氧化应激损伤在赭曲霉毒素A诱导细胞周期阻滞中的作用及其可能机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮食及环境中真菌毒素的污染是人类面临的重要公共卫生问题,它与人类疾病的发生关系密切。2006年,在对我国胃癌高发区之一的河北省赞皇县(胃癌年均死亡率为77.67/10万)居民食用小麦检测时发现赭曲霉毒素A(Ochratoxin A,OTA)的检出率高达45.16%,当地居民OTA的日暴露量为1.17μg/kg,远远超过世界卫生组织/粮农组织联合专家委员会(Joint FAO/WHO Expert Committee on FoodAdditives,JECFA)暂定的每周允许摄入量100ng/kg。说明当地居民进食OTA污染粮食可能与胃癌的发生发展有密切关系。
     OTA是由曲霉菌属和青霉菌属的某些菌株产生的一种污染广泛的真菌毒素,普遍存在于粮食、饮料、饲料和动物组织中。OTA化学性质稳定,在血液中的半衰期是35天。流行病学调查数据显示OTA可能与巴尔干地方性肾病、慢性间质性肾病和泌尿系上皮肿瘤有关。体内、外实验研究发现,OTA具有肾毒性、肝毒性、神经毒性、免疫毒性和致畸性。因此,国际癌症研究中心(InternationalAgency for Research on Cancer,IARC)将OTA列为“B级可能人类致癌物”。
     研究发现许多致癌性真菌毒素早期毒性作用是导致细胞增殖抑制、细胞周期阻滞和凋亡。在针对OTA致胃癌可能机制的研究中,我们的前期体外实验发现OTA可以抑制人胃黏膜上皮细胞GES-1细胞增殖,通过MAPK(p38,ERK)信号通路和ATM(ATM-Chk2,ATM-p53-p21WAF1/CIP1)信号通路介导G2期阻滞,并且诱导细胞凋亡。实验揭示OTA诱导胃组织的靶细胞-胃黏膜上皮细胞细胞周期G2期阻滞可能在胃癌的发生发展过程中起重要作用。但是引起这一系列细胞级联反应的原因及其上游事件并不清楚。探讨OTA这一生物学效应可能对进一步认识其参与胃癌发生的可能机制具有重要意义。
     OTA的潜在致癌性在二十世纪七十年代被认可,但是其致癌机制至今并不十分清楚。JECFA等专家组织在一些高度可能的机制中,越来越聚焦于氧化应激机制。研究发现,很多致癌性真菌毒素都可以诱导细胞DNA氧化应激损伤,进而导致细胞周期阻滞或凋亡。已有文献报道OTA可以诱导人肝细胞和肾脏细胞DNA氧化应激损伤。活性氧(reactiveoxygen species,ROS)对生物大分子(特别是DNA)的氧化损伤被认为是启动和促进肿瘤发生的最重要因素。细胞周期检测点的激活和修复系统的启动是DNA损伤引发的细胞级联反应,这使得细胞在复制前或有丝分裂前有足够的时间修复受损DNA,修复成功的细胞脱离周期阻滞进入细胞周期;修复失败的细胞会发生凋亡,这对于维持基因组的稳定性有重要意义。线粒体是细胞进行电子传递、三羧酸循环和氧化磷酸化产生能量的细胞器。同时也是氧化应激损伤的靶细胞器,是产生ROS的主要部位,线粒体功能受损时ROS显著增加。所以,OTA诱导氧化应激损伤可能在OTA诱发胃黏膜上皮细胞细胞周期阻滞的毒理学效应中起重要作用。
     为验证这一假设,本研究在前期实验的基础上选取人胃黏膜上皮细胞株GES-1,从氧化应激角度入手,首先观察OTA对GES-1细胞内ROS含量的影响,评价OTA诱导GES-1细胞DNA损伤的性质及特征,基于抗氧化策略的DNA损伤靶向干预揭示OTA诱导的氧化应激与DNA损伤和G2期阻滞的关系;接着研究OTA对GES-1细胞线粒体损伤的影响,探讨OTA诱导GES-1细胞ROS产生的分子机制。
     肿瘤的发生发展是多因素综合作用的结果,在肿瘤的发展、转移过程中免疫功能抑制发挥重要作用,免疫功能降低可能导致肿瘤发生几率增加。致癌性霉菌毒素诱发机体的免疫毒性作用与肿瘤的发生具有密切关系。为了进一步验证OTA诱发氧化应激损伤介导机体免疫细胞周期阻滞参与其免疫毒性作用,本研究选取人外周血单个核细胞(human peripheralblood mononuclear cells,hPBMC)作为研究对象,检测OTA对hPBMC细胞的氧化应激损伤作用和对细胞周期的影响及其可能分子机制。
     本研究拟从OTA作用靶细胞和机体免疫细胞两个方面揭示OTA诱导氧化应激损伤介导细胞周期阻滞的毒理学特性及其可能的分子机制,丰富和加深了人们对OTA生物效应的认识,为OTA暴露的合理处置提供分子位点,这将有助于全面评价OTA在胃癌发生、发展中的可能作用。
     第一部分赭曲霉毒素A诱导GES-1细胞氧化应激损伤介导G2期阻滞
     目的:探讨赭曲霉毒素A诱导人胃黏膜上皮细胞GES-1氧化应激损伤作用,及ATM和MAPK信号通路在氧化应激损伤介导GES-1细胞G2期阻滞中的调控作用。
     方法:1采用荧光探针DCFH-DA和DHE检测5、10、20μM OTA处理GES-1细胞24h后,细胞内ROS含量。2采用超氧化物歧化酶(SOD)测试盒检测OTA对GES-1细胞SOD活性的影响。3采用高效液相-电化学检测技术、免疫荧光技术和Western blot方法分析OTA处理后GES-1细胞DNA的损伤情况。4在以上研究的基础上给予抗氧化剂N-乙酰半胱氨酸(NAC)4mM预处理1h,观察OTA处理对GES-1细胞ROS、SOD水平的影响及对DNA的损伤作用。5采用流式细胞术检测NAC预处理对OTA作用后细胞周期的影响。6采用Western blot方法检测NAC预处理对OTA作用后细胞周期关键调控分子Cdc25C、Cdc2和cyclinB1,信号通路ERK、p38MAPK、ATM蛋白表达及其磷酸化的变化情况。7采用免疫共沉淀技术检测NAC预处理对Cdc2-cyclinB1复合物形成的影响。
     结果:
     1.1OTA对GES-1细胞ROS水平的影响
     流式细胞术检测结果显示,5、10、20μM OTA处理组DCF、DHE平均荧光强度均明显高于对照组(P<0.05);抗氧化剂NAC预处理1h,DCF、DHE平均荧光强度明显减低(P<0.05)。结果提示,OTA诱导GES-1细胞ROS生成增多,NAC缓解了OTA的促ROS升高作用。
     1.2OTA对GES-1细胞SOD活性的影响
     SOD活性检测结果表明,GES-1细胞经OTA(5、10、20μM)处理24h,SOD活性分别为285.77±39.81、402.79±18.20、737.80±44.73U/mgprotein,显著高于对照组157.51±12.49U/mg protein(P<0.05);4mM NAC预处理+10μM OTA处理组SOD活性较单独10μM OTA处理组明显降低(202.35±10.51vs394.74±16.12U/mg protein,P<0.05)。
     1.3OTA对GES-1细胞DNA损伤的影响
     8-OHdG为氧化应激损伤标志物。高效液相-电化学检测结果显示,不同浓度OTA作用GES-1细胞24h,8-OHdG含量明显较对照组升高(P<0.05)。γ-H2AX为DNA双链断裂标志物,免疫荧光结果观察到OTA处理组GES-1细胞形成了典型的γ-H2AX焦点。Western blot结果显示,各个OTA处理组γ-H2AX蛋白表达上调(P<0.05)。为了进一步明确ROS升高导致GES-1细胞DNA损伤,Western blot方法检测了NAC预处理后γ-H2AX蛋白的变化情况。结果显示,NAC+OTA处理组γ-H2AX蛋白表达水平明显低于OTA处理组(P<0.05)。综合以上实验结果表明,OTA诱导GES-1细胞DNA发生氧化损伤。
     1.4NAC预处理对OTA作用后ATM表达的影响
     为了进一步探讨ROS诱导GES-1细胞DNA损伤参与了OTA激活ATM激酶,我们给予抗氧化剂NAC清除ROS。Western blot检测结果显示,NAC预处理组ATM磷酸化水平明显低于单独OTA处理组(P<0.05),ATM蛋白表达水平则明显高于OTA处理组(P<0.05),说明抗氧化剂拮抗了OTA对GES-1细胞ATM激酶的激活作用。
     1.5NAC预处理对OTA作用后ERK和p38MAPK信号通路的影响
     为了进一步明确ROS参与了OTA处理对ERK和p38信号通路的激活作用,给予抗氧化剂NAC预处理,应用Western blot方法检测了ERK、p38蛋白及其磷酸化水平的变化。结果显示,NAC预处理+OTA处理组ERK磷酸化水平和p38磷酸化水平显著低于OTA处理组(P<0.05),提示NAC拮抗了OTA对GES-1细胞ERK和p38MAPK信号通路的激活作用。
     1.6NAC预处理对OTA作用后GES-1细胞周期的影响
     为了进一步证明OTA诱导氧化应激损伤通过ATM和MAPK途径介导GES-1细胞发生G2期阻滞,在前面NAC拮抗了OTA对GES-1细胞ATM和MAPK(ERK和p38)通路激活的基础上,本研究在给予抗氧化剂NAC预处理后,观察了OTA对GES-1细胞周期及周期调控蛋白的影响。流式细胞术细胞周期检测结果显示,NAC预处理组G2/M期的细胞比例较10μM OTA处理组显著减少(P<0.05)。结果提示NAC预处理可以部分逆转OTA诱导的GES-1细胞G2期阻滞。
     Western blot结果显示,NAC预处理后,GES-1细胞Cdc25C、Cdc2和cyclinB1的蛋白表达水平及p-Cdc25C和p-Cdc2水平均较10μM OTA单独处理组明显升高(P<0.05)。结果表明NAC缓解了OTA对的G2期关键调节因子(Cdc25C、Cdc2和cyclinB1)的抑制作用。
     实验结果揭示OTA诱导氧化应激损伤可能通过ATM和MAPK途径介导GES-1细胞发生G2期阻滞。
     第二部分赭曲霉毒素A对GES-1细胞线粒体的损伤作用
     目的:线粒体是产生ROS的重要细胞器,其损伤启动细胞的氧化应激损伤,本部分探讨OTA对GES-1细胞线粒体DNA、功能的影响。
     方法:1采用超氧化物歧化酶(SOD)分型测试盒检测5、10、20μMOTA处理24h,GES-1细胞MnSOD活力变化情况。2高效液相-电化学检测线粒体DNA(mtDNA)中8-OHdG含量的变化。3Real-time PCR检测mtDNA编码的呼吸链上的13个亚基(ND1,ND2,ND3,ND4,ND4L,ND5,ND6,COXⅠ,COXⅡ,COXⅢ,Cytb,ATP6,ATP8)mRNA水平变化情况。4采用线粒体呼吸链复合体I活性比色法定量检测试剂盒检测呼吸链复合体I活性。5采用Oxygraph-2k液相氧电极测定透膜细胞中线粒体氧耗速率。6罗丹明123染色,流式细胞术检测线粒体膜电位的变化。7Annexin V-FITC染色,流式细胞术检测GES-1细胞凋亡情况。8Western blot检测MnSOD、碱基切除修复基因OGG1和凋亡因子Bax、Bcl-2、Bcl-xL、cytochrome c、caspase-9的表达情况。9给予GES-1细胞抗氧化剂4mM NAC预处理1h,检测OTA对GES-1细胞凋亡的影响。
     结果:
     2.1OTA对GES-1细胞MnSOD的影响
     MnSOD是线粒体中清除ROS的主要抗氧化酶。Western blot结果显示,各个OTA处理组MnSOD蛋白条带逐渐增强,明显高于对照组(P<0.05)。MnSOD酶活性检测结果发现,5、10、20μM OTA处理组MnSOD活性分别为115.26±9.83,162.63±13.18和285.04±3.10U/mgprotein,显著高于对照组64.73±4.42U/mg protein(P<0.05)。
     2.2OTA对GES-1细胞mtDNA8-OHdG水平的影响
