近地层臭氧浓度升高对水稻元素吸收和分配的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前全球大气臭氧(O3)浓度已经从工业革命前的38 nl L-1(25-45 nl L-1,夏季每天8 h平均)上升到2000年的50 nl L-1。IPCC预测,到2050年,地球表面的O3浓度将会提升23%,悲观估计2100年将上升到80 nl L-1。大气O3浓度升高不仅影响植物的生长、产量和品质,也使植物对元素吸收和分配的模式发生改变。水稻是世界上最重要的粮食作物,大气O3浓度升高对水稻不同生育期大量和微量元素含量、吸收和分配是否有影响?这种影响是否因品种和不同生长季而异?这些问题均不清楚。为了明确这一问题,2008-2009年我们利用世界唯一的稻麦轮作生态系统开放式空气O3浓度增高(FACE,Free-Air Ozone Concentration Enrichment)技术平台(32°35.5’N,119°42’E,中国江都),以武运粳21、扬稻6号、汕优63和两优培九为供试材料,O3浓度设正常O(3Ambient)和高O(3FACE,1.5倍Ambient)2个水平,研究其对水稻不同生育期(够苗期、拔节期、抽穗期、穗后20 d和成熟期)九种元素(K、Ca、Mg、Cu、Fe、Mn、Zn、B和S)的浓度、累积量以及在不同器官中分配的影响,以期为未来高O3浓度条件下我国水稻作物生产的适应决策提供试验依据。
     1.多数情况下,水稻够苗期、拔节期、抽穗期、穗后20 d和成熟期地上部各元素浓度不同品种间存在显著或极显著差异,但O3浓度升高对水稻不同生育时期各元素浓度无显著影响。方差分析表明,O3×品种和O3×年度的互作对水稻不同生育时期地上部植株各元素浓度多无显著影响。
     2.不同水稻品种同一生育时期干物质累积量的差异均达极显著水平。O3浓度升高对水稻干物质累积量的影响随生育进程的推移有增大趋势:两季平均水稻够苗期、拔节期、抽穗期、穗后20 d和成熟期分别减少4%、6%、9%、7%和10%,其中拔节期达显著水平,抽穗期、穗后20 d和成熟期达极显著水平。O3×品种、O3×年度的互作对水稻各期干物质累积量多无显著影响。
     3.水稻同期地上部各元素累积量品种间多存在显著或极显著差异。O3浓度升高使水稻地上部各元素累积量减少,降幅随生育进程推移呈增加趋势,但大多数情况下未达显著水平。O3×品种和O3×年度的互作对水稻地上部各元素累积量无显著影响。
     4.同一时期各元素在不同器官(绿叶、黄叶、茎鞘和稻穗)中的分配比例不同品种间多存在显著或极显著差异,但O3浓度升高对水稻各元素的分配多没有影响。O3×品种和O3×年度的互作对水稻各元素在不同部位中的分配比例多无显著影响。
     5.不同水稻品种成熟期籽粒各元素浓度的差异均达显著或极显著水平,但O3浓度升高对水稻成熟期籽粒各元素浓度多没有显著影响。O3×品种和O3×年度的互作对水稻成熟期籽粒各元素浓度多无显著影响。
     6.不同水稻品种成熟期籽粒各元素累积量差异的均达显著或极显著水平。O3浓度升高使水稻成熟期籽粒K(-2%)、Ca(-2%)、Mg(-1%)、Cu(-4%)、Fe(-1%)、Mn(-9%)、B(-11%)和S(-1%)累积量减少,但均未达到显著水平。O3×品种的互作对水稻成熟期籽粒各元素累积量多无显著影响,但O3×年度的互作对水稻成熟期籽粒各元素累积量的影响多达显著或极显著水平。
At present, the wordwide average tropospheric ozone concentration ([O3]) has been increased from an estimated pre-industrial level of 38 to approximately 50 nl L-1. According to IPCC, tropospheric [O3] is projected to increase by 23% by 2050 and to reach the level of 80 nl L-1 by 2100 based on most pessimistic. Elevated [O3] not only influences the growth, yield and quality of plants, but also changes the patterns of element uptake and allocation. Rice is the most important food crop in the world, however, to date, no information is available on the seasonal responses of element (include macro-elements and micro-elements) concentration, uptake and allocation of rice to elevated [O3] and whether the ozone effect was modified by cultivars grown or developmental stages. In order to investigate the effects of elevated [O3] on seasonal changes in nine element (i.e., K, Ca, Mg, Cu, Fe, Mn, Zn, B and S) concentration, absorption and allocation at different growth stages of rice (including tillering, jointing, heading, 20 days after heading (DAH) and maturity stage), we conducted a unique free-air O3 enrichment (FACE) experiment in a rotation system of rice and wheat at Jiangdu, Jiangsu Province, China (32°35.5’N,119°42’E) in 2008-2009. Four rice cultivars: Wu Yunjing 21 (WYJ21), Yangdao 6 (YD6), Shanyou 63 (SY63) and Liangyoupeijiu (LYPJ) were grown at ambient (AMB) or elevated [O3] (FACE, 50% above ambient). The results obtained here could provide important implications on fertilizer management and strategies of rice in a future elevated [O3] world.
