稀土掺杂氧氮玻璃及其微晶玻璃的制备、表征与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:氧氮玻璃是氧化物玻璃(如硅酸盐玻璃、硼酸盐玻璃和磷酸盐玻璃等)网络中的部分氧原子被氮原子取代后获得的一类高性能玻璃。与普通氧化物玻璃相比,氧氮玻璃的转变温度、显微硬度、抗弯强度、弹性模量、断裂韧性和折射率等都显著提高,而热膨胀系数明显降低。由于氧氮玻璃具有上述优异性能,其在许多领域有着潜在的应用,如:电脑硬盘的高弹性模量玻璃、陶瓷用封接玻璃、金属涂层、长期存储核废料的封装玻璃、高温应用的高电阻率涂层、玻璃纤维、透明装甲用防弹玻璃等。同时,将氧氮玻璃进行热处理可制备出含特定晶相的氧氮微晶玻璃,这是一种非常有前景的氧化物-氮化物复合材料。其中,原位生长β-Si3N4增强微晶玻璃因具有优良的综合高温力学性能(如高温抗弯强度、高温断裂韧性及抗热冲击性等)而成为近年来材料科学与工程领域的研究热点。
     本论文选取氧氮玻璃、氧氮微晶玻璃及Si3N4基微晶玻璃复合材料为研究对象。利用示差量热扫描分析(DSC)、X射线衍射(XRD)、扫描电镜(SEM)结合能谱分析(EDS)、红外光谱(IR)等手段研究了氧氮玻璃的成形与制备技术,探索了稀土掺杂和氮含量与氧氮玻璃的结构、热学性能和力学性能间的相关性,考察了化学组成和热处理工艺对氧氮微晶玻璃和Si3N4基微晶玻璃复合材料显微结构和力学性能的影响。获得如下主要研究结果:
     以Y2O3、La2O3、CaCO3、Al2O3、SiO2、AlF3·3H2O和Si3N4等为原料,使用通氮气保护的真空电阻炉,采用熔体冷却法,在相对较低的温度下(1550-1650℃)成功制备了半透明且无缺陷的RE-Ca-Si-Al-O-N (RE=Y, La)体系大块氧氮玻璃,并获得其大致玻璃形成范围。
     采用XRD分析方法验证了Y-Ca-Si-Al-O-N样品的玻璃非晶态特征,并利用IR光谱分析了玻璃的基本结构单元。研究了N含量和Y含量对氧氮玻璃的密度、玻璃转变温度、热膨胀系数、析晶峰温度、化学稳定性和维氏显微硬度的影响。结果表明,玻璃的上述性能随N含量或Y含量的变化近似于呈现线性变化趋势。
     研究了La-Ca-Si-Al-O-N体系氧氮玻璃中La/Ca比和N/O比对玻璃密度、热膨胀系数、玻璃转变温度、析晶峰温度、维氏显微硬度、抗弯强度和化学稳定性的影响。发现N和La对玻璃性能的影响是相互独立和叠加的,讨论了与此相应的性能与结构之间的依从关系。
     对比研究了La和Y对氧氮玻璃的热膨胀系数、玻璃转变温度、析晶温度、维氏显微硬度以及抗弯强度等性能的不同影响。研究表明,玻璃性能与La或Y含量呈现近似的线性关系,但Y对玻璃的结构和性能的影响比La更大;利用阳离子场强(CFS)讨论了引入La或Y对玻璃结构与性能所产生的不同影响。
     研究了氮含量对Y-Ca-Si-Al-O-N系氧氮玻璃析晶行为的影响。通过测量玻璃样品的DSC曲线确定了合适的微晶化热处理制度与特征温度。结果表明,N的引入提高了基础氧氮玻璃的玻璃转变温度和析晶峰温度。XRD和SEM分析结果表明,N含量对微晶玻璃的析晶产物、显微结构、晶粒尺寸和晶体分布产生了较大的影响,从而导致微晶玻璃的力学性能也有较大的变化。
     成功制备了Y-Si-Al-O-N-F氧氮微晶玻璃。采用XRD结合能谱分析(EDS)鉴定氧氮微晶玻璃中的晶相成分,利用扫描电镜(SEM)观察微晶玻璃样品的微观形貌。研究结果表明:F的的增加降低了玻璃的玻璃转变温度和析晶峰温度,并影响微晶玻璃的微观结构以及晶体的尺寸和形貌。N含量的增加对微晶玻璃的晶相产物和微观结构产生了较大影响。微晶玻璃的显微硬度和抗弯强度相对各自的基础氧氮玻璃有一定程度的提高。
     在相对较低的烧结温度下,采用两步法无压烧结方法成功制备了原位生长β-Si3N4晶粒增强的Y203-La2O3-Al2O3-SiO2(YLAS)微晶玻璃复合材料。利用XRD和SEM分析了复合材料中的相组成。结果表明,加入30-50wt%的YLAS玻璃能作为有效的烧结助剂,提高了Si3N4复合材料中α-Si3N4向β-Si3N4相转变的程度。复合材料中析出高熔点的稀土二硅酸盐能提高复合材料的高温力学性能。β-Si3N4晶粒增强YLAS微晶玻璃基复合材料与未增强的微晶玻璃相比,具有较好的力学性能,这主要归因于复合材料中存在高含量的长棒状β-Si3N4晶粒。
     采用两步无压烧结方法成功制备了原位生长β-Si3N4和α-SiC共同增强的La2O3-CaO-Al2O3-SiO2(LCAS)微晶玻璃基复合材料。结果表明,复合材料中一定量LCAS玻璃能有效地促进α-Si3N4向β-Si3N4的转变以及β-Si3N4晶粒的长大。但SiC的引入在一定程度上阻碍了α-Si3N4向β-Si3N4的转变,并对复合材料的力学性能有不利的影响。同时还发现复合材料的力学性能随烧结温度的升高而增大。
Abstract:Oxynitride glasses are a branch of high performance glasses, obtained by incorporating nitrogen atoms into oxide glass networks of e.g. silicates, borates and phosphates. Compared to oxide glasses, oxynitride glasses present higher glass transition temperature, microhardness, bending strength, elastic modulus, fracture toughness, refractive index and lower thermal expansion coefficient. Due to the unique properties, oxynitride glasses have led to some potential areas of application:high elastic modulus glasses for computer hard discs, ceramic seals, coatings on metals, encapsulation of nuclear waste for long term storage, high electrical resistivity coatings for use at high temperatures, glass fibers and bullet-proof glass for transparent armor. Meanwhile, oxynitride glass-ceramics with some selected crystalline phases prepared after appropriate heat treatments will be a kind of promising oxide-nitride composites materials. Due to exciting comprehensive high-temperature mechanical properties, such as a good combination of greater high-temperature strength and toughness, superior resistant to thermal-shock, in-situ grown β-Si3N4reinforced glass-ceramic composites has been a hot topic in materials research in recent years.
