生物电化学系统定向还原硝基苯及能量循环补偿模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯属于典型的难降解有机物,并且对人体有致突变、致畸和致癌的潜在危害,已经被列入我国公布的58种优先控制有机污染物中。由于硝基的“吸电子”效应造成苯环电子云密度的降低是硝基苯在传统好氧生物处理中难以有效去除的主要原因。通过还原法先将硝基苯转化为苯胺可以显著提高废水的可生化性。硝基苯的电化学还原方法是一种可控而高效的手段,然而传统电化学方法中需要采用特殊的电极材料或引入贵金属催化剂来实现硝基苯向苯胺的定向转化,这大大限制了其应用于废水处理。近年来发展起来的生物电化学系统(BES),由于微生物作为催化剂所具有绿色、低成本、可自我更新等优势,是颇具发展前景的环境友好型废水处理技术。本研究采用阴极作为唯一电子供体,证实了基于微生物作为催化剂的生物阴极具有催化硝基苯定向还原为苯胺的能力,并发现通过向阴极引入有机碳源可以进一步提升这种催化能力。在此基础上,为了实现BES还原硝基苯过程中的能量循环补偿,开展了利用生物阳极回收苯胺电子和能量的研究,揭示了氧气对回收苯胺电子和能量的重要作用及可能机制。
     以阴极作为唯一电子供体条件下,阴极电位恒定在-0.4V时,生物阴极显著提高了硝基苯向苯胺转化的效率和速率,周期内生物阴极中苯胺生成效率达到93%,是非生物阴极的6.16倍,同时生物阴极在催化硝基苯还原为苯胺过程中降低了毒性中间产物亚硝基苯的积累,亚硝基苯最大积累量较非生物阴极下降38.7%。循环伏安分析显示与微生物相关的某种中点电位为-0.315V的氧化还原物质可能介导了阴极微生物胞外电子传递过程。表观一级动力学模型的构建与分析表明,生物阴极能够同时催化硝基苯和亚硝基苯还原,相应动力学常数分别较没有微生物存在时提高了62%和100%。基于焦磷酸测序的微生物群落分析结果表明,在阴极特殊环境的选择压力下,生物阴极微生物群落结构发生了明显的变化,生物阴极样品中优势菌属为Rhizobium sp.、Leucobactersp.、Achromobacter sp.、Mycobacterium sp.、Dysgonomonas sp.和Pseudomonassp.。这些微生物所具有的硝基苯定向还原、固碳以及可能的阴极胞外电子传递功能是生物阴极能够催化硝基苯定向还原为苯胺的关键。
     通过向阴极引入有机碳源,能够驯化获得催化硝基苯定向还原性能更好的生物阴极。生物阴极在硝基苯还原为苯胺的过程中鲜有毒性中间产物亚硝基苯的积累。循环伏安分析表明,有机碳源存在时能够提升生物阴极的电催化活性,表现为硝基苯还原电位进一步正移70mV。16S rRNA基因克隆文库分析表明,有机碳源存在条件下驯化获得的生物阴极中,优势菌种(占文库比例为74.7%)的16S rRNA基因与Enterococcus aquimarinus LMG16607最为相似,Enterococcus异养生长的特性与有机碳源的存在有着密切关系。在生物阳极和生物阴极构建的生物电化学系统中,提升外加电压能够增加硝基苯还原的表观一级动力学常数(kNB),但同时也会增加硝基苯还原的比能耗并降低电流效率。增加有机碳源葡萄糖的浓度也能提高kNB,在葡萄糖浓度较低的范围内(≤200mg/L),单位葡萄糖浓度增量引起的kNB增量是其浓度较高范围内(≥200mg/L)的5.1倍。为避免过度增加体系中的COD,有机碳源的引入量控制在200mg/L左右较为适宜,此时在各外加电压条件下(0.15V~0.5V),苯胺的生成率均超过97%,硝基苯还原一级动力学常数较无有机碳源时平均提高52±6%。
     将阳极暴露于空气中的操作方式可以促进阳极电化学活性微生物从苯胺回收电子和能量。通过不同供氧方式的实验,证实这种能力与氧气的存在密切相关。阳极室顶空氧气浓度对苯胺的电子和能量回收效能有着明显的影响。在考察的氧气浓度范围内(21%~100%),顶空氧气含量为70%的时候能够获得最高的输出电流(0.155mA)和最大功率密度(3.32±0.4W/m3)。但库伦效率随氧气浓度的增加从10.32±1.36%降低至4.61±1.11%。根据GC-MS对苯胺代谢产物的分析以及结合间歇性断路实验结果,作者推测了苯胺在生物阳极代谢并转化为电极电子的方式,即阳极液和阳极生物膜外层的微生物在有氧的条件下将苯胺转化为有机酸,阳极生物膜内层的电化学活性微生物在缺氧条件下利用产生的有机酸作为底物产电。通过循环伏安分析,表明阳极电化学活性微生物将电子传递给阳极的过程主要通过游离性电子中介体介导。推定的中介体在循环伏安曲线上表现出两对可逆的氧化还原峰,中点电位分别为-0.027V和0.063V。
     根据本文中苯胺在生物阳极氧化和硝基苯在生物阴极还原的实验结果,并结合热力学以及化学计量学的分析,作者提出了利用苯胺回收电子部分反哺硝基苯还原的工艺模式。计算表明,不同操作条件下,利用苯胺回收电子反哺硝基苯还原可以节约22%~53%的额外电子供体需求,并内部循环补偿17%~40%的能量消耗。
Nitrobenzene (NB), one of typical recalcitrant organic compounds, is reportedas possible mutagens, teratogens or carcinogens and has been listed in58China’spriority control organic pollutants. As the electrophilic effect of nitryl decreases theelectron density of the benzene, NB is only to a limited extent degraded in aerobicbiological processes. An effective strategy is to transform NB to aniline (AN) first,which is considerably easier mineralized than NB. The electrochemical reduction ofNB is an effieicent and controlable approach, however, the conventional processsuffer from the requirement of special electrode materials or noble metal catalysts toachieve the selective transformation of NB to AN, which limited its application inpractice. Recent develped bioelectrochemical system (BES) is proposed as aprespective process in wastewtaer treatment, since bacteria, as catalyst, hold theinherent advantages of low-cost, self-regeneration and evironment-friendly. Thepresent study demonstrated bacteria can use the cathode as the sole electron donor toselective reduce NB to AN. The introduction of organic carbon to biocathode furtherenhanced this selective transformation capability. Based on above findings, thestudy went on developing novel process that enabled energy internal loopcompensation by recovery energy from aniline at bioanode. The improtant role ofoxygen in the process was demonstrated and the involved mechanism was thandiscussed.
     When cathode was served as sole electron donor, the transformation efficiencyand rate from NB to AN was dramatically increased with microbial catalysis.93%of AN formation efficiency was achieved in biocathode at the cathode potential of-0.4V, which was6.16times as high as that obtained in abiotic cathode. In addition,the maximum accumulation of toxic nitrosobenzene (NOB), the intermediate duringNB reduction to AN, was decreased by38.7%in biocathode compared to that inabiotic cathode. Cyclic voltammetry (CV) revealed that an unidentified redoxcompound with the midpoint potential around-0.315V could be responsible for theelectron transfer from cathode to bacteria. Based on the apparent first-order kineticmodel, biocathode was suggested to both catalyze the reduction of NB and NOB.The corresponding apparent first-order kinetic constant was increased by62%and100%, respectively. Moreover, the community of the inoculum and the biocathodesample was analyzed based on the pyrosequencing. The results indicated microbialcommunity was changed dramatically under the evolutionary pressure provied bycathode severved as sole electron donor. The predominant bacteria in biocathodecommunity consisted of Rhizobium sp., Leucobacter sp., Achromobacter sp., Mycobacterium sp., Dysgonomonas sp. and Pseudomonas sp.. The functions ofselective nitrobenzene reduction, carbion fixiation and the possible catodicextracellular electron tranfer in the microbial community might feature the catalyzedselective reduction of NB to AN in biocathode.
