二氧化钛光电催化降解有机污染物和催化还原二氧化碳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中存在有机污染物威胁着人类赖以生存的生态环境,很多持久性有机污染物能够致癌、致畸、致突变,对人类生存繁衍和可持续发展构成严重威胁。太阳能是一种清洁可再生能源,开发太阳能降解有机污染物对保护人类赖以生存的环境具有重要意义。
     本论文设计制备了类似染料敏化太阳能电池(DSSC)结构的光催化反应器,包括玻璃基体、纳米二氧化钛薄膜、染料敏化剂、电解液和对电极,与DSSC的不同之处在于:①TiO_2薄膜的载体用普通玻璃代替了DSSC中的导电玻璃;②TiO_2薄膜设置2个功能区,即敏化区和催化反应区。敏化区制备DSSC的夹层结构,催化反应区用于电子参与的化学反应。
     将光催化反应器和阳电极组成的光催化反应体系应用于可见光催化降解4-氯苯酚研究中,取得了良好的实验结果。在5小时的可见光照射(大于420nm)下,4-氯苯酚(4-CP)的去除率为87%;当外加电压为0.5V,经2小时的可见光照射, 4-氯苯酚的去除率就达到99%,表明在外加电压的作用下,对污染物的去除率显著增加。pH值的影响表明,酸性条件有利于活性氢氧自由基的形成,因而有利于提高降解效率。此外,还研究了无机盐、玻璃基体以及染料敏化面积等因素对降解效率的影响。利用香豆素与氢氧自由基易生成强荧光的7-羟基香豆素的特点,通过荧光光谱证实了光催化反应体系生成的氢氧自由基,讨论了4-CP的降解途径,提出了可能的降解机理。重复循环使用5次,表明所制备的双功能二氧化钛薄膜相当稳定。制备的光催化反应器具有特出优点,可以实现电子与正电荷的有效分离,使电子和正电荷分别在不同的溶液中均能产生氢氧自由基,都具有降解有机物的作用,显著提高了降解效率。
     将光催化反应器应用于光催化还原二氧化碳中,在pH=2,0.5 V外加电压下,光照3h后获得了0.315mmol/cm~2的甲醇0.585mmol/cm~2甲酸和0.621mmol/cm~2甲醛。通过DSSC夹层中电解质完成电子与正电荷分离,电子在催化还原区将CO_2还原,而具有氧化性阳电极置于另一个容器里,避免了CO_2还原产物(如甲醇)被阳电极产生的·OH所氧化而消耗,提高了二氧化碳还原产物的浓度。此外对还原二氧化碳的机理也进行了研究。
Organic pollutants in water threaten the ecological environment for human survival, manypersistent organic pollutants can cause cancer, teratogenic, mutagenic, posing a serious threatto human beings to survive and multiply, and sustainable development. Solar energy is a cleanrenewable energy, development of solar degradation of organic pollutants is of greatsignificance to the protection of human survival environment.
     This device is designed including the glass substrate, nano-titanium dioxide film, dyesensitivity agent , electrolyte and the electrodes, the difference to the DSSC is:①Thecarrier of the TiO_2 film of is ordinary glass instead of conductive glass in DSSC;②The TiO_2film contains two functional areas, the sensitized area and catalytic reaction zone. Sensitizedarea in preparation of DSSC is sandwiched structure, the catalytic reaction zone is forelectronic participation in chemical reactions.
     Photocatalytic reactor and the positive electrode composed of the photocatalytic reactionsystem is used for photocatalytic degradation of 4 - chlorophenol study in the visible light ,obtaining a good experimental results. After 5 hours of visible light irradiation (> 420nm), 4 -chlorophenol (4-CP) removal efficiency reached 87% ,when a voltage of 0.5V applied,theremoval rate of 4 - chlorophenol was 99% after two hours of visible light irradiation,indicating if the applied voltage,a significant increase of the removal efficiency of pollutantscould be possible. The pH of the acidic conditions is favor to the formation of reactivehydroxyl radicals, and thus help to improve the degradation efficiency. In addition, inorganicsalts, glass substrate, and dye-sensitized area, and other factors on the degradation efficiencywere investigated. Coumarin hydroxyl radicals on formation of strongly fluorescent 7 -hydroxycoumarin characteristics were confirmed by fluorescence spectroscopy that thehydroxyl radicals generated by the photocatalytic reaction system.Possible degradationmechanism discussing the 4-CP degradation pathway was proposed. Repeating thedegradation five times showed that the bifunctionalized titanium dioxide thin films preparedwere fairly stable. The preparation of the photocatalytic reactor with outstanding advantagescan be achieved with the electronic and the positive charge of the effective separation ofelectrons and positive charge producing hydroxyl radicals in solution, respectively, have theadvantage of degradating organic compounds, significantly increased the degradationefficiency.
