氨氮的电化学氧化技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从电化学反应具有氧化和微气泡同步发生的特点出发,提出对电化学氧化氨氮和活性污泥的电解浮选进行研究。对氨氮电化学氧化的影响因素,电极表征,氨氮电化学氧化特征、降解机理、产物和动力学,电极材料研制,电解浮选进行活性污泥固液分离进行了系统的研究,并设计了新型的化学强化生物流化复合反应器,用于污水处理。获得的主要结论如下:
     电极反应是氨氮电化学反应的控速步骤;电流密度、氯离子浓度、电极材料是影响氨氮电化学氧化去除的主要因素;初始水温和极板间距的影响不大;弱碱性条件下,有利于氨氮的氧化去除;Mg~(2+)、Ca~(2+)、Sn~(2+)、Fe~(2+)、Al~(3+)等金属离子,HCO_3~-、CO_3~(2-)和NO_3~-等阴离子对氨氮去除的影响比较小;SO_4~(2-)和PO_4~(3-)对氨氮去除影响较大,NO_2~-和氨氮的氧化存在竞争,NO_2~-优先于氨氮氧化;COD和氨氮都可以被电化学氧化去除,且氨氮的氧化占主导地位,优先于COD的降解。直接电化学氧化和间接电化学氧化是氨氮电化学氧化的两种方式。在低氯离子浓度([Cl-]<500mg/L)下,电化学氧化过程中产生的羟基自由基浓度约10-15 mol/L,氨氮主要通过电化学氧化产生的游离氯氧化去除。电化学氧化产物与体系组成及pH值有关,在氯离子存在的情况下,产物主要是N2和少量的氯胺及硝酸根。氨氮的电化学氧化过程符合表观一级动力学规律,反应的活化能为19.81kJ/mol。动力学经验方程可以表示为:
     3种Ti/RuO_2基电极材料的析氧、析氯过电位较低,氯、氧过电位差较小,导致氨氮电化学氧化的电流效率不高(低于30%)。单扫伏安曲线表明氨氮在3种电极材料上的电催化反应很小,基本上是析氧、析氯反应。SEM和加速寿命测试试验表明,3种DSA阳极具有较好的电化学稳定性,适合用于废水处理。
     研究了热分解氧化法制备锡锑电极的影响因素,制备的Ti/SnO_2-Sb_2O_3电极对氨氮的直接电化学氧化效果较好,Ti/SnO_2-Sb_2O_3(-CeO_2)电极与Ti/RuO_2-TiO_2电极对氨氮的间接电化学氧化效果相当,但价格更为低廉。
     采用不溶性阳极的电解浮选工艺能高效地进行活性污泥固液分离。在双筒式内循环三相生物流化床顶部耦合电解浮选单元形成具有自主知识产权的新型复合反应器,对模拟生活污水进行处理研究,可进一步提高24%的氨氮去除率。
Based on the functions of electrochemical reaction with the oxidation and microbubble production, the research of ammonia oxidation and activated sludge separation by electrolysis was proposed. The factors that affected ammonia electro-oxidation, characterization of electrode and ammonia electro-oxidation, oxidation mechanism, oxidation products and dynamic kinetics, preparation of electrode materials, the feasibility of electro-flotation for the solid-liquid separation of activated sludge were investigated. A novel chemical enhanced biological fluidized reactor was developed and applied for wastewater treatment. The following results were achieved.
     Electrode reaction was the reaction rate control step for ammonia electro-oxidation. Current density, chloride concentration and electrode material were the main factors for ammonia electro-oxidation. The influence of initial water temperature and electrode gap was rather little. Under alkalescence condition, the chloride ion would transform in a circle, it was favourable for ammonia removal. Metal ion such as Mg~(2+), Ca~(2+), Sn~(2+), Fe~(2+), Al3+, and anion such as HCO3-, CO32- and NO3- had little effect on ammonia electro-oxidation removal, but SO42- and PO43- had significant effect. There were completive oxidation between NO_2~- and ammonia, NO_2~- was oxidized prior to ammonia oxidation. COD and ammonia can be removed simultaneously by electrochemical oxidation and the removal of ammonia is the dominant reaction in this method.
     In the electrochemical process, ammonia was removed by either direct or indirect electrochemical oxidation process. When the concentration of chloride was low ([Cl-]<500mg/L), the hydroxyl radicals produced during electrochemical process was about 10-15mol/L, the free chlorine produced during electrochemical process had significant effect on ammonia oxidation. The oxidation products of ammonia related with the content of electrolyte and pH. When chloride presented, the main product was N2, a little chloramine and NO3-. The ammonia electro-oxidation followed pseudo-first-order kinetics. The reaction activation energy was 19.81kJ/mol. The dynamic kinetic equation could be expressed as:
     The over-voltages of three types of Ti/RuO_2-based electrode of oxygen evolution and chlorine evolution were low, and the difference of over-voltage between oxygen evolution and chlorine evolution was very small, which resulted in a low current efficiency of ammonia electro-oxidation (lower than 30%). The voltammetry curves showed that the electro-catalytic of ammonia on these three type electrodes was small and the main reactions were oxygen evolution and chlorine evolution. SEM and accelerated life test showed that these three types of DSA anode with good electro -chemical stability. They were suitable for wastewater treatment.
     The factors that affected the preparation of tin and antimony oxide electrode by thermal decomposition were investigated. The Ti/SnO_2-Sb_2O_3 electrode showed good performances of direct electro-oxidation of ammonia. Ti/SnO_2-Sb_2O_3 (-CeO_2) electrode had the same effect as well as Ti/RuO_2-TiO_2 electrode on indirect electro-oxidation of ammonia, but the Ti/SnO_2-Sb_2O_3(-CeO_2) electrode was cost effective.