     Biocathode enrichied with the present of organic carbon (glucose) showedbetter performance on selective reduction of NB, in which NOB was rarelyaccumulated. Cyclic voltammetry revealed NB reduction peak was positively shiftedby70mV with the present of organic carbon, indicating the enhanced performancewas not only caused by the extra electrons donation from glucose but also theimprovement of bioelectrocatalytic activity.16S rRNA based analysis of the biofilmon the cathode indicated that the cathode was dominated by an Enterococcus species(occupied74.7%of the library) closely related to Enterococcus aquimarinus LMG16607. In BES coupled with bioanode and biocathode, the apparent first-orderkinetic constant (kNB) was increased with the increase of applied voltage, butconsumed more energy and decreased the current efficiency. kNBwas also increasedby introducing more glucose in to catholyte, kNBincrement caused by net incrementof glucose in lower concentration range (≤200mg/L) was5.1times as high as thatin higher glucose concentration range (≥200mg/L). To avoid the excess increase ofCOD in wastewater, the suggested concentration of added organic carbon was200mg/L, which resulted in AN formation efficiency over97%at all tested appliedvoltages (0.15V~0.25V) and averagely increased the apparent first-order kineticconstant by52±6%compared to that without organic carbon.
     The recovery of electron and energy from AN was found to be facilitated byexposing bioanode to air, which was then further demonstrated to be depending onthe present of oxygen in limited oxygen donation test. Oxygen content in the anodehead space was found to impact AN degradation and the elelctrons recoverysignificantly. The highest output current (0.155mA) and maximum power density(3.32±0.4W/m3) was observed when70%of gas in anode headspace was composedby oxygen at the beginning. However, columbic efficiency decreased with theoxygen concentration increasing from10.32±1.36%to4.61±1.11%in the testedinitial oxygen content conditions (21%~100%). Based on the results of GC-MS andthe intermittent open circuit experiment, the possible mechanism using AN as thesole electron donor in present of oxygen was suggested as following. AN was firstaerobicly converted to organic acids by microbes in the anolyte and located at theouter layer of anodic biofilm, which was then uptook by electrochemical activebacteria located at the inner layer of anodic biofilm and produce current underanoxic condition. CV indicated that anodic extracellular electron tranfer wasfulfilled by certain microbial secreted soluble electron mediator, which has tworeversible redox peaks with the mid-point potentials of-0.027V and0.063V, respectively.
     To achieve the energy internal loop compensation, the process of NB reductionwith electrons partial fed-back from AN oxidation was proposed. The saved externalelectron donor and internal loop compensated energy was estimated as22%~53%and17%~40%, respectively, based on the experiment results and the thermodynamicand stoichiometric calculation.
引文
[1] Amoore J E, Hautala E. Odor as an ald to chemical safety: Odor thresholdscompared with threshold limit values and volatilities for214industrialchemicals in air and water dilution [J]. Journal of Applied Toxicology,1983,3(6):272-290.
    [2] Booth G. Nitro compounds, aromatic [J]. Ullmann's Encyclopedia of IndustrialChemistry,1991,5(7):411-455.
    [3] Bizzari S N, Kishi A. Nitrobenzene [M]. In Chemical Economics Handbook,Menlo Park, CA: SRI Consulting, Oneline Edition,2007.
    [4] Dorigan J, Hushon J M. Air pollution assessment of nitrobenzene [M]. MitreCorporation,1976.
    [5] Swaminathan K, Kondawar V K, Chakrabarti T, et al. Identification andquantification of organics in nitro aromatic manufacturing wastewaters [J].Indian Journal of Environmental Health,1987,29:32-38.
    [6] Pope A A. Toxic air pollutant emission factors: A compilation for selected airtoxic compounds and sources [M]. US Environmental Protection Agency,Office of Air and Radiation, Office of Air Quality Planning and Standards,1990.
    [7]董守聪.苯与硝基苯的危害及预防措施[J].油气田环境保护,2006,16(3):20-20.
    [8]李俊生,徐靖,罗建武,等.硝基苯环境效应的研究综述[J].生态环境学报,2009,18(1):368-373.
    [9] Tünay O, Kabdasli I, Eremektar G, et al. Color removal from textilewastewaters [J]. Water Science and Technology,1996,34(11):9-16.
    [10]宋雷蕾,于健,刘可为,等.吸附剂对硝基苯污染废水吸附效果研究[J].中国科技信息,2012,21:33-33.
    [11] Liu S X, Wang R. Modified activated carbon with an enhanced nitrobenzeneadsorption capacity [J]. Journal of Porous Materials,2011,18(1):99-106.
    [12] Villacanas F, Pereira M F R, Orfao J J M, et al. Adsorption of simple aromaticcompounds on activated carbons [J]. Journal of Colloid and Interface Science,2006,293(1):128-136.
    [13] Qin Q D, Ma J, Liu K. Adsorption of nitrobenzene from aqueous solution byMCM-41[J]. Journal of Colloid and Interface Science,2007,315(1):80-86.
    [14] Cui S, Liu X Y, Liu Y, et al. Adsorption properties of nitrobenzene inwastewater with silica aerogels [J]. Science China-Technological Sciences,2010,53(9):2367-2371.
    [15]王通,朱润良,葛飞,等. CTMAB/CPAM复合改性膨润土吸附水中苯酚和硝基苯[J].环境科学,2010,31(2):385-389.
    [16]王海志,薛冬桦,徐昆,等.高比表面积极性吸附树脂的制备及其对硝基苯吸附性能的研究[J].环境科学学报,2011,31(7):1396-1402.
    [17] Wei W, Sun R, Cui J, et al. Removal of nitrobenzene from aqueous solution byadsorption on nanocrystalline hydroxyapatite [J]. Desalination,2010,263(1-3):89-96.
    [18] Pan J J, Guan B H. Adsorption of nitrobenzene from aqueous solution onactivated sludge modified by cetyltrimethylammonium bromide [J]. Journal ofHazardous Materials,2010,183(1-3):341-346.
    [19] Wen Q X, Chen Z Q, Lian J X, et al. Removal of nitrobenzene from aqueoussolution by a novel lipoid adsorption material (LAM)[J]. Journal of HazardousMaterials,2012,209:226-232.
    [20]沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究[J].精细化工,1996,13(5):57-58.
    [21]毛连山,赵泉珍.硝基苯废水的治理[J].环境污染与防治,2000,22(6):22-24.
    [22]林中祥.萃取法预处理间二硝基苯生产废水[J].环境污染与防治,2002,24(5):279-281.
    [23]崔榕,向夕品,殷钟意,等.固定相络合萃取技术回收处理水中硝基苯[J].工业水处理,2005,25(10):59-61.
    [24] Nakai T, Sato Y, Takahashi N, et al. Supercritical CO2extraction treatment andorganic compound in aqueous solution by countercurrent extraction [J].Journal of the society on water environment,1999,22(10):854-858.
    [25]安立超,余宗学,严学亿,等.利用芬顿试剂处理硝基苯类生产废水的研究[J].环境科学与技术,2001,24(z2):3-4.
    [26]韦朝海,陈传好,王刚,等. Fenton试剂催化氧化降解含硝基苯废水的特性[J].环境科学,2001,22(5):60-64.
    [27] Elshafei G, Yehia F, Dimitry O, et al. Degradation of nitrobenzene at nearneutral pH using Fe2+–glutamate complex as a homogeneous Fenton catalyst[J]. Applied Catalysis B: Environmental,2010,99(1):242-247.