     The photocatalytic reactor was used in the photocatalytic reduction of carbon dioxide withthe condition (pH = 2,0.5 V applied voltage, for 3h visable light illumination) ,which gained 0.315mmol/cm~2methanol 0.585mmol/cm~2formic acid and 0.621mmol/cm~2formaldehyde.Electronics and charge separation were achieved through the electrolyte in sandwiched DSSC,electrons participated in the catalytic reduction of CO_2, while the oxidizing anode is placed inanother container to avoid the oxidation and consumption of CO_2reduction products by thepositive electrode of.OH , increasing the concentration of carbon dioxide reduction products.In addition, the mechanism of reduction of carbon dioxide were also studied here.
引文
[1] R. E. Hester, R. M. Harrison, Carbon Capture Sequestration and Storage, RSC Publishing, 2010, 1~17.
    [2] S. Vasireddy, B. Morreale, A. Cugini. Clean liquid fuels from direct coal liquefaction,EnergyEnviron. Sci., 2011,4, 311.
    [3] HAN Hong- jun,MA Wen- cheng. Treatment ofmethanol wastewater with two- stage andtwo-phase anaerobicprocess[J].Journal of Harbin Institute of Technology,2010,179(1):65~69.
    [4] HoffmannM R,Martin S T, ChoiW, et al. Applications of Semiconductor Photocatalysis[ J ].Chem Rev, 1995,95: 69~96.
    [5] Harada Kenji , Hisa na ga Te rua ki, e t a l. A kinetic study on methanogenesis by attached biomass in afluidized bed,Water Res , 1990, 24 (11) :1415~1417
    [6] BarbeniM, P rama uro E, e t a l. Toxicity of analytically cleaned pentabromodiphenylether afterprolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposurein fresh water zebrafish,Chemosphere , 1985, 14: 195
    [7] Domene ch X, Pe re l J. Photocatalytic reduction of CO2using TiO2, powders in liquid COmedium,Chem Ind, 1989: 606
    [8] G. P. Dransfield, Radiat. Prot. Dosim.Reduction of carbon dioxide on jet spray formed titanium dioxidesurfaces, 2000, 91, 271~273.
    [9] C. Han, M. Pelaez, V. Likodimos. Highly Regio- and Stereoselective Three-ComponentNickel-Catalyzed syn-Hydrocarboxylation of Alkynes with Diethyl Zinc and Carbon Dioxide ,Appl.Catal., B, 2011, 107, 77~87.
    [10] M. Pelaez, P. Falaras, V. Likodimos.Effect of solvents on photocatalytic reduction ofcarbon dioxide using semiconductor photocatalysts , Appl. Catal., B, 2010, 99,378~387.
    [11] H. Haugen, J. Will, A. Ko¨hler. Aigner and E. Evaluation of bias potential enhancedphotocatalytic degradation of4-chlorophenol with TiO2 nanotube fabricated by anodic oxidationmethodCeram.Soc., 2004, 24, 661~668.
    [12] B. O’Regan and M. Gra¨tzel. Reduction of carbon dioxide on ruthenium oxide and modifiedruthenium oxide electrodes in 0.5 M NaHCO3.Nature, 1991, 353, 737~740.
    [13] B. Shin, J. Won, T. Son, Y. S.Electrochemical reduction of carbon dioxide to ethylene at a copperelectrode in methanol using potassium hydroxide and rubidiu hydroxide supporting electrolytes.Chem.Commun., 2011, 47, 1734~1736.10(4):349~360
    [14] J. C. S. Wu, H. Lin and C. L. Lai,Photocatalytic reduction of carbon dioxide in the presence of nitrateusing TiO2nanocrystal photocatalyst embedded in SiO2 matrices.Appl. Catal. A: Gen., 2005, 296,194.
    [15] Z. Y. Wang, H. C. Chou, J. C. S. Wu.Effect of solvents on photocatalytic reductionof carbon dioxide using semiconductor photocatalysts.Appl. Catal., A, 2010, 380, 172
    [16] Z. Zou, J. Ye, H. Arakawa, Chem. Phys.Photocatalytic reduction of high pressure carbon dioxide usingTiO2powders with a positive hole scavenger Lett., 2000, 332, 271.
