应用于双功能型空气电极的钙钛矿型氧化物催化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙钛矿型氧化物是一种应用于燃料电池空气电极的高效非贵金属催化剂,催化效果与其结构密切相关。本文工作研究了用溶胶-凝胶法制备钙钛矿型氧化物La0.5Sr0.5(LSCoO),首次采用了溶胶-微波法合成了掺杂碳材料的钙钛矿型氧化物La0.5Ca0.5CoO3/C (LSCoO/C),并测试它们在碱性介质(6mol·L-1KOH)中的电化学性能。
     采用溶胶-凝胶法制备了钙钛矿型氧化物LSCoO,其颗粒为不规则立方体,有轻微团聚,粒径在50-60nm之间。以此产物为催化剂制备的电极在空气气氛下碱性介质(6mol·L-1KOH)中,电位为-0.2 V(vs. HgO/Hg)时,催化氧还原的电流密度为152 mA·cm-2,电位在0.7 V (vs. HgO/Hg)时,催化氧析出的电流密度为152 mA·cm-2。
     以溶胶-微波法合成了LSCoO/C,其颗粒呈球形状,粒径在15~25 nm之间且分布均匀。以此催化剂制备的电极在空气气氛下碱性介质(6mol·L-1KOH)中,电位为-0.2 V (vs. HgO/Hg)时,催化氧还原的电流密度为157 mA·cm-2,电位在0.7 V (vs. HgO/Hg)时,催化氧析出的电流密度为142mA·cm-2。LSCoO、LSCoO/C的催化氧还原和氧析出的性能都很优越,且均优于5% wt Pt/C催化剂,可以作为双功能氧电极的催化材料。
     以催化剂LSCoO、LSCoO/C制备得到的空气电极作为电池的正极,组装成小型锌-空气电池,初步研究了电池的充放电性能。
     建立了O2在钙钛矿型氧化物CaTiO3(001)表面的吸附模型,以此来研究O2在其表面的吸附机理,并证实了氧缺陷表面有利于O2的吸附。
Perovskite-type oxidation is a highly efficient non-noble metal catalyst of fuel cell oxygen electrode, the catalysis is closely relative to the structure. Perovskite-type oxidation La0.5Sr0.5CoO3(LSCoO) was prepared by sol-gel method,The perovskite La0.5Sr0.5CoO3/C (LSCoO/C) material was synthesized by sol-microwave method for the first time, whose electrochemical catalytic properties was also detected.
     Perovskite-type oxidation LSCoO was prepared by sol-gel method, The particles were spherical with the size of 50 to 60 nm. In alkaline electrolyte with reference potential of-0.2 V(vs. HgO/Hg), current density of catalytic ORR for the material under condtions of air, was 152 mA·cm-2 respectively, and 152 mA·cm-2 for catalytic OER at 0.7 V (vs. HgO/Hg).
     The LSCoO/C was synthesized by sol-microwave method, The particles were spherical with the size of 15 to 25 nm and had a well distribution and morphology.In alkaline electrolyte with reference potential of-0.2 V(vs. HgO/Hg), current density of catalytic ORR for the material under condtions of air, was 157 mA·cm-2 respectively, and 142 mA·cm-2 for catalytic OER at 0.7 V (vs. HgO/Hg). It suggests LSCoO,LSCoO/C has higher performance on catalytic ORR and OER than the precious metal 5%wtPt/C catalyst, and therefor it can act as a catalytic material of bifunctional oxygen electrode.
     A simple zinc-air fuel cell was manufactured, with LSCoO,LsCoO/C being used as the catalyst for air diffusion electrode. We investigate the charge and discharge performance of the cell preliminarily.
     Present research also established a model that O2 adsorbs in CaTiO3(001), in order to explan the mechanism for O2 adsorbing in surface of CaTiO3(001), One model was established in this paper.It confirmed that the oxygen deficiency is more conducive to the surface adsorption of O2 molecules.