     Oxynitride glasses, oxynitride glass-ceramics and Si3N4/glass-ceramics composites were chosen as research object in the present thesis. Differential scanning calorimeter (DSC), X-ray diffraction (XRD), Scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS) and IR absorption spectra were used to investigate the formation of these oxynitride glasses, the influences of rare-earth and nitrogen content on the structures, thermal properties and mechanical properties of the oxynitride glasses, the influences of composition and heat-treatment process on the microstructures and mechanical properties oxynitride glass-ceramics and Si3N4/glass-ceramics composites. The main results are listed as follows:
     Y2O3, La2O3, CaCO3, A12O3, SiO2, AlF3-3H2O and Si3N4powders were used as raw materials powders to prepare RE-Ca-Si-Al-O-N (RE=Y, La) oxynitride glasses by melting batches under N2atmosphere, in order to explore the glass forming region of these compositions. Fine appearance, homogeneous, translucent and defect-free bulk oxynitride glasses were prepared successfully at a relatively lower temperature (1550-1650℃).
     The amorphous nature of the Y-Ca-Si-Al-O-N oxynitride glasses was verified by an X-ray diffractometer. Fourier-transform IR spectroscopy was done to find out the basic structural units in these glasses. The influences of nitrogen and yttrium content on the properties such as density, glass transition temperature, thermal expansion coefficients, the crystallization temperature, chemical durability and Vickers hardness were investigated. The physical properties were found to change linearly with the concentration of nitrogen or yttrium content, respectively.
     For La-Ca-Si-Al-O-N oxynitride glasses, the effects of N/O ratios and La/Ca ratios on the properties such as density, thermal expansion coefficient, glass transition temperature, the crystallization temperature, Vickers hardness, bending strength and leaching rate were investigated. The effects of nitrogen and lanthanum on the properties are independent and additive. At the same time, the relationship between these properties and the structures of the glasses were discussed.
     The influences of La or Y on the properties such as thermal expansion coefficients, glass transition temperature, the crystallization temperature, Vickers hardness and bending strength were comparatively studied. The physical properties are found to change linearly with the concentration of lanthanum or yttrium content, respectively. In general, the structure and properties of glasses show a larger dependence on the content of yttrium than on the content of lanthanum. At the same time, the relationship between these properties and the structures of the glasses were discussed by using cationic field strength (CFS).
     The effect of nitrogen substitution on the crystallisation of oxynitride glass in the Y-Ca-Si-Al-O-N system has been studied. The appropriate heat treatment temperatures were selected according to the information provided by the differential scanning calorimeter (DSC) measurement. There is a significant increase in Tg and Tc with increasing nitrogen content. XRD and SEM analysis demonstrated that, N content has significant effect on crystallized products, microstructure, crystalline size and crystalline contribution of the oxynitride glass-ceramics, resulting different mechanical properties.
     Y-Al-Si-O-N-F oxyfluoronitride glass-ceramics were prepared successfully. Crystalline phases in the oxyfluoronitride glass-ceramics were identified by X-ray diffraction and energy dispersion spectrometer (EDS). Microstructures of the glass-ceramics were observed by scanning electron microscopy (SEM). The results show that, addition of fluorine lowers the Tg and Tc of oxyfluoronitride glasses and influences the microstructures, including crystal size and morphology. Nitrogen influences the crystallization products and microstructures. The glass-ceramics all exhibit higher micro-hardness and bending strength compared with their corresponding glasses at different fluorine or nitrogen contents.
     In-situ grown β-Si3N4reinforced Y2O3-La2O3-Al2O3-SiO2(YLAS) glass-ceramic matrix composites were obtained by a two-step sintering process at a relatively lower temperature. Analyses of resultant products were carried out using X-ray diffraction and scanning electron microscope. The results showed that adding30-50wt%YLAS glass could promote effectively densification of Si3N4composites and a-Si3N4to (3-Si3N4phase transformation. The crystallized rare-earth disilicate phases with a high melting point significantly benefited the high-temperature mechanical properties of the composites. The YLAS glass-ceramic matrix Si3N4composites exhibit excellent mechanical properties compared to unreinforced glass-ceramic matrix, which is undoubtedly attributed to the high concentration of rod-like β-Si3N4grains.
     In-situ grown (3-Si3N4and a-SiC co-reinforced La2O3-CaO-Al2O3-SiO2(LCAS) glass-ceramic matrix composites were obtained by a two-step sintering process. Densities of samples were measured and analyses of result products were carried out using X-ray diffraction and scanning electron microscope. The results show that LCAS glass-ceramic could effectively promote a-Si3N4to β-Si3N4phase transformation. However, β-Si3N4grain growth was hindered by the existent a-SiC to a certain extent, resulting an adverse effect on mechanical properties of the composites. The mechanical properties of the composites were found to enhance with increasing sintering temperature.