     应用高效液相-电化学检测技术检测8-OHdG,用以分析OTA对mtDNA的氧化损伤。结果显示OTA处理组8-OHdG水平明显较对照组升高(P<0.05)。提示OTA诱导GES-1细胞mtDNA发生氧化损伤。
     2.3OTA对GES-1细胞线粒体中OGG1蛋白水平表达的影响
     Western blot结果显示,OTA5、10、20μM处理组线粒体中OGG1蛋白条带较对照组显著减弱(P<0.05)。结果提示,OTA抑制线粒体碱基切除修复途径。
     2.4OTA对线粒体基因表达的影响
     Real-time PCR检测了线粒体DNA编码的氧化呼吸链复合体的13个亚基mRNA水平的变化。5、10μM OTA处理组各亚基mRNA水平无明显变化(0.5<Fold change<1.5);20μM OTA处理组复合体I亚基ND1、ND2、ND3、ND4L、ND5和ND6mRNA表达水平较对照组明显升高(Foldchange>1.5),ND4mRNA变化不明显;复合体III亚基cytb和复合体IV亚基COXI、COXII、COXIII mRNA无明显变化(0.5<Fold change<1.5);复合体V亚基ATP6mRNA水平明显升高(Fold change>1.5),ATP8mRNA水平无明显变化(0.5<Fold change<1.5)。
     2.5OTA对线粒体呼吸链复合体I活性的影响
     Real-time PCR检测发现OTA主要诱导呼吸链复合体I亚基mRNA表达升高,为了进一步明确OTA对复合体I的影响,对其活性进行了检测。结果发现各OTA处理组(5、10、20μM)复合体I活性均明显低于对照组(P<0.05),提示OTA抑制了线粒体呼吸链复合体I活性。
     2.6OTA对线粒体呼吸的影响
     检测结果发现,5、10、20μM OTA处理组线粒体ST3呼吸速率均较对照组显著降低(P<0.05);ST4呼吸速率无明显变化;10和20μM OTA处理组呼吸控制比(RCR)与对照组相比明显降低(P<0.05),提示OTA抑制了GES-1细胞线粒体呼吸功能。
     2.7OTA对GES-1细胞凋亡的影响
     因为线粒体损伤后会启动线粒体途径介导细胞凋亡,本实验进一步验证OTA致线粒体损伤诱导细胞氧化应激损伤导致细胞通过线粒体途径凋亡。
     2.7.1OTA对线粒体膜电位(ΔΨm)的影响
     线粒体膜电位降低是线粒体功能障碍的特点,是细胞凋亡的早期事件之一。流式细胞术检测结果显示,与对照组相比,OTA处理明显减低了罗丹明123的平均荧光强度(P<0.05)。为了探讨ROS是否参与了ΔΨm的变化,抗氧化剂NAC预处理细胞1h再给予10μM OTA孵育24h,罗丹明123平均荧光强度较单独10μM OTA处理组明显升高(P<0.05)。提示OTA诱导ROS生成增加介导了GES-1细胞线粒体膜电位降低。
     2.7.2NAC对OTA诱导GES-1细胞凋亡的影响
     为了进一步明确OTA通过氧化应激诱导GES-1细胞凋亡,实验采用抗氧化剂NAC预处理来减少ROS。Annexin V-PI双染法检测结果显示,10μM OTA处理组细胞凋亡率为12.67±2.12%,明显高于对照组3.03±0.77%;4mM NAC+10μM OTA处理组细胞凋亡率为5.56±1.80%,较10μM OTA处理组显著降低(P<0.05)。
     2.7.3OTA对凋亡相关蛋白的影响
     为了研究线粒体途径是否参与了OTA诱导的GES-1细胞凋亡,我们首先检测了促凋亡基因Bax和抑凋亡基因Bcl-2、Bcl-xL的蛋白水平变化。Western blot检测结果显示,OTA处理增加了Bax蛋白水平;相反,降低了Bcl-2和Bcl-xL的蛋白表达量(P<0.05)。NAC预处理1h, NAC+OTA处理组Bax蛋白表达较相应的OTA处理组明显降低,而Bcl-2和Bcl-xL的蛋白表达明显升高(P<0.05)。
     Cytochrome c从线粒体释放到细胞胞浆是线粒体凋亡途径级联反应的一个关键步骤,激活下游的caspase。Western blot分别检测了线粒体部分和胞浆部分cytochrome c的蛋白变化情况。OTA暴露24h,线粒体中cytochrome c蛋白表达量明显减少;同时,胞浆中cytochrome c表达量明显增加(P<0.05)。NAC抗氧化剂预处理后,和相应的单独OTA处理组相比,NAC+OTA处理组线粒体部分cytochrome c蛋白表达量明显升高,胞浆部分明显减少(P<0.05)。
     释放到胞浆的cytochrome c激活caspase-9。各种浓度OTA处理GES-1细胞后,非活性procaspase-9蛋白表达降低,而活性形式表达增强(P<0.05)。NAC明显逆转了OTA对caspase-9的激活作用(P<0.05)。
     综合以上实验结果,提示OTA通过氧化应激激活线粒体途径介导GES-1细胞凋亡。
     第三部分赭曲霉毒素A诱导人外周血单个核细胞DNA氧化损伤及其介导G1期阻滞
     目的:探讨OTA对人外周血单个核细胞(hPBMC)的氧化应激损伤作用及其毒理学效应。
     方法:1采用荧光探针DCFH-DA和DHE,应用流式细胞术检测OTA(5,10,20μM)处理24h对hPBMC细胞ROS含量的影响。2采用谷胱甘肽(GSH)检测试剂盒检测hPBMC细胞内GSH水平的变化。3采用高效液相-电化学方法、碱性彗星实验及Western blot技术检测hPBMC细胞DNA的损伤情况。3采用流式细胞术检测OTA对hPBMC细胞周期的影响。4采用Western blot方法检测OTA作用后细胞周期关键调控分子CDK4和cyclinD1在蛋白水平的表达变化。5应用流式细胞术、Hoechst33258荧光染色分析OTA对hPBMC细胞凋亡的影响。6给予抗氧化剂NAC预处理后重复上述实验,探讨氧化应激参与了OTA的生物效应。
     结果:
     3.1OTA对hPBMC细胞ROS的影响
     流式细胞术结果显示,5、10、20μM OTA处理24h后,DCF和DHE的平均荧光强度均明显增加(P<0.05)。给予4mM NAC预处理1h,20μMOTA+4mM NAC处理组DCF的平均荧光强度显著低于20μM OTA单独处理组;DHE的平均荧光强度较OTA单独处理组也显著降低(P<0.05)。提示OTA处理可以诱导ROS生成增加,此作用可以被抗氧化剂NAC缓解。
     3.2OTA对hPBMC细胞内GSH含量的影响
     给予不同浓度OTA处理24h后,hPBMC细胞内GSH含量明显较对照组降低(P<0.05)。NAC预处理组GSH水平较OTA处理组明显升高(P<0.05)。因为NAC是巯基化合物,既可以直接清除自由基,又能参与还原型谷胱甘肽的合成,本实验提示NAC可以保护hPBMC细胞,防止OTA导致GSH含量降低,进一步证明OTA对hPBMC的氧化应激作用。
     3.3OTA对hPBMC细胞DNA损伤的影响
     高效液相-电化学检测结果显示,各种浓度OTA处理组中8-OHdG的水平明显高于对照组(P<0.05)。
     荧光显微镜下观察碱性彗星实验结果发现,OTA处理组细胞电泳后出现了“彗星”现象,彗星拖尾明显;20μM OTA+4mM NAC处理组细胞彗星尾部小于OTA处理组。统计分析发现,与对照组相比,各处理组hPBMC细胞彗星的Tail DNA%、Tail Length及Olive Tail Moment值均明显高于溶剂对照组(P<0.05)。抗氧化剂NAC预处理1h,上述指标均显著降低(P<0.05)。
     Western blot结果显示,5、10、20μM OTA处理组γ-H2AX蛋白表达明显增加(P<0.05)。NAC预处理明显下调γ-H2AX表达(P<0.05)。
     上述结果表明OTA诱导hPBMC细胞DNA发生氧化损伤。
     3.4OTA对hPBMC细胞周期的影响
     流式细胞术检测结果发现,10、20μM OTA处理组G1期细胞比例分别为52.27±3.00%、52.67±1.45%,显著高于对照组31.03±7.88%(P<0.05)。NAC预处理后,NAC+OTA处理组G1期细胞比例较OTA处理组显著降低(37.07±2.48%vs48.30±2.07%,P<0.05)。
     Western blot结果显示,OTA处理可以降低hPBMC细胞cyclinD1和CDK4蛋白表达(P<0.05)。4mM NAC预处理+20μM OTA处理组cyclinD1和CDK4蛋白表达均较单独20μM OTA处理组明显提高(P<0.05)。
     综合实验结果表明OTA诱导hPBMC细胞发生G1期阻滞,抑制cyclinD1和CDK4蛋白表达;NAC可以逆转OTA对cyclinD1和CDK4蛋白表达的抑制作用,从而缓解G1期阻滞。
     3.5OTA对hPBMC细胞凋亡的影响
     流式细胞术细胞周期检测结果显示,hPBMC细胞经5、10、20μM OTA处理24h后,OTA各处理组细胞凋亡率分别为5.99±1.54%、7.07±1.30%和11.84±1.51%,均高于溶剂对照组3.77±0.38%(P<0.05)。NAC预处理,部分缓解了OTA的促凋亡作用(7.12±0.94%vs17.81±1.23%,P<0.05)。
     荧光显微镜下观察Hoechst33258荧光染色法凋亡细胞形态学改变,20μM OTA作用24h后,hPBMC细胞胞核出现核固缩、碎裂,产生凋亡小体,NAC预处理组没有观察到明显的细胞核改变。
     结果提示,OTA诱导细胞氧化应激损伤介导对hPBMC的促凋亡作用。
     结论:
     1OTA可以诱导GES-1细胞发生氧化应激损伤。
     2OTA诱导细胞氧化应激损伤通过ATM和MAPK通路参与其诱导GES-1细胞G2期阻滞的发生。
     3OTA诱导GES-1细胞线粒体DNA损伤,抑制碱基切除修复功能,呼吸功能降低;这可能是GES-1细胞ROS水平升高、发生氧化应激损伤的重要原因。
     4OTA激活线粒体途径诱导GES-1细胞发生凋亡。
     5OTA可以诱导hPBMC细胞ROS生成增多,发生DNA氧化损伤,进而介导hPBMC细胞G1期阻滞和凋亡。这可能参与了OTA的免疫抑制生物效应。
     6OTA通过诱发氧化应激损伤作用介导胃组织靶细胞和机体免疫细胞细胞周期阻滞和凋亡,这一毒理学效应可能与OTA参与胃癌的发生、发展具有密切关系。
Mycotoxins are the secondary metabolites produced by different fungithat contaminate a large variety of grains and feedstuffs in the world, whichcan cause several health problems. Zanhuang County is one of the highincidence areas of gastric cancer in north China with an annual gastric cancermortality being77.67/100,000/year. Our previous study showed thatmycotoxin Ochratoxin A (OTA) in wheat samples reached to2.41μg/kg inthis area, which was significantly higher than that of provisional tolerableweekly intake allocated by the Joint FAO/WHO Expert Committee on FoodAdditives (JECFA).