     1. In most cases, significant differences (P < 0.01 or P < 0.05) existed among the cultivars for concentrations of all elements in aboveground at all growth stages of rice (i.e. tillering, jointing, heading, 20 DAH and maturity stage), however, no effect of elevated [O3] was detected for concentrations of the all elements in aboveground across the season. Analysis of variance (ANOVA) indicated no significant O3×cultivar and O3×year interaction for above parameters.
     2. The differences among the rice cultivals for dry matter accumulation were significant (P < 0.01) at different growth stages. The negative effect of elevated [O3] on dry matter accumulation of rice tended to increase with crop development: averaged across the two growing seasons, dry matter accumulation of rice plant was lower under FACE by 4%, 6%, 9%, 7% and 10% at tillering, jointing, heading, 20 DAH and maturity stage, respectively, with the effect being significant at jointing (P < 0.05), heading, 20 DAH and maturity stage (P < 0.01). In most cases, there was no siginificant interaction between O3×cultivar or O3×year for dry matter accumulation of rice plant at all sampled stages.
     3. Significant differences (P < 0.01 or P < 0.05) existed among the cultivars for accumulations of all elements in aboveground at different growth stages, and elevated [O3] was detected for concentrations of all elements in aboveground across the season, the rate of decrease had increased with the growth stages, but not significantly. there was no siginificnat interaction beween O3×cultivar or O3×year for dry matter accumulation of rice plant at all sampled stages.
     4. In most cases, significant differences (P < 0.01 or P < 0.05) existed among the cultivars for distribution of all elements in green leaves, yellow leaves, stem and panicle at different growth stages, however, no effect of elevated [O3] was detected for distribution of the all elements. there was no siginificnat interaction beween O3×cultivar or O3×year for the proportion of elements distribution in different parts of rice at all sampled stages.
     5. In maturity stage, significant differences (P < 0.01 or P < 0.05) existed among the cultivars for the concentration of the elements in seeds of rice. But the elevated O3 almost had no effect on the concentration of elements. There was no siginificnat interaction beween O3×cultivar or O3×year for the concentration of the elements of rice plant at all sampled stages.
     6. Significant differences (P < 0.01 or P < 0.05) existed among the cultivars for the accumulation of various elements of seeds in different cultivars of rice. the accumulation of K, Ca, Mg, Cu, Fe, Mn, B and S was lower under FACE by 2%, 2%, 1%, 4%, 1%, 9%, 11% and 1%, respectively, but did not reach significant level. There was no siginificnat interaction beween O3×cultivar for the accumulation of various elements of seeds at all sampled stages. But there was siginificnat interaction beween O3×year for the accumulation of various elements of seeds at all sampled stages.