引文
[1]Sakka S. Oxynitride Glasses [J]. Annual Review of Materials Research,1986, 16(1):29-46.
    [2]Hampshire S, Pomeroy M J. Oxynitride Glasses [J]. International Journal of Applied Ceramic Technology,2008,5(2):155-163.
    [3]Jack K H. Review:SiAlONs and related nitrogen ceramics [J]. Journal of Materials Science,1976,11:1350-1158.
    [4]Riley F L. Silicon nitride and related materials [J]. Journal of the American Ceramic Society,2000,83(2):245-265.
    [5]Lange F F. The sophistication of ceramic science through silicon nitride studies [J]. Journal of the Ceramic Society of Japan,2006,114:873-879.
    [6]Ramesh R, Nestor E, Pomeroy M J, Hampshire S. Formation of Ln-Si-Al-O-N glasses and their properties [J]. Journal of the European Ceramic Society,1997, 17(15-16):1933-1939.
    [7]Sun E Y, Becher P F, Hwang S L, Waters S B, Pharr G M, Tsui T Y. Properties of silicon-aluminum-yttrium-oxynitride glasses [J]. Journal of Non-Crystalline Solids,1996,208(1-2):162-169.
    [8]Becher P F, Waters S B, Westmoreland C G, Riester L. Compositional Effects on the Properties of Si-Al-RE-Based Oxynitride Glasses (RE=La, Nd, Gd, Y, or Lu) [J]. Journal of the American Ceramic Society,2002,85(4):897-902.
    [9]李秀英,卢安贤,肖卓豪,左成钢.Mg取代Y对Y-Mg-Si-Al-O-N氧氮玻璃性质的影响[J].硅酸盐学报,2008,36(10):1458-1462.
    [10]Hampshire S. Oxynitride glasses:their properties and crystallization-a review [J]. Journal of Non-Crystalline Solids,2003,316:64-73.
    [11]Grujicic M, Pandurangan B, Coutris N, Cheeseman B, Fountzoulas C, Patel P, Strassburger E. A ballistic material model for starphire, a soda-lime transparent armor glass [J]. Materials Science and Engineering:A,2008,491:397-411.
    [12]Grujicic M, Bell W, Pandurangan B. Design and material selection guidelines and strategies for transparent armor systems [J], Materials & Design,2011,34: 808-819.
    [13]Medvedovski E. Ballistic performance of armour ceramics:Influence of design and structure. Part 1 [J]. Ceramics International,2010,36:2103-2115.
    [14]Straburger E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society,2009,29:267-273.
    [15]Klement R, Rolc S, Mikulikova R, Krestan J. Transparent armour materials [J]. Journal of the European Ceramic Society,2008,28:1091-1095.
    [16]Dortmans E, Leonardus J M G, Dennis D G. Oxynitride armour glass. European: EP 1736450 A1[P],2006-01.
    [17]Leonardus J M G, Dennis D G, Dortmans E. Oxynitride armour glass. United States:US 20080305942 Al [P],2008-03.
    [18]阿纳托利·Z·罗森夫兰茨,唐娜·w·班格.透明装甲复合材料及其制备方法.中国:200780017772.4[P],2009-06.
    [19]Coon D N, Rapp J G, Bradt R C. Mechanical properties of silicon oxynitride glasses [J]. Journal of Non-Crystalline Solids,1983,56(1-3):161-166.
    [20]Wusirika R R. Oxidation behavior of oxynitride glasses [J]. Journal of the American Ceramic Society,1985,68(11):C294-C297.
    [21]Unuma H, Kawamura K, Sawaguchi N, Maekawa H, Yokokawa T. Molecular dynamics study of Na-Si-O-N oxynitride glasses [J]. Journal of the American Ceramic Society,1993,76(5):1308-1312.
    [22]Rocherulle J, Guyader J, Verdier P, Laurent Y. Li-Si-Al-O-N and Li-Si-O-N oxynitride glasses study and characterization [J]. Journal of Materials Science, 1989,24(12):4525-4530.
    [23]Shaw T M, Thomas G, Loehman R E. Formation and microstructure of Mg-Si-O-N glasses [J]. Journal of the American Ceramic Society,1984,67(10): 643-647.
    [24]Pugar E A, Kennedy J H, Morgan P E D, Porter J R. New cubic structure in the Ca-Si-O-N system [J]. Journal of the American Ceramic Society,1988,71(6): C288-C291.
    [25]Makishima A, Mitomo M, Li N, Tsutsumi M. Microhardness and transparency of an La-Si-O-N oxynitride glass [J]. Journal of the American Ceramic Society, 1983,66(3):C55-C56.
    [26]Ohashi M, Nakamura K, Hirao K, Kanzaki S. Formation and properties of Ln-Si-O-N glasses (Ln=La or Y) [J]. Journal of the American Ceramic Society, 1995,78(1):71-76.
    [27]Wusirika R R, Chyung C K. Oxynitride glasses and glass-ceramics [J]. Journal of Non-Crystalline Solids,1980,38-39(1):39-44.
    [28]姚鹿苹,胡关钦,方全信,李家治.Li-Al-Si-O-N系统中某些玻璃的性能与析晶行为[J].硅酸盐学报,1984,12(4):388-396.
    [29]Messier D R, Gleisner R P. Preparation and characterization of Li-Si-Al-O-N glasses [J]. Journal of the American Ceramic Society,1988,71(6):422-425.
    [30]Homeny J, Mcgarry D L. Preparation and mechanical properties of Mg-Al-Si-O-N glasses [J]. Journal of the American Ceramic Society,1984, 67(11):C225-C227.
    [31]Geyer V, Russel C. Oxinitride glasses in the system Mg-Al-Si-O-N, prepared with the aid of an electrochemically derived polymeric precursor [J]. Journal of Non-Crystalline Solids,1992,149(3):196-202.