     Electro-flotation using inert anode is a high efficiency technology for the solid-liquid separation of activated sludge. Combined the inner circulation three phase biological fluidized bed reactor with electrochemical technology, a novel chemical enhanced biological fluidized reactor was developed. Applied the new reactor for synthetic municipal wastewater treatment, the ammonia removal ratio increased 24%.
引文
[1]中华人民共和国水利部. 2006年中国水资源公报. [2007-09-27]. http://www.mwr.gov.cn/xygb/szygb/qgszygb/20070927150937e792cd.aspx.
    [2]田建民.废水中营养物质和污泥体积指数对浮选法活性污泥固液分离的影响.太原重型机械学院学报, 1998, 19(4):357-364.
    [3]董继先,赵志明.废水一体化处理设备的研究进展.轻工机械, 2006, 24(3): 153-156.
    [4]蒋国胜.一体化生活污水处理构筑物的设计思路与实践.干旱环境监测, 2001, 15(2):102-104.
    [5]王华丽,刘长青,张亚雷,等.小城镇污水处理一体化技术现状与展望.江苏环境科技, 2006, 19(2):31-33.
    [6]张玉魁,石桂芳,施汉昌.好氧-缺氧一体化高效分离生物流化复合反应器.环境工程, 2007, 25(2):10-12.
    [7]苏国先,周兴球,伍健东,等.新型高效污水处理设备——集成一体化生物转筒反应器.环境污染治理技术与设备, 2003, 4(2):77-80.
    [8]于涛,李德生,王宝山.新型一体化装置处理生活污水的试验研究.兰州交通大学学报(自然科学版), 2005, 24(1):59-61.
    [9]邱国华,胡龙兴.污水处理一体化装置的研究现状与展望.环境污染治理技术与设备, 2005, 6(5):7-15.
    [10]周平,钱易.空气提升内循环生物流化床反应器动力学研究.环境科学, 1996, 17(6):9-12.
    [11]周平,钱易.内循环生物流化床处理生活污水的实验研究.给水排水, 1998, 24 (10):28-31.
    [12]晏波,蒋文举,谢嘉.三相好氧生物流化床污水处理技术研究应用进展.四川环境, 2001, 20(3):5-9.
    [13]施汉昌.内循环三相好氧流化床的设备化技术.北京,清华大学环境科学与工程系, 1996.
    [14]张玉魁.高效分离生物流化复合反应器的研究[博士学位论文].北京,清华大学环境科学与工程系, 2005.
    [15] Chiang L C, Chang J E, Wen T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Wat. Res., 1995, 29(2):671-678.
    [16]郑兴灿,李亚新编著.污水除磷脱氮技术.北京:中国建筑工业出版社, 1998.
    [17]王兆熊,郭崇涛,张英,等.化工环境保护和三废处理技术.北京:化学工业出社, 1982.
    [18]姚厚霞.生物脱氮技术的研究.贵州化工, 2007, 32(3):25-27.
    [19] Koren D W, Gould W D. Biological removal of ammonia and nitrate from simulated mine and mill effluents. Hydrometallurgy, 2000, 56:127-144.
    [20] Bernet N, Delgenes N. Combined anaerobic aerobic SBR for the treatment of piggery wastewater. Wat. Res., 2000, 34(2):611-619.
    [21] Charng G J, Huang J S, Hsieh K Ch. Performance evaluation of sing-sludge reactor system high strength nitrogen wastewater. Journal of Hazardous Materials, 2001, 85:213-227.
    [22] Elisabeth M. Simultaneous nitrification and denitrification in bench-scales equencing batch reactors. Wat Res., 1996, 30(2):277-184.
    [23] Kararyna K, Bram K. A method to estimate denitrification potential for prodenitrification systems using NUR Batch test. Wat. Res., 1999, 33(10): 2291-2300.
    [24] Gernaey K, Vanderhasselt A. Sensors to monitor biological nitrogen removal and activated sludge settling. Journal of Microbiological Methods, 1998, 32:193-204.
    [25] Galluzzo M, Ducato R. Expert control of DO in the aerobic reactor of an activated sludge process. Computers and Chemical Engineering, 2001, 25:619-625.
    [26] Hellinga C, Schellen A A J C, Mulder J W, et al. The Sharon process: An innovative method for nitrogen removal from ammonium-rich waste water. Wat. Sci. Technol, 1998, 37(9):135-142.
    [27] Priyali S, Steven K D. Simultaneous nitrification-denitrification in a fluidized bed reactor. Wat. Sci. Technol, 1998, 38(1):247-254.
    [28] Strous M, Fuerst J A. Missing lithotroph identified as new planctomycete. Nature, 1999, 400:446-449.
    [29] Gupta A B. Thiosphaera pantotropha: a sulfur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification. Enzyme and Microbial Technology, 1997, 21:589-595.
    [30] Wrage N, Velthof G L, ban Beusichem M L. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry, 2001, 33:1723-1732.
    [31] Vidal S, Rocha C, Galvao H. A comparison of organic and inorganic carbon controls over biological dentrification in aquaria. Chemosphere, 2002, 48:445-451.
    [32] Dolan J F, O’Neill M J, Horan N J. The options available for ammonia removal at Davyhulme sewage-treatment works. J. IwEM, 1990, 4:457-468.
    [33]文艳.吹脱解吸法去除焦化废水中氨氮的研究[硕士学位论文].湖北,武汉科技大学化工学院, 2007.