引文
[1]Wai-Leung Yim, Thorsten Kluner. Promoting O2 activation on noble metal surfaces[J]. Journal of Catalysis,2008,254(2):349~354
    [2]Sung Yongwook, Hwang Jungtae, Chung Jong Shik. Characterization and activity correlations of Pt bimetallic catalysts for low temperature fuel cells[J]. Intern-ational Journal of Hydrogen Energy,2011,36(6):4007~4014
    [3]Hsieh ChienTe, Lin JiaYi, Wei JinLong. Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes[J]. Internatio-nal Journal of Hydrogen Energy,2009,34(2):685~693
    [4]Montiela M, Hernondez-Ferndndeza P, Fierrob J L G.,et al. Promotional effect of upper Ru oxides as methanol tolerant electrocatalyst for the oxygen reduction reaction[J]. Journal of Power Sources,2009,191(2):280~288
    [5]Gao Xuanneng, Zhu Haoming, Wang Renhui.Stability analysis of frame structures by bubble function method[J]. Finite Elements in Analysis and Design, 2009,45(8-9):495~500
    [6]Gonzalez-Huerta R G., Chavez-Carvayar J A, Solorza-Feria O.Electrocatalysis of oxygen reduction on carbon supported Ru-based catalysts in a polymer electrolyte fuel cell[J]. Journal of Power Sources,2006,153(1):11~17
    [7]Blizanac B B, Ross P N, Markovic N M. Oxygen electroreduction on Ag(111): The pH effect[J]. Electrochimica Acta,2007,52(6):2264~2271
    [8]Tang Qiwen, Jiang Luhua, Qi Jing,et al. One step synthesis of carbon-supported Ag/MnyOx composites for oxygen reduction reaction in alkaline media [J]. Applied Catalysis B:Environmental,2011,104(3-4):337~345
    [9]Jiang Luhua, Hsu Andrew, Chu Deryn,et al. A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media[J]. Electrochimica Acta,2010,55(15):4506~4511
    [10]Vazquez-Huerta G, Ramos-Sanchez G, Rodriguez-Castellanos A,et al. Electro chemical analysis of the kinetics and mechanism of the oxygen reduction reaction on Au nanoparticles[J], Journal of Electroanalytical Chemistry, 2010,645(1):35~40
    [11]Peter J Welford, Benjamin A Brookes, Victor Climent,et al. The hanging meniscus contact:geometry induced diffusional overpotential. The reduction of oxygen in dimethylsulphoxide at Au(111)[J]. Journal of Electroanalytical Chemistry,2001,513(1):8~15
    [12]Ichizo Yagi, Tomotaka Ishida, Kohei Uosaki. Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution[J]. Electrochemistry Communications,2004,6(8):773~779
    [13]Chhina H, Campbell S, Kesler O. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells[J]. Journal of Power Sources,2008, 179(2):50~59
    [14]Ave Sarapuu a, Margus Nurmik a, Hugo Mandar, et al. Electrochemical reduction of oxygen on nanostructured gold electrodes[J]. Journal of Electroanalytical Chemistry,2008,612:78~86
    [15]Singh R N, Pandey J P, Singh N K, et al. Sol-gel derived spinel MxCo3-xO4 (M=Ni, Cu;0≤x≤1) films and oxygen evolution[J]. Journal of Electrochim. Acta, 2000,45:1911~1919
    [16]Li N, Li J, Yang L, et al. Electrocatalytic activities of LiCo1-yMyO2(M=Ni or Fe) synthesized at low temperature and acid-delithiated products for oxygen evol-ution/reduction in alkaline solution[J]. Journal of Electrochimica. Acta,2000,46: 717~722
    [17]Shao Yong, Cong Hoan Nguyen. Oxygen reduction on high-area carbon cloth supported oxide nanoparticles/polypyrrole composite electrodes [J]. Journal of Solid State Ionics,2007,178(23-24):1385~1389
    [18]Palmas S, Ferrara F, Vacca A, et al. Polcaro Behavior of cobalt oxide electrodes during oxidativeprocesses in alkaline medium[J]. Journal of ElectroChimica Acta,2007,53:400~406
    [19]Mathieu De Koninck, Benoit Marsan. MnxCu1-xCo2O4 used as bi-functional electrocatalyst in alkaline medium [J]. Journal of Electrochimica Acta,2008,2: 1-10
    [20]Jasinski R. A new fuel cell cathode catalyst[J]. Nature,1964,201:1212~1213
    [21]Buenerd M, Hendrie D L, Jahnke U. Response of pilot U scintillator to heavy-ions[J]. Nuclear Instruments and Methods,1976,136:173~177