    [28] Al Momani F. Impact of photo-oxidation technology on the aqueous solutionsof nitrobenzene: Degradation efficiency and biodegradability enhancement [J].Journal of Photochemistry and Photobiology A: Chemistry,2006,179(1-2):184-192.
    [29]程沧沧,肖忠海,胡德文,等. UV/TiO2-Fenton试剂系统处理制药废水的研究[J].环境科学研究,2001,14(2):33-35.
    [30] Brabets R I, Marks G E. Ozonolysis of Pink Water [J]. IITRI Report No.C-6275,1974.
    [31] Fochtman E, Huff J. Ozone-ultraviolet light treatment of TNT wastewaters [J].Water Pollution,1975,13:211-223.
    [32] Caprio V, Insola A, Volpicelli G. Ozonation of aqueous solutions ofnitrobenzene [J]. Ozone: Science&Engineering,1984,6(2):115-121.
    [33] Stockinger H, Heinzle E, Kut O M. Removal of chloro and nitro aromaticwastewater pollutants by ozonation and biotreatment [J]. EnvironmentalScience&Technology,1995,29(8):2016-2022.
    [34] Zhao L, Ma J, Sun Z Z, et al. Catalytic ozonation for the degradation ofnitrobenzene in aqueous solution by ceramic honeycomb-supported manganese[J]. Applied Catalysis B: Environmental,2008,83(3-4):256-264.
    [35] Yang Y X, Ma J, Qin Q D, et al. Degradation of nitrobenzene by nano-TiO2catalyzed ozonation [J]. Journal of Molecular Catalysis A: Chemical,2007,267(1-2):41-48.
    [36] Zhao L, Sun Z Z, Ma J, et al. Enhancement mechanism of heterogeneouscatalytic ozonation by cordierite-supported copper for the degradation ofnitrobenzene in aqueous solution [J]. Environmental Science&Technology.2009,43(6):2047-2053.
    [37] Yang Y X, Ma J, Zhang J, et al. Ozonation of trace nitrobenzene in water in thepresence of a TiO2/silica-gel catalyst [J]. Ozone: Science&Engineering,2009,31(1):45-52.
    [38]孙璐.超临界水氧化法处理硝基苯模拟废水的研究[D].太原:太原理工大学,2012,7-10.
    [39] Savage P E, Dunn J B, Yu J L. Recent advances in catalytic oxidation insupercritical water [J]. Combustion Science and Technology,2006,178(1-3):443-465.
    [40] Lee D S, Park S D. Decomposition of nitrobenzene in supercritical water [J].Journal of Hazardous Materials,1996,51(1-3):67-76.
    [41] Zhang G M, Hua I. Supercritical water oxidation of nitrobenzene [J]. Industrial&Engineering Chemistry Research,2003,42(2):285-289.
    [42]常双君,刘玉存.用超临界水氧化技术降解废水中的TNT [J].火炸药学报,2007,30(3):34-36.
    [43] Arslan-Alaton I, Ferry J L. H4SiW12O40-catalyzed oxidation of nitrobenzene insupercritical water: Kinetic and mechanistic aspects [J]. Applied Catalysis B:Environmental,2002,38(4):283-293.
    [44]徐永威,董秀芹,张敏华.硝基苯在超临界水中的催化氧化工艺研究[J].化学反应工程与工艺,2006,22(5):434-438.
    [45] Luck F. Wet air oxidation: Past, present and future [J]. Catalysis Today,1999,53(1):81-91.
    [46] Apolinario A C, Silva A M T, Machado B F, et al. Wet air oxidation ofnitro-aromatic compounds: Reactivity on single-and multi-component systemsand surface chemistry studies with a carbon xerogel [J]. Applied Catalysis B:Environmental,2008,84(1-2):75-86.
    [47] Fu D M, Chen J P, Liang X M. Wet air oxidation of nitrobenzene enhanced byphenol [J]. Chemosphere,2005,59(6):905-908.
    [48] Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organicchemical biodegradability [J]. Water Research,2001,35(4):1047-1051.
    [49] Mantha R, Taylor K E, Biswas N, et al. A continuous system for Fe(0)reduction of nitrobenzene in synthetic wastewater [J]. Environmental Science&Technology,2001,35(15):3231-3236.
    [50] Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds byzero-valent iron metal [J]. Environmental Science&Technology,1996,30(1):153-160.
    [51] Tedder D W, Pohland F G, Emerging technologies in hazardous wastemanagement [M]. Washington, DC: American Chemical Society,1990.
    [52] Mu Y, Yu H Q, Zheng J C, et al. Reductive degradation of nitrobenzene inaqueous solution by zero-valent iron [J]. Chemosphere,2004,54(7):789-794.
    [53] Ling X F, Li J S, Zhu W, et al. Synthesis of nanoscale zero-valent iron/orderedmesoporous carbon for adsorption and synergistic reduction of nitrobenzene [J].Chemosphere,2012,87(6):655-660.
    [54] Zhang R, Li J, Liu C, et al. Reduction of nitrobenzene using nanoscalezero-valent iron confined in channels of ordered mesoporous silica [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,425:108-114.
    [55]俞飞,赵克强.微电解法对硝化废水的预处理研究[J].安全与环境学报,2004,4(6):90-92.
    [56]姚方,徐天有,吕延文,等.含硝基苯及其衍生物染料废水的处理[J].工业水处理,2003,23(6):18-20.
    [57]石金晔,王三反,高晓东.铁碳微电解法预处理炸药生产废水[J].中国给水排水,2009,25(7):59-61.
    [58]李玉平,曹宏斌,张懿,等.硝基苯在温和条件下的电化学还原[J].环境科学,26(1):117-121.
    [59] Li Y P, Cao H B, Liu C M, et al. Electrochemical reduction of nitrobenzene atcarbon nanotube electrode [J]. Journal of Hazardous Materials,2007,148(1-2):158-163.
    [60] Chen Z, Wang Z, Wu D L, et al. Electrochemical study of nitrobenzenereduction on galvanically replaced nanoscale Fe/Au particles [J]. Journal ofHazardous Materials,2011,197:424-429.
    [61]周集体,黄丽萍,王竞,等.芳香族硝基化合物生物降解代谢研究现状与展望[J].大连理工大学学报,2000,40(1):46-54.
    [62] Zheng C L, Qu B C, Wang J, et al. Isolation and characterization of a novelnitrobenzene-degrading bacterium with high salinity tolerance: Micrococcusluteus [J]. Journal of Hazardous Materials,2009,165(1-3):1152-1158.
    [63] Zheng C L, Zhou J T, Zhao L H, et al. Isolation and characterization of anitrobenzene degrading Streptomyces strain from activated sludge [J]. Bulletinof Environmental Contamination and Toxicology,2007,78(2):153-157.
    [64] Wei C H, Hou Y, Ren Y, et al. Bio-cooperation effect and mixing substrates inthe aerobic degradation of nitrobenzene [J]. Zhongguo Huanjing Kexue,1999,20(3):241-244.
    [65] Nishino S F, Spain J C. Oxidative pathway for the biodegradation ofnitrobenzene by Comamonas sp. strain Js765[J]. Applied and EnvironmentalMicrobiology,1995,61(6):2308-2313.
    [66] Liu H, Zheng H, Sun G, et al. The isolation, characterization of nitrobenzenedegrading strains [J]. Environmental Science&Technology,1991,1:16-17.
    [67] Davis E, Murray H, Liehr J, et al. Basic microbial degradation rates andchemical byproducts of selected organic compounds [J]. Water Research,1981,15(9):1125-1127.
    [68] Levin L, Viale A, Forchiassin A. Degradation of organic pollutants by the whiterot basidiomycete Trametes trogii [J]. International Biodeterioration&Biodegradation,2003,52(1):1-5.