    [34]汪超,冯晓西,顾印玉,等.沸石在废水脱氨氮中的应用: (I)沸石离子交换脱氨氮.化学世界, 2002, (增刊):60-62.
    [35]张仁志,褚华宁,韩恩山,等.氨氮废水处理技术的发展.中国环境管理干部学院学报, 2005, 15(3):91-94.
    [36]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用.北京:化学工业出版社, 2002.
    [37] Mariner L, Lectz F B. Electro-oxidation of ammonia in wastewater. J Appl Electrochem, 1978, 8:335-345.
    [38] Lin S H, Wu C L. Electrochemical removal of nitrite and ammonia for aquaculture. Wat. Res., 1996, 30(3):715-721.
    [39] Vlyssides A G, Loizidou M, Karlis P K. Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode. Journal of Hazardous Materials, 1999, B70:41-52.
    [40] Van Hege K, Verhaege, Verstraete. Electro-oxidative abatement of low-salinity reverse osmosis membrane concentrates. Wat. Res., 2004, 38:1550-1558.
    [41] Moraes P B, Bertazzoli R. Electrodegradation of landfill leachate in a flow electrochemical reactor. Chemosphere, 2005, 58:41-46.
    [42] Zhou L, Cheng Y F, Amerein M. Fabrication by electrolytic deposition of platinum black electrocatalyst for oxidation of ammonia in alkaline solution. Journal of Power Sources, 2008, 177:50-55.
    [43] Pletcher D, Weinberg N L. The Green Potrntial of Electrochemistry. Part 1: The Fundamentals. Chem. Eng., 1992, 98-103; Part 2: The Applications. 1992, 132-135.
    [44] Janssen L J J, Koene L. The role of electrochemistry and electrochemical technology in environmental protection. Chem. Eng. J., 2002, 85:137-146.
    [45] Chen G H. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 2004, 38:11-41.
    [46] Vlyssides A G, Karlis P K, Rori N, et al. Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. Journal of Hazardous Materials, 2002, B95:215-226.
    [47] Vlyssides A G, Israilids C J. Detoxification of tannery waste liquors with an electrolysis system. Environment Pollution, 1997, 97(1-2):147-152.
    [48] Szpyrkowicz L, Juzzolino C, Kaul S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Wat. Res., 2001, 35(9):2129-2136.
    [49] Israilids C J, Vlyssides A G, Mourafeti V N, et al. Olive oil wastewater treatment with the use of an electrolysis system. Bioresource Technology, 1997, 61:163-170.
    [50]林海波.电化学氧化法处理难生物降解有机工业废水的研究[博士学位论文].吉林,吉林大学化学学院, 2005.
    [51] Feng C P, Sugiur N, Shimada S, et al. Development of a high performance electrochemical wastewater system. Journal of Hazardous Materials, 2003, B103:65-78.
    [52] Kuhn A T. Electrolytic decomposition of cyanides, phenols and thiocyanates in effluents streams-a literature review. J. Appl. Chem. Biotechnol., 1971, 21:29-34.
    [53] Kotz R, stucki S, Carcer B. Electrochemical waste water treatment using high overvoltage anodes. Part I. Physical and electrochemical properties of SnO2 anodes. J. Appl. Electrochem., 1991, 21:14-20; Part II.Anode performance and applications. 1991, 21:99-104.
    [54]张清松,吴辉煌.苯酚在热氧化法制备的SnO2/Ti电极上的电氧化研究.电化学, 1999, 5(4):401-405.
    [55] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Wat. Res., 2003, 37:2399-2407.
    [56] Azzam M O, Al-tarazi M, Tahboub Y. Anodic destruction of chlorophenol solution. Journal of Hazardous Materials, 2000, B75:99-113.
    [57] Krik D W, Sharifian H, foulkes F R. Anodic oxidation of aniline for waste water treatment. J. Appl. Electrochem., 1985, 15:285-292.
    [58] Bonfatti F, Ferro S, Lavezzo F, et al. Electrochemical incineration of glucose as a model organic substrate. I. Role of the electrode material. J. Electrochem. Soc., 1999, 146(6):2175-2179.
    [59] Polcaro A M, Palmas S, Renoldi F, Et al. The performace of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment. J. Appl. Electrochem., 1999, 29:147-151.
    [60] Pulgarin C, Adler, Peringer P, et al. Electrochemical detoxification of a 1,4-benzo -quinone solution in wastewater treatment. Wat. Res., 1994, 28:887-893.
    [61] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidation of chlorinated phenols. Environ. Sci. Technol., 1999, 33, 1453-1457.
    [62] Comninellis Ch, Plattner E. Electrochemical wastewater treatment. Climia, 1988, 42(7-8):250-252.
    [63] Wu Zucheng, Zhou Minghua. Partial degradation of phenol by advanced electro -chemical oxidation process. Environ. Sci. Technol., 2001, 35:2698-2703.
    [64] Boudenne J L, Cerclier O, ey al. Performance of carbon black slurry electrodes for 4-chlorophenol oxidation. Wat. Res., 1999, 33(2):494-504.
    [65] Lin S H, Peng C F. Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge. Wat. Res., 1996, 30(3): 587-592.
    [66] Szpyrkowicz L, Naumczyk J, Zilio-Grandi F. Electrochemical treatment of tannery wastewater using Ti/Pt and Ti/Pt/Ir electrodes. Wat. Res., 1995, 29(2):517-524.
    [67]王鹏,刘伟藻,方汉平.垃圾渗沥液中氨氮的电化学氧化.中国环境科学, 2000, 20(4): 289-291.