引文
1 Fuhrer J, Sk?rby L, Ashmore M R. Critical levels for ozone effects on vegetation in Europe. Environmental Pollution, 1997, 97: 91-106.
    2任霄鹏.抗臭氧作物2050年可能更吃香.科技日报, 2006.
    3 Ashmore M, Sylvia T, et al. Ozone-a significant threat world food production. New Phytologist, 2005, 2: 201-204.
    4 Fiscus E L, Booker F L, et al. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell and Environment, 2005, 28: 997-1011.
    5 Mccurdy T R. Concentrations of ozone in the lower troposphere (ambient air). Lewis Publishers, 1994, 19-39.
    6石春红,郑有飞,吴芳芳,等.大气中臭氧浓度增加对根际和非根际土壤微生物的影响.土壤学报, 2009, 46(5): 894-898.
    7郑有飞,石春红,吴芳芳,等.大气臭氧浓度升高对冬小麦根际土壤酶活性的影响.生态学报, 2009.
    8 Zhan Chen, Xiaoke Wang, Zhaozhong Feng, et al. Impact of Elevated O3 on Soil Microbial Community Function Under Wheat Crop. Water Air Soil Pollution, 2009,198:189-198.
    9 Nakamura H. Investigation on injury to rice plants from photochemical oxidants. Bulletin of National Institute of Agriculture and science, 1979, 30: 59-68.
    10 Morikawa, M, Matsumaru, T, MatsuokaY, and Shiratori K, The effect of ozone on the growth of rice plants. Bull. Chiba Prefectural Agric. Exp. Stn., 1980, 21: 11-18.
    1 Kats G, Dawson P J, Bytnerowicz A, et al. Effects of ozone or sulfur dioxide on growth and yield of rice. Agriculture, Ecosystems and Environment, 1985, 14: 103 -117.
    2 Nouchi I, Ito O, Harazono Y, et al. Effects of chronic ozone exposure on growth, root respiration and nutrient uptake and rice plants. Environmental Pollution, 1991, 74: 149-164.
    3 Nouchi I, Ito O, Harazono Y, et al. Acceleration of 13C-labelled photosynthate partitioning from leaves to panicles in rice plants exposed to chronic ozone at the reproductive stage. Environmental Pollution, 1995, 88: 253-260.
    4 Kabayashi K, Okada M, Isamu Nouchi. Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.). Agriculture, Ecosystems and Environmen, 1995a, 53: 109-122.
    5 Maggs R, Ashmore M R. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environmental Pollution, 1998, 15: 505-513.
    6白月明,郭建平,刘玲,等.臭氧对水稻叶片上海、光合作用及产量的影响.气象, 2001a, 27(6): 17-22.
    7白月明,郭建平,王春乙,等.水稻与冬小麦对臭氧的反应及敏感性试验研究.中国生态农业学报, 2002, 10(1): 13-16.
    8金明红,冯宗炜,张福珠.臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响.环境科学, 2000, 21(3): 1-5.
    9金明红,黄益宗.臭氧污染胁迫对农作物生长与产量的影响.生态环境, 2003, 12(4): 492-486.
    10郭建平,高素华,刘玲,等.气象条件对作物品质和产量影响的试验研究.气候与环境研究, 2001a, 6(3): 931-936.
    11郭建平,王春乙,温民,等.大气中O3浓度变化对水稻影响的试验研究.作物学报, 2001b, 27(6): 822-826.
    12郭建平,王春乙,白月明,等.大气中臭氧浓度变化对冬小麦生理过程和籽粒品质的影响.应用气象学报, 2001c, 12(2): 255-258.
    13王春乙,白月明,郑昌玲,等. CO2和O3浓度倍增对作物影响的研究进展.气象学报, 2004, 62(5): 875-881.