    [32]Homeny J, Paulik S W. High-pressure synthesis of Mg-Al-Si-O-N oxynitride glasses [J]. Materials Letters,1990,9(12):504-507.
    [33]Tredway W K, Risbud S H. Influence of atmospheres and TiO2 nucleant on the crystallization of Mg-SiAlON glasses [J]. Journal of Materials Science Letters, 1985,4(1):31-33.
    [34]Kenmuir S V J, Thorp J S, Kulesza B L J. The dielectric behaviour of Mg-Al-Si, Ca-Al-Si, Y-Al-Si and Nd-Al-Si oxynitride glasses [J]. Journal of Materials Science,1983,18(6):1725-1730.
    [35]Pastuszak R, Verdier P. M-Si-Al-O-N glasses (M=Mg, Ca, Ba, Mn, Nd), existence range and comparative study of some properties [J]. Journal of Non-Crystalline Solids,1983,56(1-3):141-146.
    [36]Videau J J, Etourneau J, Rocherulle J. Structural approach of Sialon Glasses: M-Si-Al-O-N [J]. Journal of the European Ceramic Society,1997,17 (15-16): 1955-1961.
    [37]Sakka S, Kamiya K, Yoko T. Preparation and properties of Ca-Al-Si-O-N oxynitride glasses [J]. Journal of Non-Crystalline Solids,1983,56(1-3):147-152.
    [38]Tredway W K, Risbud S H. Melt processing and properties of barium-sialon glasses [J]. Journal of the American Ceramic Society,1983,66(5):324-327.
    [39]Hakeem A S, Grins J, Esmaeilzadeh S. La-Si-O-N glasses:Part II:Vickers hardness and refractive index [J]. Journal of the European Ceramic Society,2007, 27(16):4783-4787.
    [40]Menke Y,Falk L K L, Hampshire S. The crystallisation of Er-Si-Al-O-N B-phase glass-ceramics [J]. Journal of Materials Science,2005,40(24):6499-6512.
    [41]Becher P F, Ferber M K. Temperature-dependent viscosity of SiREAl-based glasses as a function of N:O and RE:Al ratios (RE=La, Gd, Y, and Lu) [J]. Journal of the American Ceramic Society,2004,87(7):1274-1279.
    [42]Hampshire S, Pomeroy M J. Effect of composition on viscosities of rare earth oxynitride glasses [J]. Journal of Non-Crystalline Solids,2004,344(1-2):1-7.
    [43]Zhang E, Liddell K, Thompson D P. Glass forming regions and thermal expansion of some Ln-Si-Al-O-N [J]. British Ceramic Transactions,1996,95(4): 169-172.
    [44]Ramesh R, Nestor E, Pomeroy M J, Hampshire S. Classical and differential thermal analysis studies of the glass-ceramic transformation in a YSiAlON glass [J]. Journal of the American Ceramic Society,1998,81(5):1285-1297.
    [45]Frischat G H, Schrmpf C. Preparation of nitrogen-containing Na2O-CaO-SiO2 glasses [J]. Journal of the American Ceramic Society,1980,63(11-12):714-715.
    [46]Frischat G H, Sebastian K. Leach resistance of nitrogen-containing Na2O-CaO-SiO2 glasses [J]. Journal of the American Ceramic Society,1985, 68(11):C305-C307.
    [47]Lofaj F, Deriano S,LeFloch M, Rouxel T, Hoffmann M J. Structure and rheological properties of the RE-Si-Mg-O-N (RE=Sc, Y, La, Nd, Sm, Gd, Yb and Lu) glasses [J]. Journal of Non-Crystalline Solids,2004,344(1-2):8-16.
    [48]Lofaj F, Hvizdos P, Dorcakova F, Satet R, Hoffmann M J, Arellano-Lopez A R. Indentation moduli and microhardness of RE-Si-Mg-O-N glasses (RE=Sc, Y, La, Sm, Yb and Lu) with different nitrogen content [J]. Materials Science and Engineering:A,2003,357(1-2):181-187.
    [49]Lofaj F, Satet R, Hoffmann M J, Arellano-Lopez A R. Thermal expansion and glass transition temperature of the rare-earth doped oxynitride glasses [J]. Journal of the European Ceramic Society,2004,24(12):3377-3385.
    [50]Chen J, Wei P, Huang Y. Formation and properties of La-Y-Si-O-N oxynitride glasses [J]. Journal of Materials Science Letters,1997,16(18):1486-1488.
    [51]Pomeroy M J, Nestor E, Ramesh R, Hampshire S. Properties and crystallization of rare-earth Si-Al-O-N glasses containing mixed trivalent modifiers [J]. Journal of the American Ceramic Society,2005,88(4):875-881.
    [52]Weldon L M, Pomeroy M J, Hampshire S. Glasses in the rare-earth sialon system [J]. Key Engineering Materials,1996,118-119:241-248.
    [53]Pomeroy M J, Mulcahy C, Hampshire S. Independent Effects of nitrogen substitution for oxygen and yttrium substitution for magnesium on the properties of Mg-Y-Si-Al-O-N glasses [J]. Journal of the American Ceramic Society,2003, 86(3):458-464.
    [54]Rocherulle J, Matecki M, Delugeard Y. Heat capacity measurements of Mg-Y-Si-Al-O-N glasses [J]. Journal of Non-Crystalline Solids,1998,238(1-2): 51-56.
    [55]Jankowski P E, Risbud S H. Synthesis and characterization of a Si-Na-B-O-N glass [J]. Journal of the American Ceramic Society,1980,63(5-6):350-352.
    [56]Jankowski P E, Risbud S H. Formation and characterization of oxynitride glasses in the Si-Ca-Al-O-N and Si-Ca-Al, B-O-N systems [J]. Journal of Materials Science,1983,18(7):2087-2094.