    [68]李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究.中国给水排水, 2001, 17(8): 14-17.
    [69] Van Hege K, Verhaege M, Verstraete W. Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes. Electrochemistry Communications, 2002, 4:296-300.
    [70]林海波,徐红,杨喜波,等.在流动式电解槽中氨氮废水的间接电氧化.环境化学, 2005, 24(2):146-149.
    [71] Moraes P B, Bertazzoli R. Electrodegradation of landfill leachate in a flow electrochemical reactor. Chemosphere, 2005, 58:41-46.
    [72] Vanlangendonck Y, Coebisier D, Van Lierde A. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITATM technique).Wat. Res., 2005, 39:3028-3034.
    [73] Kim K W, Kim Y J, Kim I T, et al. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode. Electrochimica Acta, 2005, 50:4356-4364.
    [74] Deng Y, Englehardt J D. Electrochemical oxidation for landfill leachate treatment. Wate Mangement, 2007, 27:380-388.
    [75] Comninellis Ch. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 1994, 39(11-12): 1857-1862.
    [76] Simond O, Schaller V, Comninellis Ch. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochimica Acta, 1997, 42(13-14):2009-2012.
    [77] Comninellis Ch, Pulgarin C. Anodic oxidation of phenol for waste water treatment. J. Appl. Electrochem., 991, 21:703-708.
    [78] Do J S, Yeh W C. In situ degradation of formaldehyde with electrogenerated hypo -chlorite ion. J. Appl. Electrochem., 1994, 24:483-489.
    [79] Comninellis Ch, Nerini A. Anodic oxidation of phenl in the presence of NaCl for waste water treatment. J. Appl. Electrochem., 1995, 25:23-28.
    [80] Vijayaraghavan K, Ramanujam T K, Balasubramanian. In situ hypochlorous acid generation for the treatment of syntan wastewater. Waste management, 1999, 19: 319-323.
    [81] Iniesta J, Gonzalez-Garcia J, Exposito E, et al. Influence of chloride ion on electrochemical degradation of phenol in alakaline medium using bismuth doped and pure PbO2 anodes. Wat. Res., 2001, 35(14):3291-3300.
    [82] Szpyrkowicz L, Radaelli M, Daniele S. Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants. Catalysis Today, 2005, 100:425-429.
    [83] De Sucre V S, Watkinson A P. Anodic oxidation of phenol for waste water treatment. Can. J. Chem. Eng., 1981, 59:52-59.
    [84] Galla U, Kritzer P, Bringmann J. Process for total degradation of organic wastes by mediated electrooxidation. Chem. Eng. Technol., 2000, 23(3):230-233.
    [85] Leffrang U, Ebert K, Flory K, et al. Organic waste destruction by indirect electrooxidation. Separation Science and Technology, 1995, 30(7-9):1883-1889.
    [86] Brillas E, Sauleda, Casado J. Use of an anodic Fe/O2 cell for watewater treatment: degradation of aniline. Electrochem. Soc., 1999, 146(12):4539-4543.
    [87] Outuran M A, Oturan N, Lahitte, et al. Production of hydroxyl radicals by electrochemically assisted Feton’s agent: Application to mineralization of an organic micropollutant pentachlorophenol. Electroanal. Chem., 2001, 507:206-214.
    [88] Do J S, Chen C P. In situ oxidative degradation of formaldehyde with electrogenerated hydrogen peroxide. Elcetrochem. Soc., 1993, 140:1633-1637.
    [89] Gnann M, Gregoe C H, Schelle S. Chemical oxidative process for purifying highly contained wastewater. Wo Patent, 1993, 08129, Peroxide-Chemie Gmbh, DE.
    [90] Hugan Y H, Chous S S, Peng M G, et al. Case study on the bioeffluent of petrochemical wastewater by electro-Feton method. Water Sci. Technol, 1999, 39 (10-11):145-149.
    [91] Pierre Dabo, Andre Cyr, Francois Laplante, et al. Electrocatalytic dehydro -chorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol., 2000, 34(7): 1265-1268.
    [92]郑曦,陈日耀,兰瑞芳,等.电生成Feton试剂及其对染料降解脱色的研究.电化学, 2003, 9(1):98-103.
    [93] Zhou M H, Wu Z C. A novel electrocatalysis method for organic pollutants degradation. Chin. Chem. Lett., 2001, 12(10):929-932.
    [94] de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. Journal of Electroanalytical Chemistry, 2001, 506:127-137.
    [95] de Mishima B A L, Lescano D, Holgado T M, et al. Electrochemical oxidation of ammonia in alkaline solutions: its application to an amperometric sensor. Electro -chimica Acta, 1998, 43(3-4):395-404.
    [96] Wasmus S, Vasini E J, Krausa M, et al. DEMS-cyclic voltammetry invest -tigation of the electrochemistry of nitrogen compounds in 0.5M potassium hydroxide. Electrochimica Acta, 1994, 39(1):23-31.
    [97] Ukropec R, Kuster B F M, Schouten J C, et al. Low temperature oxidation of ammonia to nitrogen in liquid phase. Applied Catalysis B: Environental, 1999, 23(1): 45-57.
    [98] Papapolymerou G, Bontonzoglou V. Decomposition of NH3 on Pd and Ir comparison with Pt and Rh. Journal of Molecular Catalysis A: Chemical, 1997, 120 (1-3):165-171.
    [99] Bradley J M, Hopkinson A, King D A. Control of a biphasic surface reaction by oxygen coverage: The catalytic oxidation of ammonia over Pt{100}.J. Phys. Chem., 1995, 99:10732-17042.