    [69] Zheng C L, Zhou J T, Wang J, et al. Isolation and characterization of anitrobenzene degrading yeast strain from activated sludge [J]. Journal ofHazardous Materials,2008,160(1):194-199.
    [70] Zhao D F, Liu C S, Zhang Y B, et al. Biodegradation of nitrobenzene by aerobicgranular sludge in a sequencing batch reactor (SBR)[J]. Desalination,2011,281:17-22.
    [71] Wang D Z, Zheng G Y, Zhou L X. Isolation and characterization of anitrobenzene-degrading bacterium Klebsiella ornithinolytica NB1from aerobicgranular sludge [J]. Bioresource Technology,2012,110:91-96.
    [72]盛连喜,李明堂,徐镜波.硝基苯类化合物微生物降解研究进展[J].应用生态学报,2007,18(7):1654-1660.
    [73] Zheng C L, Zhou J T, Wang J, et al. Aerobic degradation of nitrobenzene byimmobilization of Rhodotorula mucilaginosa in polyurethane foam [J]. Journalof Hazardous Materials,2009,168(1):298-303.
    [74] Somerville C C, Nishino S F, Spain J C. Purification and characterization ofnitrobenzene nitroreductase from Pseudomonas Pseudoalcaligenes Js45[J].Journal of Bacteriology,1995,177(13):3837-3842.
    [75] Wolfe N L, Carreira L H, Delgado M C, Method and composition forremediating environmental contaminants [P]. In Google Patents,2000.
    [76] Cai P J, Xiao X, He Y R, et al. Involvement of c-type cytochrome CymA in theelectron transfer of anaerobic nitrobenzene reduction by Shewanella oneidensisMR-1[J]. Biochemical Engineering Journal,2012,68:227-230.
    [77] Dickel O, Haug W, Knackmuss H J. Biodegradation of nitrobenzene by asequential anaerobic-aerobic process [J]. Biodegradation,1993,4(3):187-194.
    [78]任源,李湛江,吴超飞,等.硝基苯废水的厌氧-好氧基本实验与工艺理论分析[J].应用与环境生物学报,1999,5:14-17.
    [79] Rabaey K, Bioelectrochemical systems: From extracellular electron transfer tobiotechnological application [M]. International Water Assn.,2010.
    [80] Logan B E, Rabaey K. Conversion of wastes into bioelectricity and chemicalsby using microbial electrochemical technologies [J]. Science,2012,337(6095):686-690.
    [81] Hamelers H V M, Ter Heijne A, Sleutels T H J A, et al. New applications andperformance of bioelectrochemical systems [J]. Applied Microbiology andBiotechnology,2010,85(6):1673-1685.
    [82] Logan B E, Hamelers B, Rozendal R A, et al. Microbial fuel cells:Methodology and technology [J]. Environmental Science&Technology,2006,40(17):5181-5192.
    [83] Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitrification inmicrobial fuel cells [J]. Environmental Science&Technology,2007,41(9):3354-3360.
    [84] Lovley D R. Electromicrobiology [J]. Annual Review of Microbiology,2012,66:391-409.
    [85] Lower B H, Hochella M F, Lower S K. Putative mineral-specific proteinssynthesized by a metal reducing bacterium [J]. American Journal of Science,2005,305(6-8):687-710.
    [86] Coursolle D, Gralnick J A. Modularity of the Mtr respiratory pathway ofShewanella oneidensis strain MR-1[J]. Molecular Microbiology,2010,77(4):995-1008.
    [87] Borloo J, Desmet L, Van Beeumen J, et al. Bacterial two-hybrid analysis of theShewanella oneidensis MR-1multi-component electron transfer pathway [J].Journal of Integrated OMICS,2011,1(2):260-267.
    [88] Ross D E, Flynn J M, Baron D B, et al. Towards electrosynthesis in shewanella:energetics of reversing the Mtr pathway for reductive metabolism [J]. PloSOne,2011,6(2): e16649.
    [89] Hartshorne R S, Reardon C L, Ross D, et al. Characterization of an electronconduit between bacteria and the extracellular environment [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2009,106(52):22169-22174.
    [90] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer viamicrobial nanowires [J]. Nature,2005,435(7045):1098-1101.
    [91] Bouhenni R A, Vora G J, Biffinger J C, et al. The Role of Shewanellaoneidensis MR-1outer surface structures in extracellular electron transfer [J].Electroanalysis,2010,22(7-8):856-864.
    [92] Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterialnanowires produced by Shewanella oneidensis strain MR-1and othermicroorganisms [J]. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103(30):11358-11363.
    [93] Malvankar N S, Vargas M, Nevin K P, et al. Tunable metallic-like conductivityin microbial nanowire networks [J]. Nature Nanotechnology,2011,6(9):573-579.
    [94] Richter L V, Sandler S J, Weis R M. Two isoforms of Geobacter sulfurreducensPilA have distinct roles in Pilus biogenesis, cytochrome localization,extracellular electron transfer, and biofilm formation [J]. Journal ofBacteriology,2012,194(10):2551-2563.
    [95] Nevin K P, Kim B C, Glaven R H, et al. Anode biofilm transcriptomics revealsouter surface components essential for high density current production inGeobacter sulfurreducens fuel cells [J]. PloS One.2009,4(5): e5628.
    [96] Strycharz-Glaven S M, Snider R M, Guiseppi-Elie A, et al. On the electricalconductivity of microbial nanowires and biofilms [J]. Energy&EnvironmentalScience,2011,4(11):4366-4379.
    [97] Leang C, Qian X L, Mester T, et al. Alignment of the c-Type cytochrome OmcSalong Pili of Geobacter sulfurreducens [J]. Applied and EnvironmentalMicrobiology,2010,76(12):4080-4084.
    [98] Wrighton K C, Thrash J C, Melnyk R A, et al. Evidence for direct electrontransfer by a Gram-positive bacterium isolated from a microbial fuel cell [J].Applied and Environmental Microbiology,2011,77(21):7633-7639.
    [99] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins thatmediate extracellular electron transfer [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2008,105:3968-3973.
    [100] Covington E D, Gelbmann C B, Kotloski N J, et al. An essential role for UshAin processing of extracellular flavin electron shuttles by Shewanella oneidensis[J]. Molecular Microbiology,2010,78(2):519-532.
    [101] Ross D E, Brantley S L, Tien M. Kinetic characterization of OmcA and MtrC,terminal reductases involved in respiratory electron transfer for dissimilatoryiron reduction in Shewanella oneidensis MR-1[J]. Applied and EnvironmentalMicrobiology,2009,75(16):5218-5226.
    [102] Okamoto A, Nakamura R, Ishii K, et al. In vivo electrochemistry of c-typecytochrome-mediated electron-transfer with chemical marking [J].Chembiochem.,2009,10(14):2329-2332.
    [103] Coursolle D, Baron D B, Bond D R, et al. The Mtr respiratory pathway isessential for reducing flavins and electrodes in Shewanella oneidensis [J].Journal of Bacteriology,2010,192(2):467-474.
    [104] Coursolle D, Gralnick J. Reconstruction of extracellular respiratory pathwaysfor iron (III) reduction in Shewanella Oneidensis strain MR-1[J]. Frontiers inmicrobiology,2012,3:56.
    [105] Yang Y G, Xu M Y, Guo J, et al. Bacterial extracellular electron transfer inbioelectrochemical systems [J]. Process Biochemistry,2012,47(10):1707-1714.
    [106] Grininger M, Staudt H, Johansson P, et al. Dodecin is the key player in flavinhomeostasis of Archaea [J]. Journal of Biological Chemistry,2009,284(19):13068-13076.
    [107] Goldstein R, Smith W. US Electricity consumption for water supply&treatment-The next half century [M]. Water&Sustainability, Electric PowerResearch Institute,2002.