    [57]Amir R H, Annaik G, Wynette R, Michael J P, Stuart H. Effects of nitrogen and fluorine on crystallisation of Ca-Si-Al-O-N-F glasses [J]. Journal of the European Ceramic Society,2012,32:849-857.
    [58]Messier D R, Deguire E J. Thermal decomposition in the system Si-Y-Al-O-N [J]. Journal of the American Ceramic Society,1984,67(9):602-605.
    [59]Mulfinger H O, Dietzel A, Navarro J M F. Physical solubility of helium, neon and nitrogen in glass melts [J]. Glastechnische Berichte,1972,45(9):389-396.
    [60]Elmer T H, Nordberg M E. Effect of nitriding on electrolysis and devitrification of high-silica glasses [J]. Journal of the American Ceramic Society,1967,50 (6): 275-279.
    [61]Jankowsik P E, Risbud S H. Synthesis and characterization of a Na-B-Si-O-N glass [J]. Journal of the American Ceramic Society,1980,63(5-6):350-352.
    [62]Brinker C J, Haaland D M, Loehman R E. Oxynitride glasses prepared from gel and melts [J]. Journal of Non-Crystalline Solids,1983,56(1-3):179-184.
    [63]Brinker C J, Haaland D M. Oxynitride glass formation from gels [J]. Journal of the American Ceramic Society,1983,66(11):758-765.
    [64]曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用[J].高分子材料科学与工程,1998,14(2):138-143.
    [65]Greskovich C, Prochazka S. Stability of Si3N4 and liquid phase (s) during sintering [J]. Journal of the American Ceramic Society,1981,64(7):C96-C97.
    [66]Brow R K, Pantano C G. Nitrogen coordination in oxynitride Glasses [J]. Journal of the American Ceramic Society,1984,67(4):C72-C74.
    [67]Messier D R. Oxynitride glass research at the U.S. army materials technology laboratory [J]. American Ceramic Society Bulletin,1989,68(11):1931-1936.
    [68]Schrimpf C, Frischat G H. Property-composition relations of N2-containing Na2O-CaO-SiO2 glasses [J]. Journal of Non-Crystalline Solids,1983,56(1-3): 153-159.
    [69]Yao L P, Fang Q X, Hu G Q, et al. Preparation and properties of some Li-Al-Si-O-N glasses [J]. Journal of Non-Crystalline Solids,1983,56(1-3): 167-172.
    [70]Kozii O I, Yashchishin IN, Bashko L O. Nitriding of industrial glass surface [J]. Glass and Ceramics,2004,61(9-10):328-330.
    [71]Thomas G, Ahn C, Weiss J. Characterization and crystallization of Y-Si-Al-O-N glass [J]. Journal of the American Ceramic Society,1982,65 (11):185-188.
    [72]Dinger T R, Rai R S, Thomas G. Crystallization behavior of a glass in the Y2O3-SiO2-AlN system [J]. Journal of the American Ceramic Society,1988, 71(4):236-244.
    [73]Besson J L, Billieres D, Rouxel T, Goursat P, Flynn R, Hampshire S. Crystallization and properties of a Si-Y-Al-O-N glass ceramic [J]. Journal of the American Ceramic Society,1993,76 (8):2103-2105.
    [74]Hampshire S, Nestor E, Flynn R, Besson J L, Rouxel T, Lemercier H. Yttrium oxynitride glasses:properties and potential for crystallisation to glass-ceramics [J]. Journal of the European Ceramic Society,1994,14:261-273.
    [75]Liddell K, Thompson D P. Heat treatment of wollastonite type Y-Si-Al-O-N glasses [J]. Journal of Material Science,1997,32(4):887-892.
    [76]Ramesh R, Nestor E, Pomeroy M J, Hampshire S. Classical and differential thermal analysis studies of the glass-ceramic transformation in a YSiAlON glass [J]. Journal of the American Ceramic Society,1998,81 (5):1285-1297.
    [77]Besson J L, Lemercier H, Rouxel T, Trolliard G Yttrium sialon glasses: nucleation and crystallization of Y35Si45Al20O83N17 [J]. Journal of Non-Crystalline Solids,1996,211 (1-2):1-21.
    [78]李秀英,卢安贤.热处理制度对Mg-Y-Al-Si-O-N玻璃析晶行为的影响[J].中国有色金属学报,2009,19(9):1663-1670.
    [79]Rafferty A, Clifford A, Hill R, Wood D, Samuneva B, Dimitrova-Lukacs M. Influence of fluorine content in apatite mullite glass ceramics [J]. Journal of the American Ceramic Society,2000,83(11):2833-2838.
    [80]Rao N N, Kityk I V, Kumar V R, Rao P R, Raghavaiah B V, Czaja P, Rakus P, Veeraiah N. Piezoelectric and elastic properties of ZnF2-PbO-TeO2:TiO2 glass ceramics [J]. Journal of Non-Crystalline Solids,2012,358:702-710.
    [81]Ghaffari M, Alizadeh P, Rahimipour M R. Sintering behavior and mechanical properties of mica-diopside glass-ceramic composites reinforced by nano and micro-sized zirconia particles [J]. Journal of Non-Crystalline Solids,2012,358: 3304-3311.
    [82]Rao P S, Teja P M V, Babu A R, Rajyasree C, Rao D K. Influence of molybdenum ions on spectroscopic and dielectric properties of ZnF2-Bi2O3-P2O5 glass ceramics [J]. Journal of Non-Crystalline Solids,2012,358:3372-3381.
    [83]Valente M A, Bih L, Graca M P F. Dielectric analysis of tungsten phosphoniobate 20A2O-30WO3-10Nb2O5-40P2O5 (A=Li, Na) glass-ceramics [J]. Journal of Non-Crystalline Solids,2011,357:55-61.
    [84]Besson J L, Billieres D, Rouxel T, Goursat P, Flynn R, Hampshire S. Crystallization and Properties of a Si-Y-Al-O-N Glass-Ceramic [J]. Journal of the American Ceramic Society,1993,76(8):2103-2105.