     OTA is a mycotoxin considered of concern for human health. It is producedby a number of Aspergillus and Penicillium fungal species known to colonizea range of food commodities including cereals, wine, spices, dried fruits, grapejuice, as well as animal products. When ingested as a food contaminant, OTAis a persistent toxin with a blood half-life of35days following a single oraldose. Epidemiological studies have indicated that OTA might contribute to theetiology of some sporadic diseases such as the Balkan endemic nephropathy,chronic interstitial nephropathy, and urothelial tumors. Under experimentalconditions, OTA had a diverse range of toxicological effects, includingnephrotoxicity, teratogenicity, immunotoxicity, neurotoxicity andhepatotoxicity. Therefore, OTA was classified as a possible human carcinogen(group2B) by the International Agency for Research on Cancer.
     It has been generally accepted that the induced cell cycle arrest andapoptosis is the important bioeffects of many carcinogenic mycotoxins. Ourprevious study showed that OTA could induce G2phase arrest and apoptosisin immortalized human gastric epithelial cells (GES-1). We also found that theactivation of ERK, p38pathways and ATM pathway were involved in OTA-induced G2arrest. However, the detailed molecular mechanism of howOTA trigerring cell cycle arrest through ATM and MAPK signaling is stillunknown.
     It looks mostly accepted that oxidative damage is a critical event in theinitiation and development of carcinoma. Mutations and/or acquired defectsbrought about by DNA damage are thought to underlie the development andprogression of cancer. Oxidative stress is elicited by reactive oxygen species(ROS) generation. Oxidative stress can trigger cell damage by oxidizingbiomolecules including that of lipids, proteins and DNA, and modify theirbiological functions that ultimately cause cell cycle arrest and cell apoptosis.Mitochondria are the major source and at the same time are targets of ROS;this ‘vicious cycle’ leads to an accumulation of damages to several moleculesincluding the mitochondrial DNA (mtDNA). Several studies have shown thatoxidative DNA damage plays an important role in the toxins-induced cellcycle arrest. Amongst the mechanisms of OTA carcinogenic, oxidative stresshas been highlighted as one of the most probable by JECFA. A number ofstudies have demonstrated that OTA could result in oxidative stress associatedwith the production of ROS in different cells through various direct andindirect mechanisms. Thus, OTA-induced oxidative DNA damage mightcontributes to OTA-induced cells cycle arrest, which associated with thedevelopment of gastric cancer.
     Thus based on our previous study, the current study first evaluated theeffects of OTA on ROS production and DNA damage in GES-1cells,as wellas the role of oxidative stress in OTA-induced G2phase arrest through ATMand MAPK pathways in GES-1cells. Furthermore, the effects of OTAexposure on mitochondria damage in GES-1cells were investigated.
     The microenvironment, especially the immune system is playing animportant role in the development and metachoresis of carcinoma. Resentstudys indicated that mycotoxins could lead to immunosuppressive effects,which may be associated with an increased susceptibility to tumors.
     Finally, we explored the putative toxicological effects and related mechanism of OTA on human peripheral blood mononuclear cells (hPBMC).Our study may provide new data to elucidate its possible epigeneticmechanism of OTA hazard bioeffects and carcinogenicity. Our findings in thisreport provide new insights in the possible carcinogenic mechanism of OTAexposure in human gastric cancer.
     PartⅠOchratoxin A induced Oxidative stress involved in G2arrest inGES-1cells in vitro
     Objective: Based on our previous study, the current study systematicallyevaluated the role of ROS production, DNA damage, as well as oxidativestress-mediated ERK, p38and ATM activation on OTA-induced G2phasearrest in GES-1cells.
     Methods: GES-1cells were treated with5,10and20μM OTA orpre-treated with4mM NAC plus10μM OTA for24h.1ROS were detectedby staining the cells with DHE or DCFH-DA.2Total SOD activity wasdetermined by a SOD detection kits.38-OHdG was assayed by HPLC-ECD.We detected the generation of γ-H2AX foci by immunofluorescence stainingand assessed the expression of γ-H2AX using Western blot.4The percentageof cells in each phase of the cell cycle was determined using flow cytometry.5Effects of OTA on expression of Cdc25C, Cdc2, cyclin B1, ERK, p38andATM were analyzed by Western blot.6The effect of OTA on theCdc2-cyclinB1complex was detected by immunoprecipitation.
     Results:
     1.1Effect of OTA exposure on intracellular ROS level
     The results demonstrated that both of DCF and DHE mean fluorescenceintensity (MFI) were notably increased after OTA exposure for24h (P<0.05).Pretreatment of GES-1cells with NAC, a well-established antioxidant, greatlyinhibited OTA-induced increase in MFI of DCF and DHE (P<0.05). Inconclusion, OTA caused increases in intracellular steady-state levels of ROS(i.e., superoxide and hydroperoxides) in GES-1cells.
     1.2Effect of OTA exposure on SOD activity
     SOD activity was significantly increased in the OTA-exposed groups (P< 0.05). OTA-induced the increase of SOD was prevented by NAC pretreatment.
     1.3Effects of OTA exposure on oxidative DNA damage
     To further determine OTA induced oxidative DNA damage in GES-1cells,we determined the levels of8-OHdG, as a sensitive marker of oxidative DNAdamage, in OTA treated cells. The results showed the levels of8-OHdG inOTA treatment groups were significantly higher than that of control group(P<0.05), which suggested that OTA could induce oxidative DNA damage inGES-1cells.
     Among different types of DNA damage, double-DNA breaks are arguablyone of the most deleterious lesions. γ-H2AX is a reliable and exquisitelysensitive marker for this lesion. We observed that OTA could induce theaccumulation of γ-H2AX foci in nucleus after20μM OTA treatment byimmunofluorescence staining. In addition, Western blot results showed thatOTA could significantly increase the expression of γ-H2AX in GES-1cells(P<0.05). It was in consistent with the result of immunofluorescence staining,further confirmed that OTA exposure causes double-DNA breaks in GES-1cells.
     To further confirm that OTA-induced oxidative stress trigerred the DNAdamage, NAC was applied prior to treatment with10μM OTA in GES-1cells.The result showed that pre-treatment with NAC resulted in a significantreduction in the expression of γ-H2AX (P<0.05).
     Taken together, these results confirmed that OTA could induce oxidativeDNA damage in GES-1cells.
     1.4Antioxidants NAC blocked OTA-induced activation of ATM
     Here, to dissect the role of oxidative stress in OTA-induced activation ofATM, GES-1cells were pre-incubated with NAC. Western blot result showedthat NAC resulted in a significant reduction in OTA-induced the up-regulationof ATM phosphorylation (P<0.05).
     1.5Antioxidants NAC blocked OTA-induced phosphorylation of ERKand p38MAPK
     Our previous study demonstrated that ERK and p38MAPK signaling pathways were involved in the regulation of OTA-induced G2arrest in GES-1cells. To investigate whether oxidative stress in response to OTA regulatedERK and p38MAPK activation, GES-1cells were pre-treated with NAC. Wefound that NAC markedly reduced OTA-induced ERK and p38MAPKphosphorylation (P<0.05). The results showed that OTA-induced oxidativedamage activated ERK and p38MAPK pathway in GES-1cells.
     1.6Antioxidants NAC abolishes OTA-induced G2arrest in GES-1cells
     For evaluate whether ROS-induced DNA damage may contribute toOTA-induced G2arrest through MAPK and ATM pathway, we pre-treatedGES-1cells with NAC to examine the role of OTA on G2arrest in GES-1cells.The result showed that pre-treatment with NAC was associated with areduction of cells arresting at the G2/M cell cycle phase (P<0.05). In addition,Western bolt results showed that OTA caused a significant down-regulation ofG2/M phase related proteins (Cdc25C/p-Cdc25C, Cdc2/p-Cdc2and cyclinB1)and the cyclinB1-Cdc2complex in GES-1cells, which were abolished byNAC (P<0.05).