    [17]Yang C.L., Ge W.K. Photocatalytic activity of wax TiO2under visible lightirradiation[J].Photochem.Photobiol. A:Chem., 2001, 141:209~217
    [18] G. H. Qin, Z. Sun, Q. P. Wu.Enhanced photoelectrocatalytic degradation ofphenols with bifunctionalizeddye-sensitized TiO2 film Hazard. Mater., 2011, 192, 599.
    [19] S. Matsuoka, K. Yamamoto, T. Ogata.The effect of weak Bro¨nsted acids on the electrocatalyticreduction of carbon dioxide by a rhenium tricarbonyl bipyridyl complex. Chem. Soc., 1993, 115, 601.
    [20] K .Koci, L. Matejova, L. Obalova. Photocatalytic reduction of carbon dioxide to methanol byCu2O/SiC nanocrystallite under visible light irradiation Catal. B: Environ. 2010, 96, 239.
    [21] K. R. Thampi, J. Kiwi. Reduction of carbon dioxide into carbon by the activewustite and themechanism of the reaction .Nature 1987, 327, 506.
    [22] O. Ozcan, F. Yukruk, E. U. Akkaya.Reduction of carbon dioxide into carbon by the activewustite and the mechanism of the reaction. Catal., 2007, 44, 523.
    [23] Z. H. Zhao, J. M. Fan, M. M. Xie.Photochemical carbon dioxide reduction withmetal complexes. Clean. Prod. 2009, 17, 1025.
    [24] ItoP.Chen,P.Comte,Fabrieationofsereen一PrintingPastesfromTiO2powdersfordye一sensitisedsolareells[J].prog.photovolt:Res.Appl.,2007 15(7):603~612.
    [25] NAZERRUDDIN M K, PECHY P,RENOUARDT, et al.Engineering of efficientPanchromatic sensitisers for nanocrystalline TiO2based solar cells.J.Am.Chem.Soc, 2001,123:1613~1624.
    [26] GR TZEL M.Dye-sensitized solar cells. Journal of Photochemistry and PhotobiologyC :Photochemistry Reviews, 2003, 4:145~153.
    [27] J.W. Kim, C.L. Lee, W.Y. Choi, Platinized WO3as an environmental photocatalystThat generates OH radicals under visible light, Environ. Sci. Technol. 44 (2010)6849~6854.
    [28] O’Regan B,Grdtzel M.A Low-Cost,High-Efficiency Solar Cell Based on Day-SensitizedColloidal TiO2films.Nature,1991, 353:737~740.
    [29] HagfeldtA, Grdtzel M.Copper and cerium co-doped titanium dioxide on catalytic photoreduction of carbon dioxide with water: Experimental and theoretical studiesMolecular Photovolatics.Acc.Chem.Res,2000, 33(5):269-277.
    [30] Nazeeruddin M dK,PB chyP, Gr tzel M.Eficient Panchromatic Sensitization ofNanocrystalline TiO2Films by Black Dye Based on a TrithiocyanTCO-RutheniumComplex.Chem.Commun, 1997, 18:1705~1706.
    [31] Bach U, Lupo D, Comte P et al. Solid-State Dye-Sensitized Mesoporous TiO2Solar Cellswith High Photon-to-Electron Conversion Efficiencies.Nature, 1998, 395(6702):583~585.
    [32] Bauer C, Boschloo G, Mukhtar E et al.Interfacial Electron-Transfer Dynamics in Ru (tcterpy)(NCS) 3-Sensitized TiO2Nanocrystalline Solar Cell.J.Phys.Chem. B, 2002, 10 6:12693~1270
    [33] M. D. Doherty, D. C. Grills, J. T. Muckerman. Photochemical carbon dioxide reduction withmetal complexes.Chem. Rev., 2010, 254, 2472.
    [34] Bae, E.; Choi, W.Photo-catalytic reduction of carbon dioxide to methaneusing TiO2as suspension in water. Chem. Phys. B, 2004, 108, 14093.
    [35] Li, Y.Z.; Zhang, H.; Hu. Electrochemical reduction of carbon dioxide to ethylenewith high Faradaic efficiency at a Cu electrode in CsOH:methanol. Chem. Phys. C, 2008, 112, 14973.
    [36] Zhao, J.; Wu, T.; Oikawa, K.Carbon dioxide as carbon source: Activation via electrogenerated O2 inionic liquids. Environ. Sci. Technol, 1999, 32, 2394
    [37] S. Ito, T. N. Murakami, P. Sonochemical reduction of carbon dioxideThin Solid Films, 2008, 516, 4613.