    [85]Leng-ward G, Lewis M H. Crystallisation in Y-Si-Al-O-N glasses [J]. Materials Science and engineering,1985,71:101-111.
    [86]Hampshire S, Drew R A, Jack K H. Oxynitride glasses [J]. Physics and Chemistry of Glasses,1985,26:182-186.
    [87]Lengward G, Lewis M H, Wild S. Crystallization of 3M/4X Mg-Si-Al-O-N melts [J]. Journal of Materials Science,1986,21(5):1647-1653.
    [88]Hampshire S, Pomeroy M J. Grain boundary glasses in silicon nitride:A review of chemistry, properties and crystallization [J]. Journal of the European Ceramic Society,2012,32 (9):1925-1932.
    [89]Li X, Yin X, Zhang L, Cheng L, Qi Y. Mechanical and dielectric properties of porous Si3N4-SiO2 composite ceramics [J]. Materials Science and Engineering:A, 2009,500 (1-2):63-69.
    [90]Guicciardi S, Calzavarini R, Medri V, Bugliosi S, Bellosi A. Effects of different BN grades on the machinability of Si3N4-MoSi2-BN composites [J]. Materials Science and Engineering:A,2007,445-446:579-586.
    [91]Guo Z, Parlinska-Wojtan M, Blugan G, Graule T, Reece M J, Kuebler J. The influence of the grain boundary phase on the mechanical properties of Si3N4-MoSi2 composites [J]. Acta Materialia.2007,55 (8):2875-2884.
    [92]Bocanegra-Bernal M H, Matovic B. Mechanical properties of silicon nitride based ceramics and its use in structural applications at high temperatures [J]. Materials Science and Engineering:A,2010,527 (6):1314-1338.
    [93]Peng G, Li X, Liang M, Liang Z, Liu Q, Li W. Spark plasma sintered high hardness α/β-Si3N4 composites with MgSiN2 as additives [J]. Scripta Materialia, 2009,61(4):347-350.
    [94]Ramesh C S, Keshavamurthy R, Channabasappa B H, Ahmed A. Microstructure and mechanical properties of Ni-P coated Si3N4 reinforced A16061 composites [J]. Materials Science and Engineering:A,2009,502(1-2):99-106.
    [95]Ye F, Liu L, Zhang J, Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering [J].Composites Science and Technology,2008,68(3-4): 1073-1079.
    [96]Liu L, Ye F, Zhou Y, Zhang Z. Microstructure compatibility and its effect on the mechanical properties of the a-SiC/β-Si3N4 co-reinforced barium aluminosilicate glass ceramic matrix composites [J]. Scripta Materialia,2010,63(2):166-169.
    [97]Rouxel T, Besson J L. Viscoplastic forming of Si3N4-based ceramic and glass-matrix particulate composites. Journal of the European Ceramic Society, 1997,17(15-16):1963-1966.
    [98]Ye F, Zhang L, Zhang H, Liu L, Liu C, Zhou Y. Rapid densification and reaction sequences in self-reinforced Y-α-SiAlON ceramics with barium aluminosilicate as an additive [J]. Materials Science and Engineering:A,2009,527(1-2): 287-291.
    [99]Chen S, Ye F, Zhou Y. Low temperature hot-pressed BAS matrix composites reinforced with in situ grown Si3N4 whiskers [J]. Ceramics International,2002, 28(1):51-58.
    [100]Ye F, Chen S, Iwasa M. Synthesis and properties of barium alumino-silicate glass ceramic composites reinforced with in-situ grown Si3N4 whiskers [J]. Scripta Materialia,2003,48:1433-1438.
    [101]Peillon F C, Thevenot F. Grain coarsening in gas pressure sintered silicon nitride [J]. Ceramics International,2002,28:637-643.
    [102]Hirosaki N, Akimune Y. Effect of grain growth of β-silicon nitride on strength, weibull modulus and fracture toughness [J]. Journal of the American Ceramic Societym,1993,76:1892-1894.
    [103]Hirao K, Brito M E, Toriyama M. Further improvement in mechanical properties of highly anisotropic silicon nitride ceramics [J]. Journal of the American Ceramic Society,2000,83(3):495-500.
    [104]Sadiki N, Coutures J P, Fillet C, Dussossoy J L. Crystallization of lanthanum and yttrium aluminosilicate glasses [J]. Journal of Nuclear Materials,2006,348: 70-78.
    [105]Hampshire S. Oxynitride glasses [J]. Journal of the European Ceramic Society, 2008,28:1475-1483.
    [106]Gueguen Y, Sharafat A, Grins J, Rouxel T. Viscosity of high-nitrogen content Ca-Si-O-N glasses [J]. Journal of the European Ceramic Society,2010,30(16): 3455-3458.
    [107]Sharafat A, Grins J, Esmaeilzadeh S. Hardness and refractive index of Ca-Si-O-N glasses [J]. Journal of Non-Crystalline Solids 2009,355(4-5): 301-304.
    [108]Hampshire S, Hanifi A R, Genson A, Pomeroy M J. Ca-SiAlON glasses:effects of fluorine on glass formation and properties [J]. Key Engineering Materials, 2007,352(8):165-172.
    [109]Sellappan P, Sharafat A, Keryvin V, Houizot P, Rouxel T, Grins J, Esmaeilzadeh S. Elastic properties and surface damage resistance of nitrogen-rich (Ca, Sr)-Si-O-N glasses [J]. Journal of Non-Crystalline Solids, 2010,356 (41-42):2120-2126.
    [110]Sharafat A, Grins J, Esmaeilzadeh S. Glass-forming region in the Ca-Si-O-N system using CaH2 as Ca source [J]. Journal of the European Ceramic Society, 2008,28:2659-2664.
    [111]Hakeem A S, Grins J, Esmaeilzadeh S. La-Si-O-N glasses Part I. Extension of the glass forming region [J]. Journal of the European Ceramic Society,2007, 27:4773-4781.
