solid State Bonded at SiC/V Joints[J]. J. Mater. Synth. Process. 1998, 6: 207-210.
    [49] Ei-Sayed M H, Naka M. Structure and Strength of AlN/V Bonding Interfaces[J]. J. Mater. Sci., 1998, 33:2869-2874.
    [50] Miranzo P, Osendi M I, Vergara I. Mechanical Properties of the Ni Filler Metal Layer in Si_3N_4 Joints Measured by Nanoindentation[J]. Surf. Interf. Anal., 2004, 36:649-653.
    [51] Vila M, Martrnez M L, Prieto C, Miranzo P, Osendi M I, Terry A, Vaughan G. Experimental Determination of Residual Stress in Silicon Nitride Diffusion Bonds Obtained by High-energy X-ray Diffraction[J]. Powder Technol., 2004, 148:60-63.
    [52] Lemus J, Drew R A L. Diffusion Bonding of Silicon Nitride to Titanium[J]. Br. Ceram. Trans., 2000, 99:200-205.
    [53] Lemus J, Drew R A L. Joining of Silicon Nitride with a Titanium Foil Layer[J]. Mater. Sci. Eng., 2003, A352:169-178.
    [54] Abed A, Hussain P B, Jalham I S, Hendry A. Joining of Sialon Ceramics by a Stainless Steel Interlayer[J]. J. Eur. Ceram. Soc., 2001, 21:2803-2509.
    [55] Polanco R, Pablos A D, Miranzo P, Osendi M I. Metal–ceramic Interfaces: Joining Silicon Nitride–Stainless Steel[J]. Appl. Surf. Sci., 2004, 238:506-512.
    [56] Miranzo P, Osendi M I, Vergara I. Mechanical Properties of the Ni Filler Metal Layer in Si_3N_4 Joints Measured by Nanoindentation[J]. Surf. Interf. Anal., 2004, 36:649-653
    [57] Abed A, Hussian L B, Jalham I S, Hendry A. Joining of Sialon Ceramics by a Stainless Steel Interlayers[J]. J. Eur. Ceram. Soc., 2001,21:2803-2509.
    [58] Polanco R, Pablos A D, Miranzo P, Osendi M I. Metal-Ceramic Interface: Joining Silicon Nitride-Stainles Steel[J]. Appl. Surf. Sci., 2004, 238, 506-512.
    [59] Duvall D S, Owczarsk W A, Paulonis D F. TLP Bonding–New Method for Joining Heat-Resistant Alloys[J]. Weld. J., 1974, 53:203-18.
    [60] Liang Y N, Osendi M I, Mirsnzo P. Joining Mechanism in Si_3N_4 Bonded With a Ni-Cr-B Interlayer[J]. J. Eur. Ceram. Soc., 2003, 4(23):547-553.
    [61] Kim J J, Park J W, Eagar T W. Interfacial Microstructure of Partial Transient Liquid Phase Bonded Si_3N_4-to-Inconel 718 Joints[J]. Mater. Sci. Eng. A, 2002, A344:240-244.
    [62] Brochu M, Pugh M D, Drew R A L. PTLPB of Si_3N_4 to FA-129 using Nickel as a Core Interlayer[J]. Int. J. Refract. Met. Hard Mater., 2004, 22:95-103.
    [63] Locatelli M R, Dalgleish B J, Nakashima K, Tomsia A P, Glaeser A M. New Approaches to Joining Ceramics for Hightemperature Applications[J]. Ceram. Int., 1997, 23:313-322.
    [64] Chen Z, Lou H Q, Zhou F. Partial Transient Liquid-Phase Bonding of Si_3N_4 with Ti/Cu/Ni Multi-Interlayer[J]. J. Mater. Sci. Lett. 1997, 16:2026-2028.
    [65]陈征,赵其章,吴斌,许金全,李志章,罗启富.用Ti/Ni/Ti多层中间层进行Si_3N_4陶瓷的部分瞬时液相连接[J].硅酸盐学报,1998, 26(1):33-40.
    [66]陈征,楼宏青,李志章. Si_3N_4/Ti/Cu/Ni二次部分瞬时液相连接[J].材料研究学报,1999,13(3):313-316.
    [67] Liang Y N, Osendi M I, Mirsnzo P. Joining Mechanism in Si_3N_4 Bonded with a Ni-Cr-B Interlayer[J]. J. Eur. Ceram. Soc., 2003, 23:547-553.