    [100] Gerischer H, Mauerer A. Untersuchungen zur anodischen oxidation von ammoniak an platin-elektroden. Journal of Electroanalytical Chemistry, 1970, 25(3): 421-433.
    [101]唐谟堂,杨声海. Zn(II)-NH3-NH4Cl-H2O体系电积锌工艺及阳极反应机理.中南工业大学学报, 1999, 30(2):153-156.
    [102]陈康宁编著.金属阳极.上海:华东师范大学出版社, 1989.7.
    [103] Couper A M, Pletcher D, Walsh F C. Electrode material for electrosythesis. Chem. Rev., 1990, 90:837-865.
    [104]冯玉杰,崔玉虹,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报, 2004, 36(4):450-455.
    [105]张招贤编著.钛电极工学.北京:冶金工业出版社, 2000.
    [106] Trasatti S. Electrocatalysis: understanding the success of DSA○R. Electrochimica Acta, 2000, 45:2377-2385.
    [107]锦西化工研究院二室.金属阳极的研究.氯碱工业, 1975, 1:55-64.
    [108] Comninellis Ch, Vercesi G P. Problem in DSA coating deposition by thermal decomposition. J. Appl. Electrochem., 1991, 21:136-142.
    [109] Correa-Lozano B, Comninellis Ch, Battisti A D. Physicochemical properties of SnO2 -Sb2O5 films prepared by the spray pyrolysis technique. J. Electrochem. Soc., 1996, (143): 203-209.
    [110] Correa-Lozano B, Comninellis Ch, Battisti A D. Service life of Ti/SnO2 -Sb2O5 anodes. J. Appl. Electrochem., 1997, (27):970-974.
    [111] Lipp L., Pletcher D. The preparation and characterization of tin dioxide coated titanium electrodes. Electrochim Acta, 1997, 42(7):1091-1097.
    [112] Flocher G, Cachet H, Froment M. Anodic corrosion of indium tin oxide films induced by the electrochemical oxidation of chlorides. Thin Solid Films, 1997, 301:242-248.
    [113] Hamdani M, Pereira M I S, Douch J, et al. Physicochemical and electro-catalytic properties of Li-Co3O4 anodes prepared by chemical spray pyrolysis for application in alkaline water electrolysis. Electrochimica Acta, 2004, 49:1555-1563.
    [114]邵志刚,衣宝廉,张新革.钛基二氧化铅平板电极的镀制.电化学, 1997, 3(3):319-324.
    [115]王峰,俞斌.一种新型PbO2电极的研制.应用化学, 2002, 19(2):193-195.
    [116] Montilla F, Morallon E, Battisti A D, et al. Preparation and characterization of antimony-doped tin dioxide electrodes. Part I: electrochemical charac -terization. J. phy. Chem. B., 2004,(108):5036-5043.
    [117] Kong Jiangtao, Shi Shaoyuan, Kong Lingcai, et al. Perparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electro -chimica Acta, 2007, 53: 2048-2054.
    [118] Trasatti S. Physical electrochemistry of ceramic oxides. Electrochimica Acta,1991, 36(2):225-241.
    [119] Vercesi GP, Rolewicz J, Comninellis Ch, et al. Characteruzation of dsa-type oxygen evolving electrodes. Choice of base metal. Thermochimica Acta, 1991, 176:31-47.
    [120] Comninellis Ch, Vercesi G P. Characterization of DSA type oxygen evolving electrodes: choice of a coating. J. Appl. Electrochem., 1991, 21:335-345.
    [121] Comninellis Ch, Vercesi G P. Problems in DSA○R coating deposition by thermal decomposition. J. Appl. Electrochem., 1991, 21:136-142.
    [122] Hefny M M, Abdel-Wanees S. Electro-oxidation at a coated iridium electrode. Electrochimica Acta, 1996, 41(9):1419-1422.
    [123] Kamegaya Y, Sasaki K, Oguri M, et al. Improved durability of iridium oxide coated titanium anode with interlayers for oxygen evolution at high current densities. Electrochimica Acta, 1995, 40(7):889-895.
    [124] Kim K W, Lee E H, Kim J S, et al. A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction. Electrochimica Acta, 2002, 47: 2525-2531.
    [125] De Oliveira-Sousa A, da Silva M A S, Machado S A S, et al. Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2 -coated electrodes. Electrochimica Acta, 2000, 45:4467-4473.
    [126] Bock C, Spinney H, Macdougall B. A study of the deactivation and service life of Ir oxide anodes supported on Al substrates. J. Appl. Electrochem., 2000, 30:523- 532.
    [127] Zanta C L P S, de Andrade A R, Boodts J F C. Solvent and support electrolyte effects on the catalytic activity of Ti/RuO2 and Ti/IrO2 electrodes: oxidation of isosafrole as a probe model. Electrochimica Acta, 1999, 44:3333-3340.
    [128] Morimistu M, Otogawa R, Matsunaga M. Effects of cathodizing on the morphology and composition of IrO2-Ta2O5/Ti anodes. Electrochimica Acta, 2000, 46: 401-406.
    [129] Nijjer S, Thonstad J, Haarberg G M. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions. Electrochimica Acta, 2001, 46: 3503-3508.
    [130]胡吉明,朱艳冗,孟惠民,等.钛基IrO2-Ta2O5涂层阳极电化学多孔性研究.稀有金属, 2000, 24(5):345-348.
    [131]胡吉明,孟惠民,张鉴清,等. Ti基IrO2+Ta2O5涂层阳极的析氧电催化活性.金属学报, 2001, 37(6):628-632.