    [108] Logan B. Biologically extracting energy from wastewater: Biohydrogenproduction and microbial fuel cells [J]. Environmental Science&Technology,2004,38(9):160A-167A.
    [109] Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used inmicrobial fuel cells (MFCs) for sustainable energy production [J]. BioresourceTechnology,2010,101(6):1533-1543.
    [110] Liu H, Cheng S A, Logan B E. Production of electricity from acetate orbutyrate using a single-chamber microbial fuel cell [J]. Environmental Science&Technology,2005,39(2):658-662.
    [111] Chae K J, Choi M J, Lee J W, et al. Effect of different substrates on theperformance, bacterial diversity, and bacterial viability in microbial fuel cells[J]. Bioresource Technology,2009,100(14):3518-3525.
    [112] Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable ofconverting glucose to electricity at high rate and efficiency [J]. BiotechnologyLetters,2003,25(18):1531-1535.
    [113] Hu Z Q. Electricity generation by a baffle-chamber membraneless microbialfuel cell [J]. Journal of Power Sources,2008,179(1):27-33.
    [114] Vijayaraghavan K, Ahmad D, Lesa R. Electrolytic treatment of beer brewerywastewater [J]. Industrial&Engineering Chemistry Research,2006,45(20):6854-6859.
    [115] Feng Y, Wang X, Logan B E, et al. Brewery wastewater treatment usingair-cathode microbial fuel cells [J]. Applied Microbiology and Biotechnology,2008,78(5):873-880.
    [116] Jin B, van Leeuwen H J, Patel B, et al. Utilisation of starch processingwastewater for production of microbial biomass protein and fungalalpha-amylase by Aspergillus oryzae [J]. Bioresource Technology,1998,66(3):201-206.
    [117] Kim B H, Park H S, Kim H J, et al. Enrichment of microbial communitygenerating electricity using a fuel-cell-type electrochemical cell [J]. AppliedMicrobiology and Biotechnology,2004,63(6):672-681.
    [118] Logan B, Cheng S, Watson V, et al. Graphite fiber brush anodes for increasedpower production in air-cathode microbial fuel cells [J]. EnvironmentalScience&Technology,2007,41(9):3341-3346.
    [119] Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbialcommunity analysis of alcohol powered microbial fuel cells [J]. BioresourceTechnology.2007,98(13):2568-2577.
    [120] de Carcer D A, Phuc T H, Jang J K, et al. Microbial community differencesbetween propionate-fed microbial fuel cell systems under open and closedcircuit conditions [J]. Applied Microbiology and Biotechnology.2011,89(3):605-612.
    [121] Catal T, Xu S T, Li K C, et al. Electricity generation from polyalcohols insingle-chamber microbial fuel cells [J]. Biosensors&Bioelectronics.2008,24(4):849-854.
    [122] Catal T, Li K, Bermek H, et al. Electricity production from twelvemonosaccharides using microbial fuel cells [J]. Journal of Power Sources.2008,175(1):196-200.
    [123] Wen Q, Wu Y, Cao D X, et al. Electricity generation and modeling ofmicrobial fuel cell from continuous beer brewery wastewater [J]. BioresourceTechnology.2009,100(18):4171-4175.
    [124] Oh S E, Logan B E. Hydrogen and electricity production from a foodprocessing wastewater using fermentation and microbial fuel cell technologies[J]. Water Research.2005,39(19):4673-4682.
    [125] Wang X, Feng Y J, Ren N Q, et al. Accelerated start-up of two-chamberedmicrobial fuel cells: Effect of anodic positive poised potential [J].Electrochimica Acta.2009,54(3):1109-1114.
    [126] Rodrigo M A, Canizares P, Lobato J, et al. Production of electricity from thetreatment of urban waste water using a microbial fuel cell [J]. Journal of PowerSources.2007,169(1):198-204.
    [127] Luo Y, Zhang R D, Liu G L, et al. Electricity generation from indole andmicrobial community analysis in the microbial fuel cell [J]. Journal ofHazardous Materials.2010,176(1-3):759-764.
    [128] Zhang C P, Li M C, Liu G L, et al. Pyridine degradation in the microbial fuelcells [J]. Journal of Hazardous Materials.2009,172(1):465-471.
    [129] Zhang C P, Liu G L, Zhang R D, et al. Electricity production from andbiodegradation of quinoline in the microbial fuel cell [J]. Journal ofEnvironmental Science and Health Part a-Toxic/Hazardous Substances&Environmental Engineering.2010,45(2):250-256.
    [130] Rezaei F, Xing D F, Wagner R, et al. Simultaneous cellulose degradation andelectricity production by Enterobacter cloacae in a microbial fuel cell [J].Applied and Environmental Microbiology.2009,75(11):3673-3678.
    [131] Wang X, Feng Y J, Wang H M, et al. Bioaugmentation for electricitygeneration from corn stover biomass using microbial fuel cells [J].Environmental Science&Technology.2009,43(15):6088-6093.
    [132] Zang G L, Sheng G P, Tong Z H, et al. Direct electricity recovery from Cannaindica by an air-cathode microbial fuel cell inoculated with rumenmicroorganisms [J]. Environmental Science&Technology.2010,44(7):2715-2720.
    [133] Catal T, Fan Y Z, Li K C, et al. Effects of furan derivatives and phenoliccompounds on electricity generation in microbial fuel cells [J]. Journal ofPower Sources.2008,180(1):162-166.
    [134] Zhang Y F, Min B K, Huang L P, et al. Generation of electricity and analysisof microbial communities in wheat straw biomass-powered microbial fuel cells[J]. Applied and Environmental Microbiology.2009,75(11):3389-3395.
    [135] Catal T, Cysneiros D, O'Flaherty V, et al. Electricity generation insingle-chamber microbial fuel cells using a carbon source sampled fromanaerobic reactors utilizing grass silage [J]. Bioresource Technology.2011,102(1):404-410.
    [136] Zhang T, Gannon S M, Nevin K P, et al. Stimulating the anaerobic degradationof aromatic hydrocarbons in contaminated sediments by providing an electrodeas the electron acceptor [J]. Environmental Microbiology.2010,12(4):1011-1020.
    [137] Hu W J, Niu C G, Wang Y, et al. Nitrogenous heterocyclic compoundsdegradation in the microbial fuel cells [J]. Process Safety and EnvironmentalProtection.2011,89(2):133-140.
    [138] Luo H P, Liu G L, Zhang R D, et al. Phenol degradation in microbial fuel cells[J]. Chemical Engineering Journal.2009,147(2-3):259-264.
    [139] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium[Cr(VI)] coupled with electricity generation in microbial fuel cells [J].Biotechnology Letters.2008,30(11):1959-1966.
    [140] Mu Y, Rozendal R A, Rabaey K, et al. Nitrobenzene removal inbioelectrochemical systems [J]. Environmental Science&Technology.2009,43(22):8690-8695.
    [141] Mu Y, Rabaey K, Rozendal R A, et al. Decolorization of azo dyes inbioelectrochemical systems [J]. Environmental Science&Technology.2009,43(13):5137-5143.
    [142] Liu L, Li F B, Feng C H, et al. Microbial fuel cell with an azo-dye-feedingcathode [J]. Applied Microbiology and Biotechnology.2009,85(1):175-183.
    [143] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reductionin the cathode of a microbial fuel cell [J]. Environmental Science&Technology.2009,43(21):8159-8165.
    [144] Huang L P, Chen J W, Quan X, et al. Enhancement of hexavalent chromiumreduction and electricity production from a biocathode microbial fuel cell [J].Bioprocess and Biosystems Engineering.2010,33(8):937-945.
    [145] Gregory K B, Lovley D R. Remediation and recovery of uranium fromcontaminated subsurface environments with electrodes [J]. EnvironmentalScience&Technology.2005,39(22):8943-8947.