    [38] R.M. Sellers, Spectrophotometric determination of hydrogen peroxide usingpotassium titanium (IV) oxalate, Analyst 150 (1980) 950~954.
    [39] S. Kim, H. Park, W. Choi. Comparative study of homogeneous and heterogeneousphotocatalytic redox reactions, J. Phys. Chem. B 108 (2004) 6402~6411.
    [40] A. Mylonas, A. Hiskia, E. Papaconstantinou, Contribution to water purification usingpolyoxometalates. Aromatic derivatives, chloroacetic acids, J. Mol. Catal.A: Chem.(1996) 191~200.
    [41] C. Comninellis, Electrocatalysis in the electrochemical conversion/combustion of organicpollutants for waste water treatment, Electrochim. Acta 39 (1994) 1857~1862.
    [42] S. Dutta, S.A. Parsons, C. Bhattacharjee.Kinetic study of adsorption and photo-decolorization ofReactive Red 198 on TiO2surface, Chem. Eng. J. 55 (2009) 674~679. 414
    [43] Y.B. Wang, C.S. Hong, TiO2-mediated photomineralization of 2-chlorobiphenyl:the role of O2, Water Res. 34 (2000) 2791~2797.
    [44] K .Koci, L. Matejova.Synthesis of vicinal diamines via Zn–H2O–CO2-induced reduction ofaromatic imines in supercritical carbon dioxide. Appl. Catal. B: Environ. 2010, 96, 239.
    [45] C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for thewastewater treatment: direct and indirect processes, Chem. Soc. Rev.35 (2006) 1324~1340.
    [46] Y.B. Xie. Photoelectrochemical application of nanotubular titania photoanode,Electrochim. Acta 51 (2006) 3399~3406.
    [47] L.A. Pérez-estrada, S. Malato, W. Gernjak. Fernández-alba, Photo-Fenton degradation of diclofenac:identification of main intermediates and degradation pathway, Environ. Sci. Technol. 39 (2005)8300~8306.
    [48] A. Hagfeldt, G. Boschloo. Pettersson, Dye-sensitized solar cells,Chem. Rev. 110 (2010) 6595~6663.
    [49] X. Zhao, T.G. Xu, W.Q. Yao, C. Zhang, Y.F. Zhu, Photoelectrocatalytic degradation of4-chlorophenol at Bi2WO6nanoflake film electrode under visible light irradiation, Appl.Catal. B: Environ. 72 (2007) 92~97.
    [50] B.G. Kwon, D.S. Lee, N. Kang, Characteristics of p-chlorophenol oxidation byFenton’s reagent, Water Res. 33 (9) (1999) 2110~2118.
    [51] N. Kang, D.S. Lee, J. Yoon, Kinetic modeling of Fenton oxidation of phenol andmonochlorophenols, Chemosphere 47 (9) (2002) 915~924.
    [52] P. Lukes, B.R. Locke, Degradation of substituted phenols in a hybrid gas–liquidelectrical discharge reactor, Ind. Eng. Chem. Res. 44 (9) (2005) 2921~2930.
    [53] C. Scheck, F.H. Frimmel, Degradation of phenol and salicylic acid by ultravioletradiation/hydrogen peroxide/oxygen, Water Res. 29 (1995) 2346~2352.
    [54] G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constantsfor reactions of hydrated electrons, hydrogen atoms and hydroxyl 416 radicals ( OH/ O ) inaqueous solution, J. Phys. Chem. Ref. Data (1988) 417 513~886. 418
    [55] C. Minero, G. Mariella, E. Pelizzetti, Photocatalytic transformation of organic compounds in thepresence of inorganic ions. 2. Com- 420 petitive reactions of phenol and alcohols on a titaniumdioxide-fluoride system, 421 Langmuir 16 (2000) 8964~8972.
    [56] H. C. Loh, K. W. Chong, M. Ahmad. Effect of solvents on photocatalytic reduction of carbon dioxideusing semiconductor photocatalysts. Analytical Letters, 2007, 40, 281.
    [57] S.S. Tan, L. Zou, E. Hu. Copper and cerium co-doped titanium dioxide on catalytic photo reduction ofcarbon dioxide with water: Experimental and theoretical studies.Catal. Today, 2006, 115, 269.
    [58] M. Anpo, H. Yamashita, Y. Ichihashi.Copper and cerium co-doped titanium dioxide on catalytic photoreduction of carbon dioxide with water: Experimental and theoretical studies.J. Electroanal. Chem,1995, 396, 21..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700