    [22]Veen V, J A R, Visser C. Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte [J]. Electrochim Acta,1979,24:921~928
    [23]Gojkovie S, GuPta S, Savinell R F. Heat-treated iron(Ⅲ) tetramethoxpheny porpllyrin chiorde upported on high-area carbon as an eletrocatalyst for oxygen reduetion-PartⅡ.Kinetics of oxygen reduecion[J]. Electroanal.Chem,1999, 45:889~897
    [24]Kitayama H, Iwase Y, Ichino T, et al. Structural analysis of iron oxide coated nsilicon heterojunction photoanodes[J]. Electrochem Acta,1984,29:1365~1370
    [25]Feng Y J, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J]. Electrochem Acta,2009, 54(22):5252~5256
    [26]Susac D, Zhu L, Teo M, et al. Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction[J]. Phys Chem C,2007, 111:18715~18723
    [27]Vayner E, Sidik R A, Anderson A B, et al. Experimental and theoretical study of cobalt selenide as a catalyst for O2 electroreduction[J]. Phys Chem C,2007, 111:10508~10513
    [28]Mohamed S El-Deab, Takeo Ohsaka. Electrocatalysis by design:Effect of the loading level of Au nanoparticles-MnOx nanoparticles binary catalysts on the electrochemical reduction of molecular oxygen[J]. Journal of Electrochimica Acta,2007,52(5):2166~2174
    [29]Zhang GuoQing, Zhang XiaoGang, Wang Yong-Gang. A new air electrode based on carbon nanotubes and Ag-MnO2 for metal air electrochemical cells [J]. Journal of Carbon,2004,42:3097~3102
    [30]Villoria J A, Alvarez-Galvan M C, Al-Zahrani S M,et al. Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts:Influence of perovskite synthesis method on catalyst properties and performance [J].Applied Catalysis B: Environmental,2011, In Press, Accepted Manuscript.
    [31]Haas O, Struis R P, McBreen J M. Synchrotron X-ray absorption of LaCoO3 perovskite[J]. Journal of Solid State Chemistry,2004,177(3):1000~1010
    [32]Huang Lin, Bassir Mahbod, Kaliaguine Serge. Reducibility of Co3+ in perovskite-type LaCoO3 and promotion of copper on the reduction of Co3+ in perovskite-type oxides[J]. Applied Surface Science,2005,243(1-4):360~375
    [33]Kharton V V, Figueiredo F M, Kovalevsky A V,et al. Processing, microstructure and properties of LaCoO3-δ ceramics[J].Journal of the European Ceramic Society,2001,21(13):2301~2309
    [34]Consuelo Alvarez-Galvan M,Domna A Constantinou,Rufino M Navarro,et al. Surface reactivity of LaCoO3 and Ru/LaCoO3 towards CO, CO2 and C3H8:Effect of H2 and O2 pretreatments. Journal of the European Ceramic Society,2011,102 (1-2):291~301
    [35]Ngo Thi Hong Le, Jose M Calderon-Moreno, Monica Popa,et al. LaNiO3 nanopowder prepared by an amorphous citrate route [J]. Journal of the European Ceramic Society,2006,26(4-5):403~407
    [36]Li Yuanyuan, Yao Shanshan, Wen Wei, Lihong Xue,et al. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3 [J]. Journal of Alloys and Compounds,2010,491(1-2):560~564
    [37]Pocuca M, Brankovic G, Brankovic Z,et al. Tailoring of morphology and orientation of LaNiO3 films from polymeric precursors. Journal of the European Ceramic Society,2007,27(13-15):3819~3822
    [38]Xian Yang, Xiaoqing Wu, Wei Ren, Peng Shi,et al. Effects of LaNiO3 buffer layers on preferential orientation growth and properties of PbTiO3 thin films[J]. Journal of the European Ceramic Society,2008,34(4):1035~1038
    [39]Zhu Yongfa, Wang Hai, Liu Peng, et al. Preparation and conducting performance of LaNiO3 thin film on Si substrate[J]. Thin Solid Films,2005,471(6):48~52
    [40]Yang Zhi, Huang Yi, Dong Bin,et al. Template induced sol-gel synthesis of highly ordered LaNiO3 nanowires[J]. Journal of Solid State Chemist-ry,2005,178(118):1157~1164
    [41]Rodolphe Sopracase,Gis ele Gruener,EnrickOlive,et al.Infrared study of the phononmodesin PrMnO3 and CaMnO3[J].Physica B,2010,405(98):45~52.