    [132]胡吉明,张鉴清,曹楚南,等. Ti基IrO2+Ta2O5阳极的电化学特性.材料研究学报, 2002, 16(4):365-370.
    [133]胡吉明,孟惠民,张鉴清,等.制备条件对钛基IrO2+Ta2O5涂层阳极性能的影响.金属学报, 2002, 38(1):69-73.
    [134]胡吉明,孟惠民,张鉴清,等. Ti基IrO2+Ta2O5阳极在H2SO4溶液中的电解时效行为.物理化学学报, 2002, 18(1):14-20.
    [135] Da Silva L A, Alves V A, Da Silva M A P, et al. Electrochemical impeadance, SEM. EDX and voltammetric study of oxygen evolution on Ir+Ti+Pt ternary-oxide electrodes in alkaline solution. Electrochimica Acta, 1996, 41(7-8):1279- 1285.
    [136] Da Silva L A, Alves V A, Da Silva M A P, et al. Oxygen evolution in acid solution on IrO2+TiO2 ceramic films. A study by impedance, voltammetry and SEM. Electrochimica Acta, 1997, 42(2):271-281.
    [137] Mattos-Costa F I, de Lima-Neto P, Machado S A S. Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium. Electrochimica Acta, 1998, 44(8-9):1515-1523.
    [138] Grupioni A A F, Arashiro E, Lassali T A F. Voltammetric characterization of an iridium oxide-based system: the pseudocapacitve nature of the Ir0.3Mn0.7O2 electrode. Electrochimica Acta, 2002, 48:407-418.
    [139] Terezo A J, Pereira E C. Fractional factorial design applied to investigate properties of Ti/IrO2-Nb2O5 electrodes. Electrochimica Acta, 2000, 45:4351-4358.
    [140] Cestarolli D T, De Andrade A R. Electrochemical and morphological properties of Ti/Ru0.3Pb(0.7-x)TixO2-coated electrodes. Electrochimica Acta, 2003, 48(28): 4137-4142.
    [141] Panic V, Dekanski A, Milonjic S, et al. The influence of the aging time of RuO2 and TiO2 sols on the electrochemical properties and behavior for the chlorine evolution reaction of activated titanium anodes obtained by the sol-gel produce. Electrochimica Acta, 2000, 46:415-421.
    [142] Forti J C, Olivi P, de Andrade A R. Characterisation of DSA○R-type coatings with nominal composition Ti/Ru0.3Ti(0.7-x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 2001, 47(6):913-920.
    [143] Terezo A J, Pereira E C. Preparation and characterization of Ti/RuO2 -Nb2O5 electrodes obtained by polymeric precursor method. Electrochimica Acta, 1999, 44(25):4507-4513.
    [144] Camara O R, Trasatti S. Surface electrochemical properties of Ti/(RuO2 +ZrO2) electrodes. Electrochimica Acta, 1996, 41(3):419-427.
    [145] Da Silva L M, Boodts J F C, Defaria L A.‘In situ’and‘ex situ’charac -terization of the surface properties of the RuO2(x)+Co3O4(1-x) system. Electrochimica Acta, 2000, 45(17):2719-2727.
    [146] Da Silva L M, Boodts J F C, Defaria L A. Oxygen evolution at RuO2(x) +Co3O4(1-x) electrodes from acid solution. Electrochimica Acta, 2001, 46(9): 1369-1375.
    [147] Morita M, Iwakura C, Tamura H. The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx. Electrochimica Acta, 1978, 23(4):331-335.
    [148]吴星五,赵国华,高廷耀.电化学水处理新技术-降解有机废水.环境科学学报, 2000, (20增):80-84.
    [149]王玉玲,蔡乃才,霍耀东,等.苯胺在SnO2/Ti电极上的电化学氧化.物理化学学报, 2001, 17: 609-613.
    [150] Comninellis Ch, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem., 1993, 23:108-112.
    [151] Chen Guohua, Chen Xueming, Yue P L. Electrochemical behavior of novel Ti/IrOx -Sb2O5-SnO2 anodes. J. Phy. Chem. B., 2002, 106:4364-4369.
    [152] Chen Xueming, Chen Guohua. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution. Electrochimica Acta, 2005, 50:4155-4159.
    [153] Deliang He, Sun-il Mho.Electrocatalytic reaction of phenolic compounds at ferric ion co-doped SnO2:Sb5+ electrodes. J. Electroanal. Chem., 2004, 568:19-27.
    [154]冯玉杰,崔玉虹,王建军. Dy改性SnO2/Sb电催化电极的制备及表征.无机化学学报, 2005, 21(6):836-841.
    [155]王静,冯玉杰.稀土Gd掺杂SnSb多组份涂层电极制备的实验研究.环境化学, 2005, 24(1):27-30.
    [156] Raju G B, Khangaonkar P R. Electroflotation-a critical review. Transactions of the Indian Institute of Metals, 1984, 37(1):59-66.
    [157] Elmore F E. A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore. British, GB190413578, 1905-07-15.
    [158] Burn S E, Yoacoumi S, Tsouris C. Microbubble generation for environmental and industrial. Separation and Purification Technology, 1997, 11(3): 221-232.
    [159]张自杰.排水工程下册(第4版).北京:中国建筑工业出版社, 2000.523.
    [160]张登庆,任连锁,裴峻峰,等.电气浮技术在油田采出水处理中的应用研究.石油矿场机械, 2002, 31(2):11-14.