    [112]Sato R K, Boivin J, Mcmillan R F. Synthesis and characterization of a SiAlON glass [J]. Journal of the American Ceramic Society,1990,73(8):2494-2497.
    [113]Chou K C. A kinetic model for oxidation of Si-Al-O-N materials [J]. Journal of the American Ceramic Society,2006,89(5):1568-1576.
    [114]Loehman R E. Preparation and properties of yttrium-silicon-aluminum oxynitride glasses [J]. Journal of the American Ceramic Society,1979, 62(9-10):491-494.
    [115]Xu X J, Li J Z, Yao L P. A study of glass structure in Li2O-SiO2, Li2O-Al2O3-SiO2 and Li-Al-Si-O-N systems [J]. Journal of Non-Crystalline Solids,1989,112(1-3):80-84.
    [116]Munoz F, Benne D, Pascual L, et al. Silicon oxynitride glasses produced by ammonolysis from colloidal silica [J]. Journal of Non-Crystalline Solids,2004, 345&346:647-652.
    [117]Diniz J A, Tatsch P J. Oxynitride films formed by low energy NO+ implantation into silicon [J]. Applied Physics Letters,2008,69(15):2214-2215.
    [118]Uhlig H, Hoffmann M J, Lamparter P, Steeb S. Atomic structure of rare-rarth Si-Al-O-N glasses [J]. Zeitschrift fur Naturforschung A,1998,53:259-264.
    [119]Schaller T, Stebbins J F. The structural role of lanthanum and yttrium in aluminosilicate glasses:a 27A1 and 17O MAS NMR study [J]. The Journal of Physical Chemistry B,1998,102:10690-10697.
    [120]Wang J, Brocklesby W S, Lincoln J R, Townsend J E, Payne D N. Local structures of rare-earth ions in glassses:the'crystal-chemistry'approach [J]. Journal of Non-Crystalline Solids,1993,163 (1-3):261-267.
    [121]Diaz A. XPS and DRIFTS study of cerium in Ce-Si-Al-O-N glasses [J]. Materials Science Forum,2000,325-326:283-288.
    [122]罗丽庆,林健,黄文品,王海波.碲铌基玻璃光学透过性能[J].光电子技术,2004,24:223-226.
    [123]Leonova E, Hakeem A S, Jansson K, Stevensson B, Shen Z, Grins J, Esmaeilzadeh S, Ede'n M. Nitrogen-rich La-Si-Al-O-N oxynitride glass structures probed by solid state NMR [J]. Journal of Non-Crystalline Solids, 2008,354(1):49-60.
    [124]Tulliani J M, Audoin L, Goursat P. The role of water vapour on the oxidation of two Ln-Si-Al-O-N glasses (Ln=Y, La) [J]. Journal of Non-Crystalline Solids, 2002,306(2):99-109.
    [125]Li X, Lu A, Xiao Z. The influences of cations on the properties of Y-Mg-Si-Al-O-N glasses [J]. Journal of Non-Crystalline Solids,2008,354 (31): 3678-3684.
    [126]Rouxel T, Dely N, Sangleboeuf J C. Structure-property correlations in Y-Ca-Mg-sialon glasses:physical and mechanical properties [J]. Journal of the American Ceramic Society,2005,88(4):889-896.
    [127]Peterson I M, Tien T Y. Thermal expansion and glass transition temperatures of Y-Mg-Si-Al-O-N glasses[J]. Journal of the American Ceramic Society,1995, 78:1977-1979.
    [128]Guseva E Y, Gulyukin M N. Effect of fluoride additives on glass formation in the SiO2-CaO-Al2O3 system[J]. Journal of Inorganic Materials,2002,38(9): 962-965.
    [129]邓炜,宋树欣.氟对RCSF系统微晶玻璃析晶及性能的影响[J].武汉理工大学学报,2009,31(22):16-18.
    [130]刘永红,高占勇,李保卫.氟含量和热处理对CAS系微晶玻璃析晶及性能的影响[J].2012,48(8):39-42.
    [131]陈伟民.氟硅酸盐微晶玻璃的研究[D].广州:华南理工大学,1997.
    [132]曹明.微量氟对锂铝硅酸盐微晶玻璃析晶、结构及性能的影响[D].杭州:浙江大学,2004.
    [133]Lichvar P, Sajgalik P, Liska M, Galusek D. CaO-SiO2-Al2O3-Y2O3 glasses as model grain boundary phases for Si3N4 ceramics [J]. Journal of the European Ceramic Society,2007,27:429-436.
    [134]Roesky R, Varner J R. Influence of thermal history on the crystallization behaviour and hardness of a glass-ceramic [J]. Journal of the American Ceramic Society,1991,74(5):1129-1130.
    [135]Chyung K, Wusirika R R. SiO2-Al2O3-N glass for production of oxynitride glass-ceramcis. USA:4070198 [P].1978-01-24.
    [136]Lederer K, Deckwerth M, Russel C. Zirconia-doped Mg-Ca-Al-Si-O-N glasses: crystallization [J]. Journal of Non-Crystalline Solids,1998,224:109-121.
    [137]Iftekhar S, Grins J, Gunawidjaja P N, Eden M. Glass formation and structure-property-composition relations of the RE2O3-Al2O3-SiO2 (RE=La, Y, Lu, Sc) systems [J]. Journal of the American Ceramic Society,2011,94(8): 2429-2435.
    [138]Iftekhar S, Grins J, Eden M. Composition-property relationships of the La2O3-Al2O3-SiO2 glass system [J]. Journal of Non-Crystalline Solids,2010, 356(20-22):1043-1048.
    [139]Marchi J, Morais D S, Schneider J, Bressiani J C, Bressiani A H A. Characterization of rare earth aluminosilicate glasses [J]. Journal of Non-Crystalline Solids,2005,351(10-11):863-868.