    [68] Marks R A, Dugar J D, Glaeser A M. Ceram Joining IV: Effect of Processing Conditions on the Properties of Alumina Joined via Cu/Nb/Cu Interlayers[J]. J. Mater. Sci., 2001, 36:5609-5624.
    [69] Marks R A, Chapman D R, Danielson D T, Glaeser M. Joining of Alumina via Copper/Niobium/Copper Interlayers[J]. Acta Mater. 2000, 48:4425-4438.
    [70] Ceccone G, Nicholas M G, Peteves S D, Tomsia A P, Dalgleish D J, Glaeser AM. An Evaluation of the Partial Transient Liquid Phase Bonding of Si_3N_4 using Au Coated Ni–22Cr Foils[J]. Acta Mater., 1996, 44:657–667.
    [71] Paulasto M, Ceccone G, Peteves S D. Joining of Silicon Nitride via a Transient Liquid[J]. Scr. Mater., 1997, 36:1167-1173.
    [72] Dalgleish B J, Tomsia A P. Low Temperature Routes to Joining Ceramics for High-Temperature Applications[J].Scr. Mater., 1993, 31:1043 -1048.
    [73] Michael H, Brien O. Mechanistic Analysis of Time-Dependent Failure of Oxynitride Glass-Joined Silicon Nitride Below 1000℃[J]. J. Am. Ceram. Soc., 1991, 74:103-108.
    [74]解荣军,黄莉萍,陈源,徐鑫.氮化硅陶瓷连接工艺及结合强度研究[J].硅酸盐学报,1998,26(5):635.
    [75] Kaba T, Shimada M, Koizumi M. Diffusional Reaction Bonding of Si_3N_4 Ceramics Under High Pressure[J]. J. Am. Ceram. Soc., 1983, 66(8):135-136.
    [76] Esposito L, Bellosi A. Joining of Ceramic Oxides by Liquid Wetting and Capillarity[J]. Scr. Mater., 2001, 45:759-766.
    [77] Esposito L, Bellosi A. Joining ZrB_2–SiC Composites using Glass Interlayers[J]. J. Mater. Sci., 2005, 40:4445-4453.
    [78] Zhou F. Joining of Silicon Nitride Ceramic Composites with Y_2O_3–Al_2O_3–SiO_2 Mixtures[J]. J. Mater. Process. Technol., 2002, 127:293–297.
    [79] Zhou F, Suh C M, Kim S S. Interfacial Reaction and Joint Strength of Silicon Nitride Ceramic Composites Bonded with Y_2O_3–Al_2O_3–SiO_2–Si_3N_4 Mixture[J]. Mater. Lett., 2002, 55:55-60.
    [80] Xie R, Huang L, Fu X, Chen Y. Effects of Adhesive Composition on Bond Strength of Joined Silicon Nitride Ceramics[J]. J. Eur. Ceram. Soc., 1998, 18:901-905.
    [81] Derby B, Holt S. Characterisation of Interfaces between Liquid Tin and Alumina in the Presence of Titanium Alloy Additions[J]. Interf. Sci., 2004, 12:29-37.
    [82] Voytovych R, Ljungberg L Y, Eustathopoulos N. The Role of Adsorption and Reaction in Wetting in the Cu–Ag–Ti/Alumina System[J]. Scripta. Mater., 2004, 51:431-435.
    [83] Loehman R E, Gauntt B D, Hosking F M, Kotula P G, Rhodes S, Stephens J J.Reaction and Bonding of Hf and Zr Containing Alloys to Alumina and Silica[J]. J. Eur. Ceram. Soc., 2003, 23:2805-2811
    [84] Loehman R E, Hosking F M, Gauntt B, Kotula P. G, Lu P. Reactions of Hf-Ag and Zr–Ag Alloys with Al_2O_3 at Elevated Temperatures[J]. J. Mater. Sci., 2005, 40:2319-2324.
    [85] Loehman R E, Kotula P G. Spectral Imaging Analysis of Interfacial Reactions and Microstructures in Brazing of Alumina by a Hf–Ag–Cu alloy[J]. J. Am. Ceram. Soc., 2004, 87:55-59
    [86] Winn A J, Derby B, Webster J R P, Holt S. In Situ Characterization of Interfaces between Liquid Tin–Vanadium Alloys and Alumina by Neutron Reflection Spectroscopy[J]. J. Am. Ceram. Soc., 2004, 87:279-285.
    [87] Xiong H P, Dong W, Chen B, Kang Y S, Kawasaki A, Okamura H, Watanabe R. Wettability of Ni-V, Co-V, and Ni-Cr-V System Brazing Alloys on Si_3N_4 Ceramic and Interfacial Reactions[J]. Mater. Sci. Eng., 2008, A474:376-381.