    14 Benton J, Fuhrer J, Skarby L, et al. Results from the UN/ECE ICP -Crops indicate the extent of exceedance of the critical levels of ozone in Europe. Water, Air and Soil Pollution, 1995, 85: 1473- 1478.
    15 Skelly J M, Innes J L, Savage J E, et al. Observation and confirmation of foliar ozone symptoms of native plant species of Switzerland and southern Spain. Water, Air and Soil Pollution, 1999, 116:227- 234.
    16 Olszyk D M, Wise C. Interactive effects of elevated CO2 and O3 on rice and flacca tomato. Agriculture, Ecosystems and Environment, 1997, 66: 1-10.
    17杨连新,王余龙,石广跃,等.近地层高臭氧浓度对水稻生长发育影响研究进展.应用生态学报, 2008, 19(4): 901-910.
    18 Jin M-H, Feng Z-W, et al. Impacts of Ozone on the biomass and yield of rice in open-top chamber. Journal of Environmental Science, 2001, 13(2): 233-236.
    19 Zhaozhong Feng, Kazuhiko Kobayashi. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. 2009, 43: 1510–1519
    20 Kabayashi K, Okada M. Effects of ozone on the light use of rice (Oryza sativa L.) plants. Agriculture, Ecosystems and Environment, 1995b, 53: 1-12.
    21 Fangmeier A, Temmerman L, Black C, et al. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy, 2002, 17: 353-368.
    22 R?m? K, Kanerva T, Nikula S, et al. Influences of elevated ozone and carbon dioxide in growth responses of lowland hay meadow mesocosms. Environmental Pollution, 2006, 144: 101-111.
    23 Scotti I A, Silva S, Botteschi G. Effects of ozone on grain quality of wheat grown in open-top chambers: three years of experimentation. Environmental Pollution, 1994, 86: 31-35.
    24 Fangmeier A, Grfiters U, Hertstein U, et al. Effects of elavated CO2, nitrogen supply and troposphenric ozone on spring wheat. I. growth and yield. Environmental Pollution, 1996, 91(3): 381-390.
    25 Fangmeier A, Griiters U, H?gy P B, et al. Effects of elavated CO2, nitrogen supply and troposphenric ozone on spring wheat II. nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environmental Pollution, 1997, 96(1): 43-59.
    26 Fangmeier A , Temmerman L D, Mortensen L, et al. Effects on nutrients and on grain quality in spring wheat crops grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment‘ESPACE-wheat’. European Journal of Agronomy, 1999, 10: 215-229.
    27 Mulchi C L, Sammons D J, Baenziger P S. Yield and grain quality responses of soft red winter wheat exposed to ozone during anthesis. Agronomy Journal, 1986, 78: 593-600.
    28 Pleijel H, Danielsson H, Gelang J, et al. Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agriculture, Ecosystemsand Environment, 1998, 70: 61-68.
    29 Mortensen L, Jorgensen H E. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air. Environmental Pollution, 1996, 93: 121-127.
    30 Inclán R, Gimeno B S, Dizengremel P, et al. Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environmental Pollution, 2005, 137: 517-524.
    31 Keller T, Matyssek R. Limited compensation of ozone stress by potassium in Norway spruce. Environmental Pollution, 1990, 67:1-14.
    32 Edwards G S, Sherman R E, Kelly J M. Red spruce and loblolly pine nutritional responses to acidic precipitation and ozone. Environmental Pollution, 1995, 89: 9-15.
    33 Momen B, Helms J A. Effects of simulated acid rain and ozone on foliar chemistry of field-grown Pinus ponderosa seedlings and mature trees. Environmental Pollution, 1996, 91(1): 105-111.
    34 Reich P B, Schoettle A W, Stroo H F, et al. Effects of ozone and acid rain on white pine (Pinus strobus) seedlings grown in five soils III. Nutrient relations. Canadian Journal of Botany-revue canadienne de botanique, 1988, 66: 1517-1531.