    [140]Lin S L, Hwang C S. Structures of CeO2-Al2O3-SiO2 glasses [J]. Journal of Non-Crystalline Solids,1996,202(1-2):61-67.
    [141]Erbe E M, Day D E. Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications [J]. Journal of the American Ceramic Society,1990,73 (9): 2708-2713.
    [142]Menard O, Advocat T, Ambrosi J P, Michard A. Behaviour of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions [J]. Applied Geochemistry, 1998,13(1):105-126.
    [143]Leonova E, Hakeem A S, Jansson K, Stevensson B, Shen Z, Grins J, Esmaeilzadeh S, Eden M. Laser sintering and crystallization of a bioactive glass-ceramic [J]. Journal of Non-Crystalline Solids,2008,354 (1):49-56.
    [144]Fouquet-Parry V, Paumier F, Guittet M J, Gautier-Soyer M, Satet R, Hoffmann M J, Becher P F, Painter G S. Composition and local bonding in RE-Si-M-O-N (M= Mg, Al;RE=La, Lu) glasses [J]. Applied Surface Science,2008,254(15): 4665-4670.
    [145]Satet R L, Hoffmann M J, Cannon R M. Experimental evidence of the impact of rare-earth elements on particle growth and mechanical behaviour of silicon nitride [J]. Materials Science and Engineering:A,2006,422 (1-2):66-76.
    [146]Luo Z, Qu G, Chen X, Liu X, Lu A. Effects of nitrogen and lanthanum on the preparation and properties of La-Ca-Si-Al-O-N oxynitride glasses [J]. Journal of Non-Crystalline Solids,2013,361:17-25.
    [147]Li X, Lu A. Crystallization and microstructures of Y-Si-Al-O-N glass-ceramics containing main crystal phase Y3Al5O12 [J]. Bulletin of Material Science,2011, 34(4):767-774.
    [148]Omori M, Takei H. Preparation of pressureless-sintered SiC-Y2O3-Al2O3 [J]. Journal of Materials Science,1988,23(10):3744-3749.
    [149]Baldacim S A, Santos C, Silva O M M, Silva C R M. Ceramics composites Si3N4-SiC(w) containing rare earth concentrate (CRE) as sintering aids [J]. Materials Science and Engineering:A,2004,367 (1-2):312-316.
    [150]Zhang Y, Zhang Y, Han J, Zhou Y, Hu L, Yao W, Qu W. The effect of annealing temperature on micro-structure and mechanical properties of C/SiC composites [J]. Materials Science and Engineering:A,2008,497 (1-2):383-387.
    [151]Biswas K, Rixecke G r, Aldinger F. Effect of rare-earth cation additions on the high temperature oxidation behaviour of LPS-SiC [J]. Materials Science and Engineering:A,2004,374 (1-2):56-63.
    [152]Ye F, Liu L, Zhang J, Iwasa M, Su C. Synthesis of silicon nitride-barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering [J]. Composites Science and Technology,2005,65(14):2233-2239.
    [153]Ye F, Liu L, Zhang J, Meng Q. Synthesis of 30 wt%BAS/Si3N4 composite by spark plasma sintering [J]. Composites Science and Technology,2008,68(3-4): 1073-1079.
    [154]Ma J, Ye F, Liu L, Zhang H. Processing and mechanical properties of short fibers/Si3N4P reinforced BaO-Al2O3-2SiO2 ceramic matrix composites [J]. Materials Science and Engineering:A,2009,520 (1-2):158-161.
    [155]Dai J, Li J, Chen Y, Yang L, Sun G. Preparation of the rod-like β-Si3N4 particles favoring the self-reinforcing Si3N4 ceramics [J]. Materials Research Bulletin, 2003,38 (4):609-615.
    [156]Ye F, Liu L, Zhang H, Zhou Y. Refractory self-reinforced Y-α-SiAlON with barium aluminosilicate glass ceramic addition [J]. Materials Science and Engineering:A,2008,488(1-2):352-357.
    [157]Lojanova S, Tatarko P, Chlup Z, Hnatko M, Dusza J, Lences Z, Sajgalik P. Rare-earth element doped Si3N4/SiC micro/nano-composites-RT and HT mechanical properties [J]. Journal of the European Ceramic Society,2010,30 (9):1931-1944.
    [158]Liu X, Huang Z, Ge Q, Sun X, Huang L. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive [J]. Journal of the European Ceramic Society,2005,25(14):3353-3359.
    [159]Rouxel T, Sanglebceuf J, Huger M, Gault C, Besson J, Testu S. Temperature dependence of Young's modulus in Si3N4-based ceramics:roles of sintering additives and of SiC-particle content [J]. Acta Materialia,2002,50 (7): 1669-1682.
    [160]Besson J, Mayne M, Bahloul-Hourlier D, Goursat P. Si3N4/SiCN Nanocomposites:influence of SiC nanoprecipitates on the creep behaviour [J]. Journal of the European Ceramic Society,1998,18(13):1893-1904.
    [161]Rouxel T, Wakai F. The brittle to ductile transition in a Si3N4/SiC composite with a glassy grain boundary phase [J]. Acta Metallurgica et Materialia,1993, 41(11):3203-3213.
    [162]马静梅,叶枫,刘利盟,等SiCsf/Si3N4p混杂增强BAS陶瓷基复合材料的制备及其结构与性能的研究[J].稀有金属材料与工程,2009,38(S2):423-426.
    [163]Lehner W, Kleebe H, Ziegler G.Variation of sintering parameters at an early stage of densification affecting β-Si3N4-microstrucrure [J]. Journal of the European Ceramic Society,2006,26(1-2):201-208.
    [164]Sigl L S, Kleebe H. Core/rim structure of liquid-phase-sintered silicon carbide [J]. Journal of the American Ceramic Society,1993,76(3):773-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700