     Taken together, the results indicated that OTA-induced oxidative damageregulated G2arrest in GES-1cells through ERK and p38MAPK and ATMsignaling pathway.
     PartⅡThe effects of OTA exposure on mitochondria damage in GES-1cells
     Objective: To explore the effect of OTA on mitochondria DNA andmitochondrial function in GES-1cells.
     Methods:1MnSOD activity was determined by a SOD detection kits.28-OHdG was assayed by HPLC-ECD.3Mitochondrial genes encodedproteins mRNA expression was determined by Real-time quantitative PCR.4The activity of respiratory chain complex Ⅰ were assayed using adetection kits.5Mitochondrial respiratory function was measuredpolarographically at25℃using a Clark-type oxygen electrode.6The level ofmitochondrial membrane potential was determined using amitochondria-sensitive dye Rhodamine123by flow cytometry.7To quantify the OTA-induced apoptotic death of GES-1cells, Annexin V and PI stainingwas performed by flow cytometry.8The espression of MnSOD, OGG1, Bax,Bcl-2, Bcl-xL, cytochrome c and caspase-9were measured by Western blotanalysis.
     Results:
     2.1Effect of OTA on MnSOD in GES-1cells
     MnSOD represents the first line of cell defence againstmitochondria-derived ROS. We measured directly the activity of the enzymein OTA-exposured cells and found OTA (5,10and20μM) induced significantincreases in MnSOD activity (115.26±9.83,162.63±13.18,285.04±3.10U/mgprotein vs64.73±4.42U/mg protein, P<0.05). Western blot analysis alsorevealed that OTA treatment for24h caused a significant increase in MnSODexpression in GES-1cells (P<0.05). Thus, the elevated of MnSOD activity inOTA groups might point to an adaptive reaction to oxidative stress.
     2.2Effect of OTA on8-OHdG in mtDNA
     Concerning oxidative damage to mtDNA, namely8-OHdG, significantincreases were observed in OTA groups compared with control group(P<0.05).
     2.3Effect of OTA on the expression of mitochondrial OGG1protein
     8-oxoguanine glycosylase1(OGG1), a key base excision repair enzyme,plays a key role in the removal of8-OHdG adducts. Western blot analysis,compared to control group, showed that OTA led to strong depression of theamount of mitochondrial OGG1protein in OTA-treated groups (P<0.05). Thisdata suggested that OTA inhibited the mitochondrial base excision repair.
     2.4Effect of OTA on mitochondrial gene expression
     Real-time PCR studies detected mRNA transcription corresponding to13mitochondria genes encoded protein in complex Ⅰ, Ⅲ, Ⅳ, and Ⅴ ofmitochondrial respiratory chain. We observed significant increases intranscription level of ND1, ND2, ND3, ND4L, ND5, ND6and ATP6in20μMOTA group (Fold change>1.5).
     2.5Effects of OTA on the activity of mitochondrial respiratory chain complex I.
     The enzymatic activity related to complex I was performed onmitochondrial fraction prepared from GES-1cells. Our findings documented asignificant decrease in the specific activity of complex I following5,10and20μM OTA treatment for24h (P<0.05).
     2.6Effect of OTA on mitochondrial respiratory function
     OTA induced a significant decrease in state3respiration rate in5,10and20μM OTA groups compared with control group (P<0.05). Meanwhile,mitochondrial RCR values were significantly decline in10and20μM OTAgroups (P<0.05), suggesting OTA impairs mitochondrial respiratory function.
     2.7Effect of OTA on apoptosis of GES-1cells
     Oxidative stress, mitochondrial damage and disrupted mitochondrialrespiration have been found to promote cell death, functional failure, anddegeneration. Thus, we investigated whether mitochondrial damage isinvolved in apoptosis caused by OTA in GES-1cells.
     2.7.1Effect of OTA on mitochondrial membrane potential (ΔΨm)
     Mitochondrial dysfunction characterized by a loss of transmembranepotential is one of the earliest intracellular events leading to cell damage. Inthis study we evaluated mitochondrial ΔΨm as an indicator of mitochondrialhealth in cells treated with OTA at different concentrations for24h. OTAexposure significantly decreased Rhodamine123MFI compared to the control(P<0.05). In order to ascertain whether ROS were involved in the alteration ofΔΨm, the effects of OTA on ΔΨm were evaluated in presence or absence ofNAC. The result showed that NAC treatment counteracted the effect of OTA.
     2.7.2NAC protected OTA induced apoptosis of GES-1cells
     To investigate the possible role of ROS in OTA-induced apoptosis, theeffects of specific modifiers of ROS on apoptosis were determined. Theapoptotic rate in NAC pretreatment with OTA group was5.56±1.80%significantly lower than that in only OTA treatment group12.67±2.12%(P<0.05).
     2.7.3Effects of OTA on the regulatory factors of mitochondrial pathway, with NAC pretreatment
     To investigate the mitochondrial apoptotic events involved in OTA-inducedapoptosis, we first analyzed the changes in the levels of pro-apoptotic proteinsBax and anti-apoptotic proteins Bcl-2and Bcl-xL. Immunoblot analysisshowed that treatment of GES-1cells with OTA increased Bax protein levels.In contrast, OTA decreased Bcl-2and Bcl-xLlevels.
     To elucidate whether the release of cytochrome c from mitochondria wasinvolved in OTA-induced apoptosis, mitochondria and cytosolic fractionswere prepared from GES-1cells. We found the release of cytochrome c intocytosol was detected relative to gradual decrease in mitochondrial cytochromec.
     Caspase-9is activated in response to cytochrome c. Proteolytic cleavage ofprocaspase-9observed in OTA-treated cells.
     Bax increase, Bcl-2and Bcl-xLreduction in response to OTA were blockedby NAC pretreatment. It was also found that NAC has abrogated the OTAinduced cytochrome c release and caspase-9activation.
     All the results indicated that OTA induced the execution of apoptosisthrough activation of the mitochondrial pathway and ROS were probablyinvolved in OTA-induced apoptosis in GES-1cells.
     PartⅢ Ochratoxin A induces oxidative DNA damage and G1phase arrestin human peripheral blood mononuclear cells in vitro
     Objective: To explore the putative toxicological effects and relatedmechanism of OTA on hPBMC.
     Methods:1The level of intracellular ROS (e.g. superoxide andhydroperoxides) was estimated by oxidations of DCFH-DA and DHE. Themean fluorescence intensity (MFI) was detected by a FACS flow cytometer.2The intracellular content of glutathione (GSH) was assessed using a reducedGSH assay kit.3To investigate the possibility of types of DNA damage, weperformed a comprehensive analysis of OTA-induced DNA damage.8-OHdGwas assayed by HPLC-ECD. Alkaline Comet Assay was performed todetermine whether OTA induce DNA damage. After that, the property of the stand breaks was further analyzed by the detection of γ-H2AX protein byWestern blot.4Flow cytometry was used to analyze cell cycle and Westernbolt measured the expression of cyclinD1and CDK4protein.5The cells werestained with PI and analyzed by flow cytometry. Apoptosis was quantified asthe percentage of cells containing hypodiploid amounts of DNA (SubG1peak).In addition, cells were analyzed for apoptotic nuclei fluorescence staining withHoechst33258.6hPBMC were pre-treated with4mM NAC for1h, awell-established antioxidant, followed by20μM OTA for24h. Intracellularlevels of ROS and GSH, DNA damage, cell cycle and apoptosis inOTA-induced cells were assessed as previously described.
     Results:
     3.1OTA induced increased steady state levels of superoxide andhydroperoxides in hPBMC
     The state levels of intracellular superoxide and hydroperoxides weremeasured in hPBMC after treated with different concentrations of OTA for24h using FCM assay. The mean fluorescence intensity of DCF was significantlyincreased with5,10and20μM OTA treatment (P<0.05). We also found thatOTA increased the MFI of DHE in hPBMC (P<0.05).
     To further confirm that OTA induces the increased ROS generation inhPBMC, NAC was applied as a blocker for the increased ROS. The data fromthe flow cytometry analysis showed the increased mean fluorescenceintensities of DCF and DHE in20μM OTA-treated hPBMC were significantlyattenuated by NAC pre-treatment (P<0.05). All these results showed thatincreased oxidation of DHE and DCFH suggesting increases in steady statelevels of superoxide and hydroperoxides in hPBMC by OTA.
     3.2OTA decreased intracellular GSH in hPBMC
     We further measured the intracellular content of glutathione (GSH) inhPBMC after OTA exposure for24h. The results showed that a significantdecrease of intracellular reduced GSH content in OTA-treated in hPBMCcould be found (P<0.05). We also found that NAC effectively blocked thedecrease in GSH induced by OTA (P<0.05).
     3.3OTA induced DNA damage in hPBMC
     We further evaluated whether the accumulated ROS in hPBMC by OTAtreatment could induce DNA damage.8-OHdG has been established as animportant biomarker of oxidative DNA damage. HPLC-ECD results indicatedthat the level of8-OHdG was significantly higher in OTA treatment groupsthan that in control group (P<0.05).
     The comet assay was performed under alkaline conditions for the detectionof a broad spectrum of DNA lesions. Treatment with OTA caused a significantincrease in%Tail DNA, Tail length and Olive tail moment (P<0.05). Next, wedetected γ-H2AX protein expression, a maker of DNA double-strand breaks.Treatment of hPBMC with5,10and20μM OTA resulted in the up-regulationof γ-H2AX protein in a dose-effect manner (r=0.998, P<0.05). Pre-treatmentwith antioxidant reagent NAC resulted in a significant reduction in DNAdamage as well as γ-H2AX protein expression in20μM OTA-treated group(P<0.05). All these results confirmed that OTA-induced ROS contributed tooxidative DNA damage in hPBMC.
     3.4OTA induced cell cycle arrested at G1phase in hPBMC
     As we know that DNA damage is often accompanied by arrest in cell cycle,so we detected cell cycle arrest in hPBMC using flow cytometry analysis. Incomparison with the control group, the proportion of cells in G1phase wasaccumulated markedly after treated with10and20μM OTA for24h (P<0.05).To estimate the molecular mechanism accounting for cell cycle arrest in G1phase, G1-associated regulatory proteins (CDK4and cyclinD1) were furtherexamined. Western blot analysis demonstrated that cyclinD1and CDK4protein expression were both markedly decreased in hPBMC treated withdifferent concentrations of OTA (P<0.05).