    [88] Eustathopoulos N. Dynamics of Wetting in Reactive Metal/Ceramic Systems[J]. Acta Mater., 1998, 46:2319-2327.
    [89] Eustathopoulos N. Progress in Understanding and Modeling Reactive Wetting of Metals on Ceramics[J] Curr. Opin. Solid State Mater. Sci., 2005, 9:152-160.
    [90] Meier A, Javernick D A, Edwards G R. Ceramic–Metal Interfaces and the Spreading of Reactive Liquids[J]. JOM, 1999, 51,(2):44-47.
    [91] Meier A, Chidambaram P R, Edwards G R. Modelling of the Spreading Kinetics of Reactive Brazing Alloys on Ceramic Substrates: Copper–Titanium Alloys on Polycrystalline Alumina[J]. Acta Mater., 1998, 46:4453-4467.
    [92] Saiz E, Tomsia A P, Cannon R M. Ridging Effects on Wetting and Spreading of Liquids on Solids[J]. Acta Mater., 1998, 46:2349-2361.
    [93] Saiz E, Cannon R M, Tomsia A P. Reactive Spreading: Adsorption, Ridging and Compound Formation[J]. Acta Mater., 2000, 48:4449-4462.
    [94] Saiz E, Tomsia A P, Cannon R M. Triple Line Ridging and Attachment in High-Temperature Wetting[J]. Scr. Mater., 2001, 44:159-164.
    [95] Yost F G. The Triple Line in Reactive Wetting. Scr. Mater., 1998, 38:1225-1228.
    [96] Yost F G. Kinetics of Reactive Wetting[J]. Scr. Mater., 2000, 42:801-806.
    [97] Sobczak N, Singh M, Asthana R. High-Temperature Capillarity and Interfacial Phenomena. Curr. Opin. Solid Satate Mater. Sci. 2005, 9:149-151.
    [98] Abdulrahman A, Issam S. J, Alan H. Wetting and Reaction betweenβ-sialon,Stainless Steel and Cu-Ag Brazing Alloys Containing Ti[J]. J. Eur. Ceram. Soc. 2001, 21:183-160.
    [99] Yu Z S, Wu M F, Wang F J. Effect of Reaction Layer Thickness on Strength of Al2O3/AgCuTi/Ti-6Al-4V Brazed Joints[J]. Mater. Sci. Technol. 2001, 17:1441-1443.
    [100] Shimoo T, Okamura K. Interaction of Si_3N_4 with Cr[J]. J. Mater. Sci. 1994, 29:2231-2237.
    [101] Shimoo T, Okamura K. Interaction of Si_3N_4 with Titanium at Elevated Temperature[J]. J. of Mater. Sci., 1997, 32:3031-3036.
    [102] Shimoo T, Okamura K. Interaction of Si_3N_4 with Cr[J]. J. of Mater. Sci., 1994, 29:2231-2237.
    [103] Wei P, Chen J, Huang Y, Titanium Metallization of Si_3N_4 Ceramic by Molten Salt Reaction: Mechanism and Interfacial Structure[J]. J. Mater. Sci. 2000, 35:3685-3689.
    [104] Tillmann W, Lugscheder E. Kinetic and Microstructural Aspect of the Reactio-n Layer at Ceramic/Metal Braze Joints. Journal of Materials Science[J]. 1996, 2(31):445-452.
    [105] Liu C F, Zhang J, Meng Q C, Zhou Y, Naka M, Joing of Silicon Nitride with a Cu_(76.5)Pd_(8.5)Ti_(15) Filler Alloy[J]. Ceram. Inter., 2007, 33:427-431.
    [106] Maeda M, Igarashi O, Shibayanagi T, Naka M, Solid State Diffusion Bonding of Silicon Nitride using Vanadium Foils[J]. Mater. Trans., 2003, 44:2701-2710
    [107]雷永平,韩丰娟,夏志东,冯吉才.陶瓷-金属钎焊接头残余应力的数值分析[J].焊接学报,2003,24(5):33-41.
    [108] Sarkani S, Tritchkov V, Michaelov G. An Efficient Approach for Computing Residual Stresses in Welded Joints[J]. Finite Elements in Analysis and Design, 2000:247-268
    [109] Kim T W, Chang H S, Park S W. Re-Distribution of Thermal Residual Stress in Brazed Si_3N_4/Stainless Steel Joint Using Laminated Interlayers[J]. J. Mater. Sci. Lett., 2001, 20:973-976
    [110] Li W B, Lei B Q, Lindback. T, Warren R. Stresses Developed in Reaction-Bonded Ceramics[J]. J. Eur. Ceram. Soc. 1999, 19:277-283.