    [146] Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a soleelectron donor for reductive dechlorination of tetrachlorethene by Geobacterlovleyi [J]. Applied and Environmental Microbiology.2008,74(19):5943-5947.
    [147] Aulenta F, Canosa A, Reale P, et al. Microbial reductive dechlorination oftrichloroethene to ethene with electrodes serving as electron donors without theexternal addition of redox mediators [J]. Biotechnology and Bioengineering.2009,103(1):85-91.
    [148] Aulenta F, Tocca L, Verdini R, et al. Dechlorination of trichloroethene in acontinuous-flow bioelectrochemical reactor: Effect of cathode potential on rate,selectivity, and electron transfer mechanisms [J]. Environmental Science&Technology.2011,45(19):8444-8451.
    [149] Huang L, Chai X, Quan X, et al. Reductive dechlorination and mineralizationof pentachlorophenol in biocathode microbial fuel cells [J]. BioresourceTechnology.2012,111:167-74.
    [150] Park H I, Kim D K, Choi Y J, et al. Nitrate reduction using an electrode asdirect electron donor in a biofilm-electrode reactor [J]. Process Biochemistry.2005,40(10):3383-3388.
    [151] Park H I, Kim J S, Kim D K, et al. Nitrate-reducing bacterial community in abiofilm-electrode reactor [J]. Enzyme and Microbial Technology.2006,39(3):453-458.
    [152] Jia Y H, Tran H T, Kim D H, et al. Simultaneous organics removal andbio-electrochemical denitrification in microbial fuel cells [J]. Bioprocess andBiosystems Engineering.2008,31(4):315-321.
    [153] Virdis B, Rabaey K, Yuan Z G, et al. Electron fluxes in a microbial fuel cellperforming carbon and nitrogen removal [J]. Environmental Science&Technology.2009,43(13):5144-5149.
    [154] Shea C, Clauwaert P, Verstraete W, et al. Adapting a denitrifying biocathodefor perchlorate reduction [J]. Water Science and Technology.2008,58(10):1941-1946.
    [155] Butler C S, Clauwaert P, Green S J, et al. Bioelectrochemical perchloratereduction in a microbial fuel cell [J]. Environmental Science&Technology.2010,44(12):4685-4691.
    [156] Su W T, Zhang L X, Tao Y, et al. Sulfate reduction with electrons directlyderived from electrodes in bioelectrochemical systems [J]. ElectrochemistryCommunications.2012,22:37-40.
    [157]周文敏,傅德黔,孙宗光.中国水中优先控制污染物黑名单的确定[J].环境科学研究.1991,6:9-12.
    [158] Donlon B A, RazoFlores E, Lettinga G, et al. Continuous detoxification,transformation, and degradation of nitrophenols in upflow anaerobic sludgeblanket (UASB) reactors [J]. Biotechnology and Bioengineering.1996,51(4):439-449.
    [159] Swaminathan K, Anantharaman P N, Subramanian G S, et al. Preliminarystudies on the electrolytic reduction of nitrobenzene to aniline [J]. Journal ofApplied Electrochemistry.1972,2:167-173.
    [160] Cyr A, Huot P, Belot G, et al. The efficient electrochemical reduction ofnitrobenzene and azoxybenzene to aniline in neutral and basic aqueousmethanolic solutions at devarda copper and raney-nickel electrodes:Electrocatalytic hydrogenolysis of N-O and N-N bonds [J]. ElectrochimicaActa.1990,35(1):147-152.
    [161] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuelcells [J]. Electroanalysis.2006,18(19-20):2009-2015.
    [162] Gorontzy T, Kuver J, Blotevogel K H. Microbial transformation ofnitroaromatic compounds under anaerobic conditions [J]. Journal of GeneralMicrobiology.1993,139:1331-1336.
    [163] Chun J, Lee J H, Jung Y, et al. EzTaxon: A web-based tool for theidentification of prokaryotes based on16S ribosomal RNA gene sequences [J].International Journal of Systematic and Evolutionary Microbiology.2007,57:2259-2261.
    [164] Engelbrektson A, Kunin V, Wrighton K C, et al. Experimental factors affectingPCR-based estimates of microbial species richness and evenness [J]. IsmeJournal.2010,4(5):642-647.
    [165] Bragg L, Stone G, Imelfort M, et al. Fast, accurate error-correction ofamplicon pyrosequences using Acacia [J]. Nature Methods.2012,9(5):425-426.
    [166] Wu S T, Zhu Z W, Fu L M, et al. WebMGA: A customizable web server forfast metagenomic sequence analysis [J]. BMC Genomics.2011,12.
    [167] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis ofhigh-throughput community sequencing data [J]. Nature Methods.2010,7(5):335-336.
    [168] Noel M, Ravichandran C, Anantharamanan P N. Electrochemical techniquefor the reduction of aromatic nitrocompounds in H2SO4medium on thermallycoated Ti/TiO2[J]. Journal of Applied Electrochemistry.1995,25:690-698.
    [169] Aulenta F, Reale P, Canosa A, et al. Characterization of an electro-activebiocathode capable of dechlorinating trichloroethene and cis-dichloroethene toethene [J]. Biosensors&Bioelectronics.2010,25(7):1796-1802.
    [170] Spain J C. Biodegradation of nitroaromatic compounds [J]. Annual Review ofMicrobiology.1995,49:523-555.
    [171] Hamelers H V M, Ter Heijne A, Strik D P B T B, et al. Cathode potential andmass transfer determine performance of oxygen reducing biocathodes inmicrobial fuel cells [J]. Environmental Science&Technology.2010,44(18):7151-7156.
    [172] Jeremiasse A W, Hamelers H V, Croese E, et al. Acetate enhances startup of aH2-producing microbial biocathode [J]. Biotechnology and Bioengineering.2012,109(3):657-64.
    [173] Rozendal R A, Jeremiasse A W, Hamelers H V, et al. Hydrogen productionwith a microbial biocathode [J]. Environmental Science&Technology.2008,42(2):629-34.
    [174] Becker A R, Sternson L A. Oxidation of phenylhydroxylamine in aqueoussolution: A model for study of the carcinogenic effect of primary aromaticamines [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America.1981,78(4):2003-7.
    [175] Sun M, Reible D, Lowry G V, et al. Effect of applied voltage, initialconcentration and natural organic matter on sequential reduction/oxidation ofnitrobenzene by graphite electrodes [J]. Environmental Science&Technology.2012.
    [176] Harwood W H, Hurd R M, WADE H, et al. Electrochemical reduction ofnitrobenzene at controlled potentials [J]. Industrial and Engineering ChemistryProcess Design and Development.1963,2(1):72-77.
    [177] Steinbusch K J J, Hamelers H V M, Schaap J D, et al. Bioelectrochemicalethanol production through mediated acetate reduction by mixed cultures [J].Environmental Science&Technology.2010,44(1):513-517.
    [178] Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2toCH4via direct and indirect extracellular electron transfer by a hydrogenophilicmethanogenic culture [J]. Bioresource Technology.2010,101(9):3085-3090.
    [179] Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electricalcurrent into methane by electromethanogenesis [J]. Environmental Science&Technology.2009,43(10):3953-3958.
    [180] Merino M, Nunez-Vergara L J, Squella J A. Reduction of differentnitro-compounds on electroenzymatic system: Cytochrome creductase-NAD(P)H modified carbon paste electrode [J]. Electroanalysis.1999,11(17):1285-1292.
    [181] Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbialoxygen biocathodes [J]. Electrochimica Acta.2010,55:813-818.
    [182] Carbajosa S, Malki M, Caillard R, et al. Electrochemical growth ofAcidithiobacillus ferrooxidans on a graphite electrode for obtaining abiocathode for direct electrocatalytic reduction of oxygen [J]. Biosensors&Bioelectronics.2010,26(2):877-80.