     To determine whether ROS-induced DNA damage may contribute toOTA-induced G1arrest, hPBMC were pre-treated with the antioxidant NAC.We observed NAC inhibited OTA-induced G1arrest, which demonstrated thatOTA induced G1phase arrest is in part mediated through ROS-accumulationoxidative DNA damage (P<0.05).
     3.5OTA induced apoptosis in hPBMC
     In order to quantify the extent of apoptosis, the content of DNA in cells wasmeasured by flow cytometry. We found hPBMC exposed to5,10and20μMOTA for24h showed significant increase in cells in SubG1phase (P<0.05). Aremarkable feature of apoptosis is the condensation and fragmentation ofnuclear chromatin, which can be observed under fluorescence microscopeafter staining with Hoechst33258. Within24h of treatment with20μM OTA,hPBMC exhibited significant morphological changes and chromosomalcondensation, which was indicative of apoptotic cell. Furthermore,pre-treatment with NAC partly protected OTA-induced apoptosis in hPBMC(P<0.05).
     Conclusions:
     1OTA induced oxidative stress damage in GES-1cells.
     2OTA-induced oxidative damage regulated G2arrest in GES-1cellsthrough ERK and p38MAPK and ATM signaling pathway.
     3OTA induced oxidative mtDNA damage, inhibited the mitochondrial baseexcision repair and impaired mitochondrial function, which acted as thetrigger in OTA induced oxidative stress in GES-1cells.
     4Mitochondrial damage is involved in apoptosis caused by OTA in GES-1cells.
     5OTA-induced oxidative DNA damage caused G1phase arrest andapoptosis in hPBMC, which indicate that oxidative stress is involved inOTA-induced human immunotoxicity.
     6OTA-induced oxidative damage mediated cell cycle arrest and apoptosis ingastric epithelium cells and hPBMC, which might contribute to a possiblecarcinogenic mechanism of OTA exposure in human gastric cancer.
引文
1Clark HA, Snedeker SM. Ochratoxin A: its cancer risk and potential forexposure. J Toxicol Environ Health B Crit Rev,2006,9:265-296
    2EFSA. Opinion of the scientific panel on contaminants in the food chain[CONTAM] related to ochratoxin A (OTA) as undesirable substance inanimal feed. EFSA J,2004,101:1-36
    3Zurich MG, Honegger P. Ochratoxin A at nanomolar concentrationperturbs the homeostasis of neural stem cells in highly differentiated butnot in immature three-dimensional brain cell cultures. Toxicol Lett,2011,205:203-208
    4Gagliano N, Donne ID, Torri C, et al. Early cytotoxic effects of ochratoxinA in rat liver: a morphological, biochemical and molecular study.Toxicology,2006,225:214-224
    5Sava V, Velasquez A, Song S, et al. Adult hippocampal neural stem/progenitor cells in vitro are vulnerable to the mycotoxin ochratoxin-A.Toxicol Sci,2007,98:187-197
    6Pfohl-Leszkowicz A, Manderville RA. Ochratoxin A: An overview ontoxicity and carcinogenicity in animals and humans. Mol Nutr Food Res,2007,51:61-99
    7Zhang X, Boesch-Saadatmandi C, Lou Y, et al. Ochratoxin A inducesapoptosis in neuronal cells. Genes Nutr,2009,4:41-48
    8Wangikar PB, Dwivedi P, Sinha N, et al. Teratogenic effects in rabbits ofsimultaneous exposure to ochratoxin A and aflatoxin B1with specialreference to microscopic effects. Toxicology,2005,215:37-47
    9IARC, Ochratoxin A. IARC Monographs on the Evaluation ofCarcinogenic Risks to Humans, Vol.56,1993, IARC Press, Lyon, France.489-521
    10张祥宏,赵文元,严霞,等.河北省赞皇县胃癌高、低发区居民血清胃蛋白酶原、胃泌素和幽门螺杆菌抗体检测.中华消化杂志,1999,19(3):188-190
    11李增宁,杨慧霞,张祥宏,等.河北省食管癌、胃癌高发区居民食用小麦赭曲霉素A污染情况分析.卫生研究,2006,6(35):754-755
    12Cui J, Xing L, Li Z, et al. Ochratoxin A induces G(2) phase arrest inhuman gastric epithelium GES-1cells in vitro. Toxicol Lett,2010,193:152-158.
    13Wang Y, Liu J Cui J, et al. ERK and p38MAPK signaling pathways areinvolved in ochratoxin A-induced G2phase arrest in human gastricepithelium cells. Toxicol Lett,2012,209:186-192
    14Rakkestad KE, Skaar I, Ansteinsson VE, et al. DNA damage and DNAdamage responses in THP-1monocytes after exposure to spores of eitherStachybotrys chartarum or Aspergillus versicolor or to T-2toxin. ToxicolSci,2010,115:140-155
    15Guerra MC, Galvano F, Bonsi L, et al. Cyanidin-3-O-beta-glucopyranoside,a natural free-radical scavenger against aflatoxin B1-and ochratoxinA-induced cell damage in a human hepatoma cell line (Hep G2) and ahuman colonic adenocarcinoma cell line (CaCo-2). Br J Nutr,2005,94:211-20
    16Ting CM, Lee YM, Wong CK, et al.2-Methoxyestradiol inducesendoreduplication through the induction of mitochondrial oxidative stressand the activation of MAPK signaling pathways. Biochem Pharmacol,2010,79:825-841
    17Jacobson MD. Reactive oxygen species and programmed cell death.Trends Biochem Sci,1996,21:83-86
    18Cavin C, Delatour T, Marin-Kuan M, et al. Ochratoxin A-mediated DNAand protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci,2009,110:84-94
    19Arbillaga L, Azqueta A, Ezpeleta O, et al. Oxidative DNA damage inducedby Ochratoxin A in the HK-2human kidney cell line: evidence of therelationship with cytotoxicity. Mutagenesis,2007,22:35-42
    20Shen CL, Song W, Pence BC. Interactions of selenium compounds withother antioxidants in DNA damage and apoptosis in human normalkeratinocytes. Cancer Epidemiol. Biomarkers Prev,2001,10:385-390
    21Lyle PA, Mitsopoulos P, Suntres ZE. N-Acetylcysteine Modulates theCytotoxic Effects of Paclitaxel. Chemotherapy,2011,57:289-304
    22Ku YP, Jin M, Kim KH, et al. Immunolocalization of8-OHdG and OGG1in pancreatic islets of streptozotocin-induced diabetic rats. ActaHistochemica,2009,111:138-144
    23Bosco EE, Mayhew CN, Hennigan RF, et al. RB signaling preventsreplication-dependent DNA double-strand breaks following genotoxicinsult. Nucleic Acids Res,2004,32:25-34
    24Nuciforo PG, Luise C, Capra M, et al. Complex engagement of DNAdamage response pathways in human cancer and in lung tumor progression.Carcinogenesis,2007,28:2082-2088
    25JECFA,“Ochratoxin A,” WHO Technical Report Series947. IPCS, WHO,Geneva, Switzerland,2007, pp.169-180
    26JECFA,“Ochratoxin A (addendum),” WHO Food Additive Series59:Safety Evaluations of certain food additives and contaminants. IPCS,WHO, Geneva, Switzerland,2008
    27Shull S, Heintz NH, Periasamy M, et al. Differential regulation ofantioxidant enzymes in response to oxidants. J Biol Chem,1991,266:24398-24403
    28Hong MN, Han NK, Lee HC, et al. Extremely low frequency magneticfields do not elicit oxidative stress in MCF10A cells. J Radiat Res (Tokyo),2012,53:79-86
    29Sava V, Velasquez A, Song S, et al. Adult hippocampal neuralstem/progenitor cells in vitro are vulnerable to the mycotoxinochratoxin-A. Toxicol Sci,2007,98:187-197
    30Krokan HE, Standal R, Slupphaug G. DNA glycosylases in the baseexcision repair of DNA. Biochem J,1997,325:1-16
    31Priestley CC, Green RM, Fellows MD, et al. Anomalous genotoxicresponses induced in mouse lymphoma L5178Y cells by potassiumbromate[J]. Toxicology,2010,267(1-3):45-53
    32Bork U, Lee WK, Kuchler A, et al. Cadmium-induced DNA damagetriggers G(2)/M arrest via chk1/2and cdc2in p53-deficient kidneyproximal tubule cells[J]. Am J Physiol Renal Physiol,2010,298(2):F255-265
    33Demple B, DeMott MS. Dynamics and diversions in base excision DNArepair of oxidized abasic lesions. Oncogene,2002,21:8926-8934
    34Bonner WM, Redon CE, Dickey JS, et al. GammaH2AX and cancer. NatRev Cancer.2008,8(12):957-967
    35Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM andATM-dependent signaling pathways. DNA Repair (Amst),2004,3:889-900
    36He L, Nan MH, Oh HC, et al. Asperlin induces G/M arrest through ROSgeneration and ATM pathway in human cervical carcinoma cells. BiochemBiophys Res Commun.2011,409(3):489-493
    37Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species asintracellular messengers during cell growth and differentiation. CellPhysiol Biochem,2001,11:173-186
    38Wang Y, Liu J, Cui J, et al. ERK and p38MAPK signaling pathways areinvolved in ochratoxin A-induced G2phase arrest in human gastricepithelium cells. Toxicol Lett,2012,209:186-192
    39Zhang X, De Silva D, Sun B, et al. Cellular and molecular mechanisms ofbromate-induced cytotoxicity in human and rat kidney cells. Toxicology,2010,269:13-23
    40Wood CD, Thornton TM, Sabio G, et al. Nuclear localization of p38MAPK in response to DNA damage. Int J Biol Sci,2009,5:428-437
    41Sahu RP, Zhang R, Batra S, et al. Benzyl isothiocyanate-mediatedgeneration of reactive oxygen species causes cell cycle arrest and induces
    apoptosis via activation of MAPK in human pancreatic cancer cells.