    [111]楚建新,林晨光,孙序.陶瓷-金属连接应力X射线衍射测量方法[J].中国有色金属学报,1997,7(2):82-85.
    [112] Selverian J H, ONeil D A. Performance Testing and Strength Prediction of Ceramic-to-Metal Joints[J]. Trans. ASME, 1994, 116:622-628.
    [113] Kohnle C, Mintchev O, Brunner D, Schmauder S. Fracture of Metal/Ceramic Interfaces[J]. Comput. Mater. Sci., 2000, 19:261-266.
    [114]叶茂.氮化硅陶瓷与镍基合金钎焊接头的残余应力研究[D].哈尔滨工业大学硕士学位论文,2008:8-31.
    [115] Rabin B H, Williamson R L, Bruck H A. Residual Strains in an Al_2O_3-Ni Joint Bonded with a Composite Interlayer: Experiments and FEM Analysis[J]. J. Am. Ceram. Soc. 1998, 81(6):1541-1549.
    [116]吴昌忠,陈静,陈怀宁,林泉洪.钎料对金属/陶瓷钎焊接头残余应力的影响[J].机械工程材料,2005,29(9):18-40.
    [117]李卓然,曹健,冯吉才. TiB2金属陶瓷/TiAl钎焊连接接头应力的数值模拟[J].焊接学报,2003,24(3):1-4.
    [118]雷永平,韩丰娟,夏志东,冯吉才.陶瓷-金属钎焊接头残余应力的数值分析[J].焊接学报,2003,24(5):33-41.
    [119] Cho J R, Lee B Y, Moon Y H, Tyne C W V. Investigation of Residual Stress and Post Weld Heat Treatment of Multi-Pass Welds by Finite Element Method and Experiments[J]. J. .Mater. Process. Technol., 2004, 4(5):1690-1695.
    [120] Pascal J. Y, Benoit M and Stathis D. Peteves. Effects of the Metal Workpiece Properties on the Residual Stresses in Silicon Nitride-Metal Brazed Joints[J]. J. Mater. Res., 1996, 11:3090-3098
    [121] Park J W, Mendez P F, Eagar T W. Strain Energy Distribution in Ceramic-to-Metal Joints[J]. Acta Mater., 2002, 50:883-899.
    [122] Stayed M H, Naka M, Schuster J C. Interfacial Structure and Reaction Mechanism of AlN/Ti Joints[J]. J. Mater. Sci., 1997, 10:2715-2721.
    [123] Stayed M H, Naka M. Structure and Strength of AlN/V Bonding Interfaces[J]. J. Mater. Sci., 1998, 11:2869-2874.
    [124] Prokopenko A. A, Zhuravlrv V S, Naidich V. Brazing of Si_3N_4 by Cu-Ga-Ti Filler Alloy[J]. J. Mater. Sci., 1998, 7:2121-2123.
    [125] Tillmann W, Lugscheider E, Schlimbach K, Manter C, Indacochea J E. Heat-Resistant Active Brazing of Silicon Nitride, Part1: Mechanical Evalution of Braze Joints[J]. Weld. J., 1997, 76(8):300-304.
    [126] Selverian J H, Kang S. Ceramic to Metal Joints Brazed with Palladium Alloys[J]. Weld. J., 2002, 71(1):25-33.
    [127] Loehman R E. Recent Process in Ceramic Joining[J]. Key Eng. Mater., 1999, 6(163):659.
    [128] Paulasto M, Ceccone G, Peteves S D, Joining of Silicon Nitride with V-Active Filler Metals[C]. Poland: Proc. Int. Conf. High Temperature Capillarity, 1997, 2(29):290-299.
    [129] Peteves S D, Paulasto M. The Reactive Route to Ceramic Joining: Fabrication, Interfacial Chemistry and Joint Properties[J]. Acta Mater., 1998, 7(l46):2407-2414.
    [130] Peteves S D, Paulasto M, Ceccone G, Stamos V. The Reactive Route to Ceramic Joining: Fabrication, Interfacial Chemistry and Joint Properties[J]. Acta Mater., 1998, 4(6):2407-2414
    [131] Wu T B, Cohen J B, Yelon W, Phonon Dispersion and the Thermodynamic Properties of a Au-Ni Alloy[J]. Acta Meter., 1982,(30):2065-2070.