    [183] Goyal R N, Verma M S, Singhal N K. Voltammetric investigations of thereduction of direct orange-31a bisazo dye [J]. Croatica Chemica Acta.1998,71(3):715-726.
    [184] Gilbert O, Swamy B E K, Chandra U, et al. Electrocatalytic oxidation ofdopamine and ascorbic acid at poly (eriochrome black-T) modified carbonpaste electrode [J]. International Journal of Electrochemical Science,2009,4(4):582-591.
    [185] Gosser D K, Cyclic voltammetry: simulation and analysis of reactionmechanisms [M]. VHC: New York,1994.
    [186] Peng L, You S J, Wang J Y. Carbon nanotubes as electrode modifier promotingdirect electron transfer from Shewanella oneidensis [J]. Biosensors&Bioelectronics.2010,25(5):1248-1251.
    [187] Rosenbaum M, Aulenta F, Villano M, et al. Cathodes as electron donors formicrobial metabolism: Which extracellular electron transfer mechanisms areinvolved?[J]. Bioresource Technology.2011,102(1):324-333.
    [188] Clarke T A, Edwards M J, Gates A J, et al. Structure of a bacterial cell surfacedecaheme electron conduit [J]. Proceedings of the National Academy ofSciences of the United States of America.2011,108(23):9384-9389.
    [189] Firer-Sherwood M, Pulcu G S, Elliott S J. Electrochemical interrogations ofthe Mtr cytochromes from Shewanella: Opening a potential window [J].Journal of Biological Inorganic Chemistry.2008,13(6):849-854.
    [190] Miller A F, Koder R L, Haynes C A, et al. Flavin thermodynamics explain theoxygen insensitivity of enteric nitroreductases [J]. Biochemistry.2002,41(48):14197-14205.
    [191] Nivinskas H, Staskeviciene S, Sarlauskas J, et al. Two-electron reduction ofquinones by Enterobacter cloacae NAD(P)H: nitroreductase: quantitativestructure-activity relationships [J]. Archives of Biochemistry and Biophysics.2002,403(2):249-258.
    [192] Roldan M, Perez-Reinado E, Castillo F, et al. Reduction of polynitroaromaticcompounds: The bacterial nitroreductases [J]. FEMS Microbiology Reviews.2008,32(3):474-500.
    [193] Yanto Y, Hall M, Bommarius A S. Nitroreductase from Salmonellatyphimurium: Characterization and catalytic activity [J]. Organic&Biomolecular Chemistry.2010,8(8):1826-1832.
    [194] Rabaey K, Read S T, Clauwaert P, et al. Cathodic oxygen reduction catalyzedby bacteria in microbial fuel cells [J]. Isme Journal.2008,2(5):519-527.
    [195] Erable B, Vandecandelaere I, Faimali M, et al. Marine aerobic biofilm asbiocathode catalyst [J]. Bioelectrochemistry.2010,78(1):51-56.
    [196] Chen G W, Choi S J, Lee T H, et al. Application of biocathode in microbialfuel cells: Cell performance and microbial community [J]. AppliedMicrobiology and Biotechnology.2008,79(3):379-88.
    [197] Vandecandelaere I, Nercessian O, Faimali M, et al. Bacterial diversity of thecultivable fraction of a marine electroactive biofilm [J]. Bioelectrochemistry.2010,78(1):62-66.
    [198] Marvinsikkema F D, Debont J A M. Degradation of nitroaromatic compoundsby microorganisms [J]. Applied Microbiology and Biotechnology.1994,42(4):499-507.
    [199] Ribeiro A L d J L, Degiacomi G, Ewann F, et al. Analogous mechanisms ofresistance to benzothiazinones and dinitrobenzamides in Mycobacteriumsmegmatis [J]. Plos One.2011,6(11): e26675.
    [200] Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromaticcompounds: An overview [J]. Journal of Environmental Management.2007,85(2):496-512.
    [201] McGetrick A, Goulding C F, Manian S S, et al. Catabolite repression and roleof cyclic AMP in CO2fixation and H2metabolism in Rhizobium spp.[J].Journal of Bacteriology.1985,163(3):1282-1284.
    [202] Hamilton I, Burris R, Wilson P, et al. Pyruvate metabolism, carbon dioxideassimilation, and nitrogen fixation by an Achromobacter species [J]. Journal ofBacteriology.1965,89(3):647-653.
    [203] Park S S, DeCicco B. Autotrophic growth with hydrogen of Mycobacteriumgordonae and another scotochromogenic mycobacterium [J]. InternationalJournal of Systematic Bacteriology.1974,24(3):338-345.
    [204] Dijkhuizen L, Harder W. Regulation of autotrophic and heterotrophicmetabolism in Pseudomonas oxalaticus OX1: Growth on mixtures of oxalateand formate in continuous culture [J]. Archives of Microbiology.1979,123(1):55-63.
    [205] Zhang G D, Zhao Q L, Jiao Y, et al. Biocathode microbial fuel cell forefficient electricity recovery from dairy manure [J]. Biosensors&Bioelectronics.2012,31(1):537-543.
    [206] Richter H, Nevin P K, Jia H F, et al. Cyclic voltammetry of biofilms of wildtype and mutant Geobacter sulfurreducens on fuel cell anodes indicatespossible roles of OmcB, OmcZ, type IV pili, and protons in extracellularelectron transfer [J]. Energy&Environmental Science.2009,2:506-516.
    [207] Cournet A, Delia M L, Bergel A, et al. Electrochemical reduction of oxygencatalyzed by a wide range of bacteria including Gram-positive [J].Electrochemistry Communications.2010,12(4):505-508.
    [208] Cournet A, Berge M, Roques C, et al. Electrochemical reduction of oxygencatalyzed by Pseudomonas aeruginosa [J]. Electrochimica Acta.2010,55(17):4902-4908.
    [209] Rotaru D E H, Franks A E, Orellana R, et al. Geobacter: The microbeelectric’s physiology, ecology, and practical applications [J]. Advances inMicrobial Physiology.2011,59:1.
    [210] Wang Y, Kern S E, Newman D K. Endogenous phenazine antibiotics promoteanaerobic survival of Pseudomonas aeruginosa via extracellular electrontransfer [J]. Journal of Bacteriology,2010,192(1):365-369.
    [211] Rabaey K, Boon N, Hofte M, et al. Microbial phenazine production enhanceselectron transfer in biofuel cells [J]. Environmental Science&Technology.2005,39(9):3401-3408.
    [212] Geelhoed J S, Stams A J M. Electricity-assisted biological hydrogenproduction from acetate by Geobacter sulfurreducens [J]. EnvironmentalScience&Technology,2011,45(2):815-820.
    [213] Pisciotta J M, Zaybak Z, Call D F, et al. Enrichment of microbial electrolysiscell biocathodes from sediment microbial fuel cell bioanodes [J]. Applied andEnvironmental Microbiology,2012,78(15):5212-5219.
    [214] Cao H B, Li Y P, Zhang G F, et al. Reduction of nitrobenzene with H2using amicrobial consortium [J]. Biotechnology Letters.2004,26(4):307-310.
    [215] Liu H, Grot S, Logan B E. Electrochemically assisted microbial production ofhydrogen from acetate [J]. Environmental Science&Technology.2005,39(11):4317-4320.
    [216]李玉平.生物-电催化耦合处理难降解有机物的研究[D].博士学位论文,中国科学院过程工程研究所,2006.
    [217] Li J, Liu G L, Zhang R D, et al. Electricity generation by two types ofmicrobial fuel cells using nitrobenzene as the anodic or cathodic reactants [J].Bioresource Technology.2010,101(11):4013-4020.