    [161] Hosny A Y. Separation oil from oil-water emulsions by electroflotation technique. Separation Technology, 1996, 6(1):9-17.
    [162]吴辉煌.水中有机污染物电化学清除的研究进展.环境污染与防治, 2000, 22(4): 39-42.
    [163]陈繁忠,李穗中.电解气浮法技术进展.广东化工, 1997, (4):60-61.
    [164] Ho C C, Chan C Y. The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent. Wat. Res., 1986, 20 (12):1523-1527.
    [165] Ibrahim M Y, Mostafa S R, Fahmy M F M, et al. Utilization of electro-flotation in remediation of oily wastewater. Seperation Science and Technology, 2001, 36 (16): 3749-3762.
    [166] Mostefa N M, Tir M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions. Desalination, 2004,161 (2):115-121.
    [167] Alexandrova L, Nedialkova T, Nishkov I. Electroflotation of metal ions in waste water. International Journal of Mineral Processing, 1994, 41(3-4):285-294.
    [168] Poon C P C. Electroflotaion for groundwater decontamination. Journal of Hazardous Materials, 1997, 55(2):159-170.
    [169] Ge J, Qu J, Lei P, et al. New bipolar electrocoagulation-electroflotation process for the treatment of laundry wastewater. Separation and Purification Technology, 2004, 36(1):33-39.
    [170] Chen G H, Chen X M, Yue P. Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environmental Engineering, 2000, 126(9):858-863.
    [171] Fukui Y, Yuu S. Removal of colloidal particles in electroflotation. American Institute of Chemical Engineers, 1985, 31(2):201-208.
    [172] Murugananthan M, Raju G B, Prabhakar S. Separation of pollutants from tannery effluents by electro flotation. Separation and Purification Technology, 2004, 40(1):69-75.
    [173] Burn S E, Yoacoumi S, Tsouris C. Microbubble generation for environmental and industrial. Separation and Purification Technology, 1997, 11(3):221 -232.
    [174] Alves V A, Silva L A D, Oliveira E D, et al. Investigation under condition of electrogenerated gas bubbles. J. Electrochem. Soc. India, 1988, 37(4):313.
    [175] Mraz R, Krysa J. Long service life IrO2/Ta2O5 electrodes for electro-flotation. J. Appl. Electrochem., 1994, 24:1262-1266.
    [176] II’in V I, Kolesnikov V A, Parshina Y I. Purification of highly concentrated particles from liquids. Elecktronnaya Obrabotka Materialov,1982, 4(106): 89-90.
    [177]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社, 2002.
    [178] Alexeyev V. Quantitative analysis. Moscow: Mir Publisher, 1969. 477- 478.
    [179] Czarnetzki L R, Janssen L J. Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J. Appl.Electrochem., 1992, 22:315-324.
    [180] Naumczyk J, Szpyrkowicz L, De Faveri M D, et al. Electrochemical treatment of tannery wastewater containing high strength pollutants. Trans. Inst. Chem. Eng., 1996, 74B:59-68.
    [181] Adan L C, Gordon G. Direct and sequential potentiometric determination of hypochlorite, chlorite and chlorate ions when hypochlorite ion is present in large excess. Anal. Chem., 1995, 67(3):535-540.
    [182] Ikko Ihara, Kazutaka Umetsu, Kiyoshi Kanamura, et al. Electrochemical oxidation of the effluent from anaerobic digestion of diary manure. Bioresource Technology, 2006, 97(12):1360-1364.
    [183]李晓萍,林海波,吴岩,等.Ti/PbO2阳极在氯化钠溶液中电解生产活性氯的研究.吉林大学学报(理学版),2005,43(30):358-362.
    [184] Stasiuk W N, Hetling L J, Shuster W W. Nitrogen removal by catalyst-aided breakpoint chlorination. WPCF, 1974, 46(8):1974-1983.
    [185] Devkota L M, Williams D S, Matta J H, et al. Variation of oxidation-reduction potential along the breakpoint curves in low ammonia effluents. Water Environ. Res., 2000, 72(5):610-617.
    [186]陈晓青,郭世柏,袁兴中.电解法制备活性氯的研究.化学世界, 2001, (8): 395-398.
    [187] Devkota L M, Williams D S, Matta J H, et al. Variation of oxidation-reduction potential along the breakpoint curves in low ammonia effluents. Water Environ. Res., 2000, 72(5):610-617.
    [188] Lin S H, Chang C C. Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method. Wat. Res., 2000, 34: 4243-4249.
    [189]唐秀华,吴星五.电化学法处理水时常见离子对产生活性氯的影响.净水技术, 2005, 24(3):18-20.
    [190]严熙世,范瑾初.给水工程(第四版).北京:中国建筑工业出版社, 1999:256 -257.
    [191]施光明,张品三,刑绍然.用次氯酸钠降低ADC发泡剂废水中氨氮含量.河南化工, 2006, 23(6):27-28.
    [192]葛小芳.芳族硝基化合物的电还原性能及其动力学机理的研究[硕士学位论文],浙江:浙江工业大学, 2005.
    [193]鲁弘懿.四种环境污染物电化学降解特性的研究[硕士学位论文].大连理工大学, 2004.
    [194]郭敏.工业纯钛在海水中阴极极化条件下的氢脆研究[硕士学位论文],大连理工大学, 2001.
    [195]江嘉禄,唐电.钛基铱系氧化物涂层的研究.金属热处理, 2005, 30(5): 257- 261.
    [196]唐电,林萱.贵金属被覆钛阳极的寿命预测.化工冶金, 1990, 11(4):347-349.