    [132] Labat S, Gergaud P, Thomas O, Gilles B, Marty A, Lefebvre S, Residual Stresses in Ultrathin Metal Sublayers within Au/Ni Multilayers[J]. Mater. Research Soc. 1997 (475):363-65.
    [133]崎诚三,平林真,刘安生.二元和金状态图籍(M).冶金工业出版社,2004:58-64.
    [134] Wang W E, Kim Y S, Hong H S. Characterization of the Vanadium–Nitrogen System with Nitrogen Pressure[M]. J. Alloy Compd., 2000(308):147-52.
    [135] Wang J, Liu L B, Liu H S, Jin Z P. Computer Coupling of Phase Diagrms and Thermochemistry. 2007, 31:250-251.
    [136] Zhang J, Sun Y. Microstructural and Mechanical Characterization of the Si_3N_4/Si_3N_4 Joint Brazed Using Au–Ni–V Filler Alloys[J]. J. Eur. Ceram. Soc., 2010(30):751-57
    [137] Villars P, Prince A, Okamoto H, Handbook of Ternary Alloy Phase Diagrams[M]. England: Materials Information Society. Materials Park. OH: ASM International, 1995:5189-12730
    [138]冼爱平.金属-陶瓷界面的润湿和结合机制[D].沈阳:中国科学院金属研究所博士学位论文,1991:24-50.
    [139] Taguchi M, Norm F L, Hommet J, Rey S, Schmerber G, Parlebas J C. Evolution of the Electronic Structures of NixSiy Ordered Systems: Experimental and Theoretical Investigations[J]. Eur. Phy. J., 2000, 18:611-615.
    [140] Dutra A T, Ferrandini P L, Caram R. Microstructure and Mechanical Behavior of in situ Ni-Ni_3Si Composite[J]. J. Alloy Compd, 2007, 432:167-171.
    [141] Prince A, Raynor G V, Evans, D S. Au-Ni-Pd in Phase Diagrams of Ternary Gold Alloys[C]. London: Institute of Metals, 1990:320-323.
    [142] Zhang J, Naka M, Zhou Y. Brazing Si_3N_4 Ceramic Using a Cu–Pd–Ti Filler Alloy for High-Temperature Applications[J]. J. Mater. Sci., 2004, 39:3159-3161.
    [143] Liu C F, Zhang J, Zhou Y, Yi H L, Naka M. Effect of Holding Time on the Self-Joining of Silicon Nitride[J]. J. Alloy. Compd., 2009, 471:217–221.
    [144]贺艳明. Ag-Cu-Ti+Mo复合钎料钎焊氮化硅陶瓷的接头组织及性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008:27-43.
    [145] Liaw D W, Shiue R K. Infrared Brazing of Mo Using the 70Au–22Ni–-8Pd Alloy[J]. Inter. J. Refractory Metals & Hard Mater., 2005, 23:91-97.
    [146] Barin I. Thermochemical Data for Pure Substance[M]. New York:VCH, 1995:1628-7900
    [147] Alekseev V I, Levshin G A, Diffusion[M]. Protessy Metallakh, 1977:112-118.
    [148]孟庆昌.透射电子显微学[M].哈尔滨工业大学出版社,1998:116-121.
    [149]王崇林.相图理论及其应用[M].高等教育出版社,2008:52-57.
    [150] Portmann M J, Erni R, Heinrich H, Kostorz G. Bulk Interfaces in a Ni-rich Ni-Au Alloy Investigated by High-Resolution Z-Contrast Imaging[J]. Micron 2004, 35:695-700
    [151] Tatsuya T, Kazumasa N, Hiroshi O, Mitsuhiro H. Thermodynamic Assessment of the Ni–Si System by Incorporating ab Initio Energetic Calculations into the CALPHAD Approach[J]. CALPHAD, 2003, 27:161-168
    [152] Datta M K, Pabi S K, Murty B S. Thermal Stability of Nanocrystalline Ni Silicides Synthesized by Mechanical Alloying[J]. Mater. Sci. Eng., 2000,A284:219-225.
    [153] Watson A, Hayes F.H. Some Experiences Modelling the Sigma Phase in the Ni-V System[J]. J. Alloys Comp., 2001(320):199-206.
    [154] Wopersnow W, Schubert K. On the Mixture Nickel-Palladium-Silicon[J]. Z. Metallkd, 1976, 67(12):807-810.
    [155]屈新平,茹国平,李炳宗, Detavernier C, Van R, Meirhaeghe. Ni/Pd/Si固相反应及NiSi热稳定性增强研究[J].半导体学报,2002,23:1173-1176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700