    [218] Wang D Z, Zheng G Y, Wang S M, et al. Biodegradation of aniline by Candidatropicalis AN1isolated from aerobic granular sludge [J]. Journal ofEnvironmental Sciences-China,2011,23(12):2063-2068.
    [219] Hamelers E V M, Jeremiasse A W, Buisman C J N. Microbial electrolysis cellwith a microbial biocathode [J]. Bioelectrochemistry.2010,78(1):39-43.
    [220] Kleerebezem R, Van Loosdrecht M C M. A Generalized method forthermodynamic state analysis of environmental systems [J]. Critical Reviewsin Environmental Science and Technology,2010,40(1):1-54.
    [221] Joback K G, Reid R C. Estimation of pure-component properties fromgroup-contributions [J]. Chemical Engineering Communications,1987,57(1-6):233-243.
    [222] Rafii F, Wynne R, Heinze T M, et al. Mechanism of metronidazole-resistanceby isolates of nitroreductase-producing Enterococcus gallinarum andEnterococcus casseliflavus from the human intestinal tract [J]. FEMSMicrobiology Letters.2003,225(2):195-200.
    [223] Nivinskas H, Koder R L, Anusevicius Z, et al. Quantitative structure-activityrelationships in two-electron reduction of nitroaromatic compounds byEnterobacter cloacae NAD(P)H: nitroreductase [J]. Archives of Biochemistryand Biophysics.2001,385(1):170-178.
    [224] Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbialconsortia that self-mediate electron transfer [J]. Applied and EnvironmentalMicrobiology.2004,70(9):5373-5382.
    [225] Choo Y F, Lee J, Chang I S, et al. Bacterial communities in microbial fuelcells enriched with high concentrations of glucose and glutamate [J]. Journal ofMicrobiology and Biotechnology.2006,16(9):1481-1484.
    [226] Kim G T, Hyun M S, Chang I S, et al. Dissimilatory Fe(III) reduction by anelectrochemically active lactic acid bacterium phylogenetically related toEnterococcus gallinarum isolated from submerged soil [J]. Journal of AppliedMicrobiology.2005,99(4):978-987.
    [227] Pham T H, Boon N, Aelterman P, et al. Metabolites produced by Pseudomonassp. enable a Gram-positive bacterium to achieve extracellular electron transfer[J]. Applied Microbiology and Biotechnology,2008,77(5):1119-1129.
    [228] Strycharz S M, Glaven R H, Coppi M V, et al. Gene expression and deletionanalysis of mechanisms for electron transfer from electrodes to Geobactersulfurreducens [J]. Bioelectrochemistry.2011,80(2):142-150.
    [229] Field J A. Limits of anaerobic biodegradation [J]. Water Science andTechnology.2002,45(10):9-18.
    [230] Sun J A, Bi Z, Hou B, et al. Further treatment of decolorization liquid of azodye coupled with increased power production using microbial fuel cellequipped with an aerobic biocathode [J]. Water Research.2011,45(1):283-291.
    [231] Fan Y Z, Hu H Q, Liu H. Enhanced Coulombic efficiency and power densityof air-cathode microbial fuel cells with an improved cell configuration [J].Journal of Power Sources.2007,171(2):348-354.
    [232] Oh S, Kim J, Joo J, et al. Effects of applied voltages and dissolved oxygen onsustained power generation by microbial fuel cells [J]. Water Science andTechnology.2009,60(5):1311.
    [233] Ringeisen B R, Ray R, Little B. A miniature microbial fuel cell operating withan aerobic anode chamber [J]. Journal of Power Sources.2007,165(2):591-597.
    [234] Biffinger J C, Ray R, Little B J, et al. Simultaneous analysis of physiologicaland electrical output changes in an operating microbial fuel cell withShewanella oneidensis [J]. Biotechnology and Bioengineering,2009,103(3):524-531.
    [235] Rosenbaum M, Cotta M A, Angenent L T. Aerated Shewanella oneidensis incontinuously fed bioelectrochemical systems for power and hydrogenproduction [J]. Biotechnology and Bioengineering,2010,105(5):880-888.
    [236] Hamelers H V M, ter Heijne A, Stein N, et al. Butler-Volmer-Monod model fordescribing bio-anode polarization curves [J]. Bioresource Technology.2011,102(1):381-387.
    [237] Lyons C D, Katz S, Bartha R. Mechanisms and pathways of anilineelimination from aquatic environments [J]. Applied and EnvironmentalMicrobiology.1984,48(3):491-6.
    [238] Li G Y, Wan S G, An T C. Efficient bio-deodorization of aniline vapor in abiotrickling filter: Metabolic mineralization and bacterial community analysis[J]. Chemosphere.2012,87(3):253-258.
    [239] Thomas S M, Peretti S W. Continuous culture dynamics for anilinemetabolism by Pseudomonas sp. CIT1[J]. Biotechnology and Bioengineering.1998,58(1):1-12.
    [240] Milliken C E, May H D. Sustained generation of electricity by thespore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2[J].Applied Microbiology and Biotechnology,2007,73(5):1180-1189.
    [241] Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell usinga metal reducing bacterium, Shewanella putrefaciense [J]. Enzyme andMicrobial Technology.2002,30(2):145-152.
    [242] Kan J J, Hsu L, Cheung A C M, et al. Current production by bacterialcommunities in microbial fuel cells enriched from wastewater sludge withdifferent electron donors [J]. Environmental Science&Technology,2011,45(3):1139-1146.
    [243] Zhao F, Slade R C T, Varcoe J R. Techniques for the study and development ofmicrobial fuel cells: An electrochemical perspective [J]. Chemical SocietyReviews.2009,38(7):1926-1939.
    [244] Zhu X P, Tokash J C, Hong Y Y, et al. Controlling the occurrence of powerovershoot by adapting microbial fuel cells to high anode potentials [J].Bioelectrochemistry.2013,90:30-35.
    [245] Sun D, Call D F, Kiely P D, et al. Syntrophic interactions improve powerproduction in formic acid fed MFCs operated with set anode potentials or fixedresistances [J]. Biotechnology and Bioengineering.2012,109(2):405-414.
    [246] Freguia S, Masuda M, Tsujimura S, et al. Lactococcus lactis catalyseselectricity generation at microbial fuel cell anodes via excretion of a solublequinone [J]. Bioelectrochemistry.2009,76(1-2):14-18.
    [247] Rau J, Knackmuss H J, Stolz A. Effects of different quinoid redox mediatorson the anaerobic reduction of azo dyes by bacteria [J]. Environmental Science&Technology.2002,36(7):1497-1504.
    [248] Bianco P, Haladjian J. Recent progress in the electrochemistry of c-typecytochromes [J]. Biochimie,1994,76(7):605-613.
    [249] Lovley D R. The microbe electric: Conversion of organic matter to electricity[J]. Current Opinion in Biotechnology.2008,19(6):564-571.
    [250] Seeliger S, Cord-Ruwisch R, Schink B. A periplasmic and extracellular c-typecytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and asan electron carrier to other acceptors or to partner bacteria [J]. Journal ofBacteriology.1998,180(14):3686-3691.
    [251] McCarty P L, Bae J, Kim J. Domestic wastewater treatment as a net energyproducer-Can this be achieved [J]. Environmental Science&Technology,2011,45(17):7100-7106.
    [252] Uchimiya M, Gorb L, Isayev O, et al. One-electron standard reductionpotentials of nitroaromatic and cyclic nitramine explosives [J]. EnvironmentalPollution.2010,158(10):3048-3053.
    [253] Lee H S, Parameswaran P, Kato-Marcus A, et al. Evaluation ofenergy-conversion efficiencies in microbial fuel cells (MFCs) utilizingfermentable and non-fermentable substrates [J]. Water Research.2008,42(6-7):1501-1510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700