    Carcinogenesis,2009,30:1744-1753
    1Scheffler IE. A century of mitochondrial research: achievements andperspectives. Mitochondrion,2001,1(1):3-31
    2Kim J, Xu M, Xo R, et al. Mitochondrial DNA damage is involved inapoptosis caused by pro-inflammatory cytokines in human OAchondrocytes. Osteoarthritis Cartilage,2010,18(3):424-432
    3Hollensworth SB, Shen C, Sim JE, et al. Glial cell type-specific responsesto menadione-induced oxidative stress. Free Radic Biol Med,2000,28(8):1161-1174
    4de Souza-Pinto NC, Harris CC, Bohr VA. p53functions in theincorporation step in DNA base excision repair in mouse livermitochondria. Oncogene,2004,23(39):6559-6568
    5Scheffler IE. Mitochondria make a come back. Adv Drug Deliv Rev,2001,49(1-2):3-26
    6Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrialDNA, and some changes with aging in mammalian cells. Free Radic BiolMed,2002,32:804-812
    7Chen XJ, Butow RA. The organization and inheritance of themitochondrial genome. Nat Rev Genet,2005,6:815-825
    8Taha R, Seidman E, Mailhot G, et al. Oxidative stress and mitochondrialfunctions in the intestinal Caco-2/15cell line. PLoS One,2010,5(7):e11817
    9Jarrett SG, Liang LP, Hellier JL, et al. Mitochondrial DNA damage andimpaired base excision repair during epileptogenesis. Neurobiol Dis,200,30(1):130-138
    10Bohr VA, Stevnsner T, de Souza-Pinto NC. Mitochondrial DNA repair ofoxidative damage in mammalian cells. Gene,2002,286:127-134
    11Weissman L, de Souza-Pinto NC, Stevnsner T, et al. DNA repair,mitochondria, and neurodegeneration. Neuroscience,2007,145:1318-1329
    12Hegde ML, Hazra TK, Mitra S. Early steps in the DNA baseexcision/single-strand interruption repair pathway in mammalian cells.Cell Res,2008,18:27-47
    13Fukae J, Mizuno Y, Hattori N. Mitochondrial dysfunction in Parkinson’sdisease. Mitochondrion,2007,7:58-62
    14de Souza-Pinto NC, Eide L, Hogue BA, et al. Repair of8-oxodeoxyguanosine lesions in mitochondrial dna depends on theoxoguanine dna glycosylase (OGG1) gene and8-oxoguanine accumulatesin the mitochondrial dna of OGG1-defective mice. Cancer Res,2001,61(14):5378-5381
    15Murakami T, Nagai M, Miyazaki K, et al. Early decrease of mitochondrialDNA repair enzymes in spinal motor neurons of presymptomatictransgenic mice carrying a mutant SOD1gene. Brain Res,2007,1150:182-189
    16Oxford, G. Mitochondrial DNA from Lumbriculus variegatus: Isolationand restriction digest analysis, in: Karcher, S.J.(Ed.), Tested studies forlaboratory teaching, volume22. Proceedings of the22ndWorkshop/Conference of the Association for Biology LaboratoryEducation (ABLE),2000, pp.64-80
    17Comelli M, Domenis R, Bisetto E, et al. Cardiac differentiation promotesmitochondria development and ameliorates oxidative capacity in H9c2cardiomyoblasts. Mitochondrion,2011,11(2):315-326
    18Morabito R, Condello S, Currò M, et al. Oxidative stress induced by crudevenom from the jellyfish Pelagia noctiluca in neuronal-like differentiatedSH-SY5Y cells. Toxicol In Vitro,2012,[Epub ahead of print]
    19Lovell MA, Markesbery WR. Oxidative DNA damage in mild cognitiveimpairment and late-stage Alzheimer's disease. Nucleic Acids Res,2007,35(22):7497-7504
    20Chinta SJ, Andersen JK. Redox imbalance in Parkinson's disease. BiochimBiophys Acta,2008,1780(11):1362-1367
    21Nakabeppu Y, Tsuchimoto D, Yamaguchi H, et al. Oxidative damage innucleic acids and Parkinson's disease. J Neurosci Res,2007,85(5):919-934
    22Matés JM, Segura JA, Alonso FJ, et al. Intracellular redox status andoxidative stress: implications for cell proliferation, apoptosis, andcarcinogenesis. Arch Toxicol,2008,82(5):273-299
    23Toyokuni S. Molecular mechanisms of oxidative stress-inducedcarcinogenesis: from epidemiology to oxygenomics. IUBMB Life,2008,60(7):441-447
    24Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunctiononset in type2diabetes. Biochimie,2012,[Epub ahead of print]
    25Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects againstmyocardial ischemia/reperfusion injury in transgenic mice. J Mol CellCardiol,1998,30:2281-2289
    26Klivenyi P, St Clair D, Wermer M, et al. Manganese superoxide dismutaseoverexpression attenuates MPTP toxicity. Neurobiol Dis,1998,5:253-258
    27Yen HC, Oberley TD, Gairola CG., et al. Manganese superoxide dismutaseprotects mitochondrial complex I against adriamycin-inducedcardiomyopathy in transgenic mice. Arch. Biochem Biophys,1999,362:59-66
    28Epperly MW, Kagan VE, Sikora CA, et al. Manganese superoxidedismutase-plasmid/liposome (MnSOD-PL) administration protects micefrom esophagitis associated with fractionated radiation. Int J Cancer,2001,96:221-231
    29Carpenter M., Epperly MW, Agarwal A, et al. Inhalation delivery ofmanganese superoxide dismutase-plasmid/liposomes protects the murinelung from irradiation damage. Gene Ther,2005,12:685-693
    30Zhang X, Epperly MW, Kay MA, et al. Radioprotection in vitro and invivo by minicircle plasmid carrying the human manganesesuperoxide dismutase transgene. Hum Gene Ther,2008,19:820-826
    31Macmillan-Crow LA, Cruthirds DL. Invited review: manganesesuperoxide dismutase in disease. Free Radic Res,2001,34(4):325-336
    32Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrialand nuclear DNA is extensive. Proc Natl Acad Sci USA,1988,85:6465-6467
    33Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damageto DNA: mechanisms and measurements. Free Radic Biol Med,2002,32:1102-1115
    34Navarro A, Boveris A. The mitochondrial energy transduction system andthe aging process. Am J Physiol Cell Physiol.2007,292(2): C670-686
    35Lee HC, Yin PH, Chi CW, et al. Increase in mitochondrial mass in humanfibroblasts under oxidative stress and during replicative cell senescence. JBiomed Sci,2002,9(6Pt1):517-526
    36Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis.Essays Biochem,2010,47:69-84
    37Ayed-Boussema I, Bouaziz C, Rjiba K, et al. The mycotoxin Zearalenoneinduces apoptosis in human hepatocytes (HepG2) via p53-dependentmitochondrial signaling pathway. Toxicol In Vitro,2008,22:1671-1680
    38Li J, Yin S, Dong Y, et al. p53activation inhibits ochratoxin A-inducedapoptosis in monkey and human kidney epithelial cells via suppression ofJNK activation. Biochem Biophys Res Commun,2011,411(2):458-463
    39Klari MS, Zelje i D, Rumora L, et al. A potential role of calcium inapoptosis and aberrant chromatin forms in porcine kidney PK15cellsinduced by individual and combined ochratoxin A and citrinin. ArchToxicol,2012,86(1):97-107
    40Chopra M, Link P, Michels C, et al. Characterization of ochratoxinA-induced apoptosis in primary rat hepatocytes. Cell Biol Toxicol,2010,26(3):239-254
    41Zhang X, Boesch-Saadatmandi C, Lou Y, et al. Ochratoxin A inducesapoptosis in neuronal cells. Genes Nutr,2009,4(1):41-48
    42Schwerdt G, Freudinger R, Schuster C, et al. Inhibition of mitochondriaprevents cell death in kidney epithelial cells by intra-and extracellularacidification. Kidney Int,2003,63(5):1725-1735
    43Assaf H, Azouri H, Pallardy M. Ochratoxin A induces apoptosis in humanlymphocytes through down regulation of Bcl-xL. Toxicol Sci,2004,79(2):335-344
    44Zhang M, Wang Y, Wang Q, et al. Involvement of mitochondria-mediatedapoptosis in ethylbenzene-induced renal toxicity in rat. Toxicol Sci,2010,115(1):295-303
    45Hossain S, Liu HN, Nguyen M, et al. Cadmium exposure inducesmitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology,
    2009,30(4):544-554
    1Whiteside TL: The role of immune cells in the tumor microenvironment.Cancer Treat Res,2006,130:103-124
    2Nishimura Y, Kumagai N, Maeda M, et al. Suppressive effect of asbestoson cytotoxicity of human NK cells. Int J Immunopathol Pharmacol,2011,24(1Suppl):5S-10S
    3Jeon JH, Kim SK, Im J, et al. Trp-P-1, a carcinogenic heterocyclic amine,inhibits lipopolysaccharide-induced maturation and activation of humandendritic cells. Cancer Lett,2011,301(1):63-74
    4National Toxicology Program. Toxicology and carcinogenesis studies ofochratoxin A (CAS No.303-47-9) in F344/N rats (gavage studies). Natl.Toxicol. Program Tech Rep Ser,1989,358:1-142
    5Pfohl-Leszkowicz A, Tozlovanu M, Manderville R, et al. New molecularand field evidences for the implication of mycotoxins but not aristocholicacid in human nephropathy and urinary tract tumor. Mol Nutr Food Res,2007,51:1131-1146
    6Creppy EE, Stormer FC, Roschenthaler R, et al. Effects of two metabolitesof ochratoxin A,(4R)-4-hydroxyochratoxin A and ochratoxin alpha, onimmune response in mice. Infect. Immun,1983,39,1015-1018
    7Muller G, Kielstein P, Kohler H, et al. Studies of the influence ofochratoxin A on immune and defense reactions in the mouse model.Mycoses,1995,38:85-91
    8Boorman GA, Hong HL, Dieter MP, et al. Myelotoxicity and macrophagealteration in mice exposed to ochratoxin A. Toxicol Appl Pharmacol,1984,72:304-312
    9Luster MI, Germolec DR, Burleson GR, et al. Selectiveimmunosuppression in mice of natural killer cell activity by ochratoxin A.Cancer Res,1987,47:2259-2263