    [197]郑利峰.氨络合物体系电积镍的阴阳极机理研究[硕士学位论文].浙江:浙江工业大学, 2004.
    [198] Cheng Sh A, Fung W K, Chan K Y, et al. Optimizing electron spin resonance detection of hydroxyl radical in water. Chemosphere, 2003, 52(10):1797-1805.
    [199] Jen J F, Leu M F, Yang Th C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography A, 1998, 796(2):283-288.
    [200]徐向荣,王文华,李华斌.比色法测定Fenton反应产生的羟基自由基及其应用.生物化学与生物物理进展, 1999, 26(1):67-69.
    [201] Fukui S, Hanasaki Y, Ogawa S. High-Performance Liquid Chromatographic Determination of Methanesulphinic Acid as a Method for the Determination of Hydroxyl Radicals. Chromatography, 1993, 630:187-193.
    [202]李立平,柳丹侠.高效液相色谱法测定大白鼠脊髓受到前列腺损伤时羟基游离基的释放.色谱, 1996, 14(5):405-407.
    [203] Jurg H. Inter-calibration of OH radical sources and water quality parameters. Water Science and Technology. 1997, 35(4):45-48.
    [204]王小毛,黄霞. O3/UV降解喹啉过程中不同氧化剂的相对重要性.环境科学, 2003, 24(3):35-39.
    [205] Arslan F, Duby P F. Electro-oxidation of pyrite in sodium chloride solutions. Hydrometallurgy, 1997, 46:157-169.
    [206] Dima G E, de Vooys A C A, Koper M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry, 2003, 554-555:15-23.
    [207] de Vooys A C A, Beltramo G L, van Riet B, et al. Mechanisms of electro -chemical reduction and oxidation of nitric oxide. Electrochimica, 2004, 49:1307-1314.
    [208] Dima G E, Beltramo G L, Koper M T M. Nitrate reduction on single-crystal platinum electrodes. Electrochimica, 2005, 50:4318-4326.
    [209] Wang Ying, Qu Jiuhui, Wu Rongcheng, et al. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode. Wat. Res., 2006, 40: 1224-1232.
    [210]董宏杨.以Ti为基体的电极材料的开发应用基础研究[硕士学位论文].江苏:扬州大学, 2004.
    [211]李海涛.纳米级细晶表面电极材料的制备.氯碱工业,1998, (2):9-11.
    [212]韩振华,李国彬,田峰,等.纳米CeO2的制备及其应用.纳米科技, 2007, (5): 23-30.
    [213] Alves V A, da Silva L A, Boodts J F C. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochimica Acta, 1998, 44(8-9):1525 -1534.
    [214] Da Silva L M, Fer nandes K C, De Faria L A, et al. Electrochemical impedance spectrosocpy study during accelerated life test of conductive oxides: Ti/(Ru+Ti+Ce)O2 -system. Electrochimica Acta, 2004, 49(27):4893-4906.
    [215] Santana M H P, De Faria L A. Oxygen and chlorine evolution on RuO2+ TiO2 +CeO2+Nb2O5 mixed oxide electrodes. Electrochimica Acta, 2006, 51(17): 3578-3585.
    [216] Chen Xueming, Guo Furong, Chen Guohua. Comparison of Ti/BDD and Ti/SnO2 -Sb2O5 electrodes for pollutant oxidation. J. Appl. Electrochem., 2005, 35: 185- 191.
    [217] Cui Yuhong, Feng Yujie. EPR study on Sb doped Ti-base SnO2 electrodes. Journal of Materials Science, 2005, letters.
    [218] Elangovan E, Ramamurthi K. A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films. Applied Surface Science, 2005, 249: 183-196.
    [219]崔玉虹,冯玉杰,刘峻峰. Sb掺杂钛基SnO2电极的制备、表征及其电催化性能研究.功能材料, 2005, 36(2):234-237.
    [220]杨雅雯.钛基氧化物涂层电极在污水处理方面的研究[硕士学位论文].北京:中国地质大学, 2006.
    [221]施汉昌,陈金銮.化学强化的生物流化复合反应器.发明专利号:ZL200510012190.X.
    [222]袁元,杨海真.表面活性剂及酸处理对污泥脱水性能影响的研究.四川环境, 2003, 22(5):1-8.
    [223] Ek C, Mavros P, Matis K A. Innovations in Flotation Technology. Proceedings of the NATO Science Series, Greece, 12-25, May 1991, Kluwer academic Publishers, The Netherlands, 1991(Chapter 2.1).
    [224] Meyer W C, Klimpel R R. Rate limitations in froth flotation. Trans. Soc Min. Engrs. AIME, 1982, 274:1852-1858.
    [225] De Bruyn P L, Modi H J. Particle size and flotation rate of quartz. Transactions of AIME, 1956, 205:415-419.
    [226] Tomlinson H S, Fleming M G. Flotation Rate Studies. Proceedings of the 6th International Mineral Processing Congress, Cannes, 1965:563-579.
    [227] Lazarova V, Pierzo V, Fontville D, et al. Integrated approach for biofilm characterization and biomass control. Wat. Sci. Technol., 1994, (7):345-354.
    [228]俞汉青,顾国维.生物膜反应器挂膜方法的试验研究.中国给水排水, 1992, 8(3): 13-17.
    [229]温沁雪,施汉昌,周延俊,等. ITFB强化除氨及醌指纹生物群落结构分析.环境科学, 2006, 27(7):1434-1438.
    [230]温沁雪,施汉昌,陈志强,等.强化启动对内循环生物流化床硝化效果的影响.中国环境科学, 2006, 26(3):298-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700