    35 Schier G A. Response of yellow-poplar (Liriodendron tulipifera L.) seedlings to simulated acid rain and ozone 2. Effect on throughfall chemistry and nutrients in the leaves. Environmental and Experimental Botany, 1990, 30: 325-331.
    36 Edwards N T, Edwards G S, Kelly J M, et al. Three-year growth responses of Pinus taeda L. seedlings to rain chemistry, soil magnesium status, and tropospheric ozone. Water, Air and Soil Pollution, 1992, 63: 105-118.
    37 Scherzer A J, Rebbeck J, Boerner R E J. Foliar nitrogen dynamics and decomposition of yellow-poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide. Forest Ecology and Management, 1998, 109: 355-366.
    38 Kurczyńska E U, Bastrup-Birk A, Mortensen L. Influence of ozone and soil nitrogen content on the stem anatomy of Norway spruce saplings grown in open-top chambers. Environmental and Experimental Botany, 1998, 40: 113-121.
    39 Utriainen J, Holopainen T. Impact of increased springtime O3 exposure on Scots pine (Pinus sylvestris) seedlings in central Finland. Environmental Pollution, 2000, 109: 479-487.
    40 Thomas V F D, Braun S, Flückiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, growth, and nutrient concentrations of young beech trees (Fagus sylvatica). Environmental Pollution, 2006, 143: 341-354.
    41 Heagle A S, Miller J E, Pursley W A. Atmospheric pollutants and trace gases: Growth and yield responses of potato to mixtures of carbon dioxide and ozone. Journal Environmental Quality, 2003, 32: 1603-1610.
    42 Keutgen A J, Noga G, Pawelzik. Cultivar-specific impairment of strawberry growth, photosynthesis, carbohydrate and nitrogen accumulation by ozone. Environmental and Experimental Botany, 2005, 53: 271- 280.
    43 Plessl M, Elstner E F, Rennenberg H, et al. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environmental and Experimental Botany, 2007, 60(3): 447-457.
    44 Piikki K, Vorne V, Ojanper? K, et al. Impact of elevated O3 and CO2 exposure on potato (Solanum tuberosum L. cv. Bintje) tuber macronutrients (N, P, K, Mg, Ca). Agriculture, Ecosystems and Environment, 2007, 118: 55-64.
    45 Fuhrer J, Lehnherr B, Moeri P B, et al. Effects of ozone on the grain composition of spring wheat grown in open-top field chambers. Environmental Pollution, 1990, 65: 181-192.
    46 Samuelson L J, Kelly J M, Mays P A, et al. Growth and nutrition of Quercus rubra L. seedlings and mature trees after three seasons of ozone exposure Environmental Pollution, 1996, 91(3): 317-323.
    47 Welfare K, Flowers T J, Taylor G, et al. Additive and antagonstic effects of ozone and salinity on the growth, ion contents and gas exchange of five varieties of rice (Oryza sativa L.). Environmental Pollution, 1996, 92(3): 257-266.
    48 Edwards G S, Sherman R E, Kelly J M. Red spruce and loblolly pine nutritional responses to acidic precipitation and ozone. Environmental Pollution, 1995, 89: 9-15.
    49 Thomas V F D, Braun S, Flückiger W. Effects of simultaneous ozone exposure and nitrogen loads on carbohydrate concentrations, biomass, and growth of young spruce trees (Picea abies). Environmental Pollution, 2005, 137: 507-516.
    50 Loladze I. Rising atmospheric CO2 and human nutrition: toward globally imblanced plant stoichiometry? Trends in Ecology and Evolution, 2002, 17(10): 457-461.
    51 Wang Q. Microelements in the Chemistry World-Relations between Microelements and Human. Journal of Huzhou Vocational and Technological College, 2003, (2):77-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700