    10Prior MG, Sisodia CS. The effects of ochratoxin A on the immune responseof Swiss mice. Can J Comp Med,1982,46:91-96
    11Thuvander A, Breitholtz-Emanuelsson A, Olsen M. Effects of ochratoxinA on the mouse immune system after subchronic exposure. Food ChemToxicol,1995,33:1005-1011
    12Mally A, Hard GC, Dekant W. Ochratoxin A as a potential etiologic factorin endemic nephropathy: lessons from toxicity studies in rats. Food ChemToxicol,2007,45:2254-2260
    13Petzinger E, Ziegler K. Ochratoxin A from a toxicological perspective. JVet Pharmacol Ther,2000,23:91-98
    14Schlatter C, Studer-Rohr J, Rasonyi T. Carcinogenecity and kinetic aspectsof Ochratoxin A. Food Addit Contam,1996,13:43-44
    15Assaf H, Azouri H, Pallardy M. Ochratoxin A Induces Apoptosis inHuman Lymphocytes through Down Regulation of Bcl-xL. Toxicol Sci,2004,79:335-344
    16Pan J, Chang Q, Wang X, et al. Reactive Oxygen Species-ActivatedAkt/ASK1/p38Signaling Pathway in Nickel Compound-InducedApoptosis in BEAS2B Cells. Chem Res Toxicol,2010,23:568-577
    17Matsunaga T, Kotamraju S, Kalivendi SV, et al. Ceramide-inducedintracellular oxidant formation, iron signaling, and apoptosis in endothelialcells: protective role of endogenous nitric oxide. J Biol Chem,2004,279,28614-28624
    18Tampo Y, Kotamraju S, Chitambar CR, et al. Oxidative stress-induced ironsignaling is responsible for peroxide-dependent oxidation ofdichlorodihydrofluorescein in endothelial cells: role of transferrinreceptor-dependent iron uptake in apoptosis. Circ Res,2003,92:56-63
    19Shashi B, Jaswant S, Madhusudana RJ, et al. A novel lignan compositionfrom Cedrus deodara induces apoptosis and early nitric oxide generation inhuman leukemia Molt-4and HL-60cells. Nitric Oxide,2006,14:72-88
    20Lindahl T, Wood RD. Quality control by DNA repair. Science,1999,286:1897-1905
    21Speit G, Hartmann A. The comet assay: a sensitive genotoxicity test for thedetection of DNA damage. Methods Mol Biol,2005,291:85-95
    22Léonce S, Kraus-Berthier L, Golsteyn RM, et al. Generation ofreplication-dependent double-strand breaks by the novel N2-G-alkylatorS23906-1. Cancer Res,2006,66:7203-7210
    23Krokan HE, Standal R, Slupphaug G. DNA glycosylases in the baseexcision repair of DNA. Biochem J,1997,325:1-16
    24Gautier JC, Holzhaeuser D, Markovic J, et al. Oxidative damage and stressresponse from ochratoxin a exposure in rats. Free Radic Biol Med,2001,30:1089-1098
    25Ates I, Ulker OC, Akdemir C, et al. Correlation of Ochratoxin A Exposureto Urinary Levels of8-Hydroxydeoxyguanosine and Malondialdehyde in aTurkish Population. Bull Environ Contam Toxicol,2011,86:258-262
    26Schaaf GJ, Nijmeijer SM, Maas RF, et al. The role of oxidative stress inthe ochratoxin A-mediated toxicity in proximal tubular cells. BiochimBiophys Acta,2002,1588:149-158
    27Kasai H. Analysis of a form of oxidative DNA damage,8-hydroxy-2-deoxyguanosine, as a marker of cellular oxidative stressduring carcinogenesis. Mutation Research,1997,387:147-163
    28Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, et al. Molecularmechanisms of mammalian DNA repair and the DNA damage checkpoints.Annu Rev Biochem,2004,73:39-85
    29Clement A, Henrion-Caude A, Besnard V, et al. Role of cyclins inepithelial response to oxidants. Am J Respir Crit Care Med,2001,164:S81-84
    1International programme on chemical safety (IPCS),2001. SafetyEvaluation of Certain Mycotoxins in Food, WHO Food Additives Series47, World Health Organization, Geneva
    2Boorman GA, McDonald MR, Imoto S, et al. Renal lesions inducedby ochratoxin A exposure in the F344rat. Toxicol Pathol,1992,20(2):236-245
    3Castegnaro M, Mohr U, Pfohl-Leszkowicz A, et al.(1998) Sex-andstrain-specific induction of renal tumors by ochratoxin A in rats correlateswith DNA adduction. Int J Cancer,1998,77(1):70-75
    4Bendele AM, Carlton WW, Krogh P, et al. Ochratoxin A carcinogenesis inthe (C57BL/6J X C3H) F1mouse. J Natl Cancer Inst,75(4):733-742
    5Tatu CA, Drugarin D, Paunescu V, et al. Balkan endemic nephropathy, thehaematopoietic system and the environmental connection. Food andChemical Toxicology,1998,36(3):245-247
    6Pfohl-Leszkowicz A, Manderville RA. Ochratoxin A: an overview ontoxicity and carcinogenicity in animals and humans. Molecular Nutritionand Food Research,2007,51(1):61-99
    7International Agency for Research on Cancer. Some Naturally OccurringSubstances, Food Items and Constituents, Heterocyclic Aromatic Aminesand Mycotoxins. Geneva: International Agency for Research on Cancer.IARC Monographs on the Evaluation of Carcinogenic Risks to Humans,1993,56:26-32
    8JECFA. Evaluation of certain food additives and contaminants: ochratoxinA. WHO Technical Report Series,1995,859:1-54
    9Purchase IFH, Van der Watt JJ. The long term toxicity of ochratoxin A torats. Food Chem Toxicol,1971,9(5):681-682
    10Doster RC, Sinnhuber RO, Pawlowski NE. Acute toxicity andcarcinogenicity of ochratoxin A in rainbow trout (Salmo garidneri). FoodCosmet. Toxicol,1974,12(4):499-505
    11Dickens F, Waynforth HB. Studies on carcinogenesis of lactones andrelated substances. Report of the British Empire Cancer Campaign1968,46:108-110
    12Kanisawa M, Suzuki S. Induction of renal and hepatic tumors in mice byochratoxin A, a mycotoxin. Gann,1978,69(4):599-600
    13National Toxicology Program. Toxicology and Carcinogenesis Studies ofOchratoxin A (CAS No.303-47-9) in F344/N Rats (Gavage Studies). NatlToxicol Program Tech Rep Ser,1989,358:1-142
    14DFG, Deutche Forschungsgemeinschaft List of MAK and BAT Values,Commission for the investigation of Health Hazards of chemicalcompounds in the work area, report no.39, Wiley-VCH, Verlag Weinheim2003
    15Schwartz GG. Hypothesis: Does ochratoxin A cause testicular cancer?Cancer Causes Control,2002,13(1):91-100
    16Son WC, Kamino K, Lee YS, et al. Strain-specific mammary proliferativelesion development following lifetime oral administration of ochratoxin Ain DA and Lewis rats. Int J Cancer,2003,105(3):305-311
    17Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis.Annu Rev Pharmacol Toxicol,2004,44:239-267
    18Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals andantioxidants in oxidative stress-induced cancer. Chem Biol Interact,2006,160(1):1-40
    19Omar RF, Hasino BB, Mejilla F, et al. Mechanism of ochratoxin astimulated lipid peroxidation. Biochemical Pharmacology,1990,40(6):1183-1191
    20Dai J, Park G, Wright MW, et al. Detection and characterization of aglutathione conjugate of ochratoxin A. Chem Res Toxicol,2002,15(12):1581-1588
    21Faucet-Marquis V, Pont F, Stormer FC, et al. Evidence of a newdechlorinated ochratoxin A derivative formed in opossum kidney cellcultures after pretreatment by modulators of glutathione pathways:correlation with DNA-adduct formation. Mol Nutr Food Res,2006,50(6):530-542
    22Kensler TW, Wakabayashi N, Biswal S. Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway. Annu RevPharmacol Toxicol,2007,47:89-116
    23Schaaf GJ, Nijmeijer SM, Maas RF, et al. The role of oxidative stress inthe ochratoxin A-mediated toxicity in proximal tubular cells. BiochimBiophys Acta,2002,1588(2):149-158
    24Somy Yoon, Wei-Tao Cong, Yeojin Bang, et al. Proteome response toochratoxin A-induced apoptotic cell death in mouse hippocampal HT22cells. Mutagenesis,2007,22(1):35-42
    25Robbiano L, Baroni D, Carrozzino R, et al. DNA damage and micronucleiinduced in rat and human kidney cells by six chemicals carcinogenic to therat kidney. Toxicology,2004,204(2-3):187-195
    26Kamp HG, Eisenbrandt G, Schlatter J, et al. Ochratoxin A: induction of(oxidative) DNA damage, cytotoxicity and apoptosis in mammalian celllines and primary cells. Toxicology,2005,206(3):413-425
    27Mally A, Pepe G, Ravoori S, et al. Ochratoxin A causes DNA damage andcytogenetic effects but no DNA adducts in rats. Chem Res Toxicol,2005,18(8):1253-1261
    28Kamp HG, Eisenbrand G, Janzowski C, et al. Ochratoxin A inducesoxidative DNA damage in liver and kidney after oral dosing to rats.Molecular Nutrition and Food Research,2005,49(12):1160-1167
    29Cavin C, Delatour T, Marin-Kuan M, et al. Reduction in antioxidantdefences may contribute to ochratoxin A toxicity and carcinogenicity.Toxicol Sci,2007,96(1):30-39
    30Gagliano N, Donne ID, Torri C, et al. Early cytotoxic effects of ochratoxinA in rat liver: a morphological, biochemical and molecular study.Toxicology,2006,225(2-3):214-224
    31Baudrimont I, Betbeder AM, Gharbi A, et al. Effect of superoxidedismutase and catalase on the nephrotoxicity induced by subchronicaladministration of ochratoxin A in rats. Toxicology,1994,89(2):101-111
    32Manolova Y, Manolov G, Parvanova L, et al. Induction of characteristicchromosomal aberrations, particularly X-trisomy, in cultured humanlymphocytes treated by ochratoxin A, a mycotoxin implicated in Balkanendemic nephropathy. Mutat Res,1990,231(2):143-149
    33Dalle-Donne I, Rossi R, Giustarini D, et al. Protein carbonyl groupsas biomarkers of oxidative stress. Clinica Chimica Acta,2003,329(1-2):23-38
    34Dalle-Donne I, Rossi R, Colombo R, et al. Biomarkers of oxidativedamage in human disease. Clin Chem,2006,52(4):601-623
    35Domijan AM, Rudes K, Peraica M. The effect of ochratoxin A on theconcentration of protein carbonyls in rats. Arh Hig Rada Toksikol,2005,56(4):311-315
    36Domijan AM, Rudes K, Peraica M. The effect of ochratoxin A on theconcentration of protein carbonyls in rats. Arh Hig Rada Toksikol,2005,56(4):311-315
    37Cavin C, Delatour T, Marin-Kuan M, et al. Ochratoxin A-mediated DNAand protein damage: roles of nitrosative and oxidative stresses.Toxicological Sciences,2009,110(1):84-94
    38Rahimtula AD, Bereziat JC, Bussacchini-Griot V, et al. Lipid peroxidationas a possible cause of ochratoxin A toxicity. Biochemical Pharmacology,1998,37(23):4469-4477
    39Khan S, Martin M, Bartsch H, et al. Perturbation of liver microsomalcalcium homeostasis by ochratoxin A. Biochemical Pharmacology,1989,38(1):67-72
    40Hoehler D, Marquardt RR, Mclntosh AR, et al. Free radical generation asinduced by ochratoxin A and its analogs in bacteria (Bacillus brevis).Journal of Biological Chemistry,1996,271(44):27388-27394
    41Marin-Kuan M, Nestler S, Verguet C, et al. A toxicogenomics approach toidentify new plausible epigenetic mechanisms of ochratoxin Acarcinogenicity in rat. Toxicol Sci,2006,89(1):120-134
    42Ferrante MC, Raso GM, Bilancione M, et al. Differential modification ofinflammatory enzymes in J774A.1macrophages by ochratoxin A alone orin combination with lipopolysaccharide. Toxicology Letters,2008,181(1):40-46
    43Boesch-Saadatmandi C, Loboda A, Jozkowicz A, et al. Effect ofochratoxin A on redox-regulated transcription factors, antioxidant enzymesand glutathione-S-transferase in cultured kidney tubulus cells. Food andChemical Toxicology,2008,46(8):2665-2671
    44Goetz ME, Luch A. Reactive species: a cell damaging rout assisting tochemical carcinogens. Cancer Letters,2008,266(1):73-83
    45Mantle P, Kulinskaya E, Nestler S. Renal tumourigenesis in male rats inresponse to chronic dietary ochratoxin A. Food Addit Contam,2005,22(Suppl.1):58-64
    46Cavin C, Delatour T, Marin-Kuan M, et al. Reduction in antioxidantdefences may contribute to ochratoxin A toxicity and carcinogenicity.Toxicol Sci,2007,96(1):30-39
    47O’Brien E, Dietrich DR. Ochratoxin A: the continuing enigma. Crit RevToxicol,2005,35(1):33-60
    48Dirheimer G, Creppy EE. Mechanism of action of ochratoxin A. IARC SciPubl,1991,115:171-186
    49Schilter B, Marin-Kuan M, Delatour T, et al. Ochratoxin A: potentialepigenetic mechanisms of toxicity and carcinogenicity. Food AdditContam,2005,22(Suppl.1):88-93
    50Gekle M, Sauvant C, Schwerdt G. Ochratoxin A at nanomolarconcentrations: a signal modulator in renal cells. Mol Nutr Food Res,2005,
    49(2):118-130
    51Orlicky DJ. Negative regulatory activity of a prostaglandin F2alphareceptor associated protein (FPRP). Prostaglandins Leukot Essent FattyAcids,1996,54(4):247-259
    52Gingras AC, Gygi SP, Raught B, et al. Regulation of4E-BP1phosphorylation: a novel two-step mechanism. Genes Dev,1999,13(11):1422-1437
    53Petroulakis E, Wang E. Nerve growth factor specifically stimulatestranslation of eukaryotic elongation factor1A-1(eEF1A-1) mRNA byrecruitment to polyribosomes in PC12cells. J Biol Chem,2002,277(21):18718-18727
    54Sel S, Ebert T, Ryffel GU, et al. Human renal cell carcinogenesis isaccompanied by a coordinate loss of the tissue specific transcriptionfactors HNF4alpha and HNF1alpha. Cancer Lett,1996,101(2):205-210
    55Lucas B, Grigo K, Erdmann S, et al. HNF4alpha reduces proliferation ofkidney cells and affects genes deregulated in renal cell carcinoma.Oncogene,2005,24(42):6418-6431
    56Al Anati L, Petzinger E. Immunotoxic activity of ochratoxin A. J VetPharmacol Ther,2006,29(2):79-90
    57Hong JT, Lee MK, Park KS, et al. Inhibitory effect of peroxisomeproliferator-activated receptor gamma agonist on ochratoxin A-inducedcytotoxicity and activation of transcription factors in cultured ratembryonic midbrain cells. J Toxicol Environ Health A,2002,65(5-6):407-418
    58Klaunig JE, Kamendulis LM. The role of oxidative stress incarcinogenesis. Annu Rev Pharmacol Toxicol,2004,44:239-267
    59Schramek H. MAP kinases: from intracellular signals to physiology anddisease. News Physiol Sci,2002,17:62-67
    60Gekle M, Schwerdt G, Freudinger R, et al. Ochratoxin A induces JNKactivation and apoptosis in MDCK-C7cells at nanomolar concentrations. JPharmacol Exp Ther,2000,293(3):837-844
    61Gekle M, Sauvant C, Schwerdt G. Ochratoxin A at nanomolarconcentrations: a signal modulator in renal cells. Mol Nutr Food Res,2005,49(2):118-130
    62Sauvant C, Holzinger H, Gekle M. Proximal tubular toxicity of ochratoxinA is amplified by simultaneous inhibition of the extracellularsignal-regulated kinases1/2. J Pharmacol Exp Ther,2005,313(1):234-241
    63Marin-Kuan M, Nestler S, Verguet C. MAPK–ERK activation in kidney ofmale rats chronically fed ochratoxin A at a dose causing a significantincidence of renal carcinoma. Toxicol Appl Pharmacol,2007,224(2):174-181
    64Stemmer K, Ellinger-Ziegelbauer H, Ahr HJ, et al. Carcinogen-specificgene expression profiles in short-term treated Eker and wild-type ratsindicative of pathways involved in renal tumorigenesis. Cancer Res,2007,67(9):4052-4068
    65Cheung CW, Vesey DA, Nicol DL, et al. The roles of IGF-I and IGFBP-3in the regulation of proximal tubule, and renal cell carcinoma cellproliferation. Kidney Int,2004,65(4):1272-1279
    66Moschos SJ, Mantzoros CS. The role of the IGF system in cancer: frombasic to clinical studies and clinical applications. Oncology,2002,63(4):317-332
    67Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancertherapeutics. Mol Cancer Ther,2005,4(4):677-685
    68Takahashi M, Papavero V, Yuhas J, et al. Altered expression of members ofthe IGF-axis in clear cell renal cell carcinoma. Int J On-col,2005,26(4):923-931
    69Kaelin WG Jr. The von Hippel–Lindau gene, kidney cancer, and oxygensensing. J Am Soc Nephrol,2003,14(11):2703-2711
    70Kim W, Kaelin WG Jr. The von Hippel–Lindau tumor suppressor protein:new insights into oxygen sensing and cancer. Curr Opin Genet Dev,2003,13(1):55-60
    71Dong J, Everitt JI, Lau SS, et al. Induction of ERK1/2and histone H3phosphorylation within the outer stripe of the outer medulla of the Eker ratby2,3,5-tris-(glutathion-S-yl)hydroquinone. Toxicol Sci,2004,80(2),350-357
    72Oka H, Chatani Y, Hoshino R, et al. Constitutive activation ofmitogen-activated protein (MAP) kinases in human renal cell carcinoma.Cancer Res,1995,55(18):4182-4187
    73Yoon HS, Monks TJ, Everitt JI, et al. Cell proliferation is insufficient, butloss of tuberin is necessary, for chemically induced nephrocarcinogenicity.Am J Physiol Renal Physiol,2002,283(2): F262-F270
    74Eder S, Benesic A, Freudinger R, et al. Nephritogenic ochratoxin Ainterferes with mitochondrial function and pH homeostasis inimmortalized human kidney epithelial cells. Pflugers Arch,2000,440(4):521-529
    75Fowler L, Everitt J, Stevens JL, et al. Redistribution and enhancedprotein kinase C-mediated phosphorylation of alpha and gamma-adducinduring renal tumor progression. Cell Growth Differ,1998,9(5):405-413
    76Benesic A, Mildenberger S, Gekle M. Nephritogenic ochratoxin Ainterferes with hormonal signalling in immortalized human kidneyepithelial cells. Pflugers Arch,2000,439(3):278-287
    77Chong X, Rahimtula AD. Alterations in ATP-dependent calcium up-takeby rat renal cortex microsomes following ochratoxin A administration invivo or addition in vitro. Biochem Pharmacol,1992,44(7):1401-1409
    78Rached E, Hard GC, Blumbach K, et al. Ochratoxin A:13-week oraltoxicity and cell proliferation in male F344/n rats. Toxicol Sci,2007,97(2):288-298
    79Morooka Y, Yamaguchi M. Suppressive effect of endogenous regucalcinon deoxyribonuclic acid synthesis in the nuclei of rat renal cortex. MolCell Biochem,2002,229(1-2):157-162
    80Xue JH, Takahashi H, Yamaguchi M. Stimulatory effect of regucalcin onmitochondrial ATP-dependent calcium uptake activity in rat kidney cortex.J. Cell Biochem,2000,80(2):285-292
    81Tsurusaki Y, Yamaguchi M. Overexpression of regucalcin modulatestumor-related gene expression in cloned rat hepatoma H4-II-E cells. J CellBiochem,2003,90(3):619-626
    82Tsurusaki Y, Yamaguchi M. Role of regucalcin in liver nuclear function:binding of regucalcin to nuclear protein or DNA and modulation oftumor-related gene expression. Int J Mol Med,2004,14(2):277-281
    83Laskin JD, Heck DE, Laskin DL. The ribotoxic stress response as apotential mechanism for MAP kinase activation in xenobiotic toxicity.Toxicol Sci,2002,69(2):289-291
    84Stemmer K, Ellinger-Ziegelbauer H, Ahr HJ, et al. Carcinogen-specificgene expression profiles in short-term treated Eker and wild-type ratsindicative of pathways involved in renal tumorigenesis. Cancer Res,2007,67(9):4052-4068
    85Klaunig JE, Kamendulis LM. The role of oxidative stress incarcinogenesis. Annu Rev Pharmacol Toxicol,2004,44:239-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700