    [42]Mukhin A A, Ivanov V Yu, Travkin VD,et al. Magnetic anisotropy and ground state of the rare-earth ions in PrMnO3 and NdMnO3[J].Journal of Magnetism and Magnetic Materials,2001,226-230(5-6):1139~1141
    [43]Ran Rui, Wu Xiaodong, Quan Chengzhe, et al.Effect of strontium and cerium doping on the structural and catalytic properties of PrMnO3 oxides[J]. Solid State Ionics,2005,175(12):965~871
    [44]Feroz Ahmad Mira, Ikrama M, Ravi Kumarb. Local symmetry breaking in PrFeO3 thin films and other similar systems after Ni doping:A brief Raman study[J].Vibrational Spectroscopy,2011,55(112):307~310
    [45]宋世栋.钙钛矿型双功能氧电极的研究:[博士学位论文].天津:天津大学,2003
    [46]Wu G M, Lin S J, Yang C C. Alkaline Zn-air and Al-air cells based on novel solid PVA/P-AA polymer electrolyte membranes[J]. Journal of Membrane Science, 2006,280(1-2):802~808
    [47]Zhen-qian Fang, Ming Hu, Wen-xi Liu, et al. Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery[J]. Journal of Electrochimica Acta,2006,51(26):5654~5659
    [48]Mario Maja, Claudio Orecchia, Morela Strano, et al. Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries [J]. Journal of Electrochimica Acta,2000,46(2-3):423~432
    [49]Yukimi Ichikawa, Takashi Yoshida, Toshio Hama, et al. Production technology for amorphou-ssilicon-base flexible solar cells[J]. Journal of Solar Energy Material Solar Cells,2001,66:107~115
    [50]LIU Xing,CHENG Bin, HU Ji-fan, et al. Preparation, structure, resistance and methane-gas sensing properties of nominal La1-xMgxFeO3 [J].Sensors and Actuators B:Chemical,2008,133(1):340~344
    [51]TERAOKA Y, KAKEBAYASHI H, MORIGUCHI I, et al. Hydroxyacid-aided synthesis of perovskite-type oxides with large surface areas [J]. Journal of Alloys and Compounds,1993,193(1):70~75
    [52]ZHONG Z Y, CHEN K D, JI Y, et al. Methane combustion over B-site partially substitute perovskite-type LaFeO3 prepared by sol-gel method[J].Applied Catalysis A:General,1997,156:29~41
    [53]Vaidhyanathan B, Agrawal D K, Shrout T R, et al. Microwave synthesis and sintering of Ba(Mg,/3Ta2/3)O3[J]. Journal of Materials Letters,2000,42(3): 207~211
    [54]Gao Wenyuan, Sun Juncai, Liu Sha, et al. Electrical Properties and Microwave Synthesis of Mixed Rare Earth Oxide Ln0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ[J]. Journal of Rare Earths,2006,24(1):288~292
    [55]Chang Aimin, Jian Jiawen. The orientational growth of grains in doped BaTiO3 PTCR materals by microwave sintering[J]. Journal of Materials Processing Technology,2003,137(1-3):100~101
    [56]Patro P K, Kulkarni A R, Gupta S M, et al. Improved microstructure, dielectric and ferroelectric properties of microwave-sintered Sr0.5Ba0.5Nb2O6[J]. Journal of Physica B:Condensed Matter,2007,400(1-2):237~242
    [57]Tsay Chien-Yie, Lin Chung-Kwei, Cheng Hua-Chi, et al. Low temperature sintering and magnetic properties of garnet microwave magnetic materials[J]. Journal of Materials Chemistry and Physics,2007,105(2-3):408~413
    [58]Khin Sandar Tun, Gupta M. Improving mechanical properties of magnesium using nanoyttria reinforcement and microwave assisted powder metallurgy method[J]. Journal of Composites Science and Technology,2007,67(13): 2657~2664
    [59]Wong W L, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering[J]. Journal of Composites Science and Technology,2007, 67(7-8):1541~1552
    [60]Huang SG, Li L, Van der Biest O. Microwave sintering of CeO2 and Y2O3 estabilised ZrO2 from stabiliser-coated nanopowders[J]. Journal of the European Ceramic Society,2007,27(1-3):689~693
    [61]Hsieh Cheng-Yu, Lin Chun-Nan, Chung Shyan-Lung, et al. Microwave sintering of AlN powder synthesized by a SHS method[J]. Journal of the European Ceramic Society,2007,27(1):343~350
    [62]Gao Wenyuan, Sun Juncai, Liu Sha, et al. Electrical Properties and Microwave Synthesis of Mixed Rare Earth Oxide Ln0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ[J]. Journal of Rare Earths,2006,24(1):288~292
    [63]Syed Mahboob, Dutta A B, Chandra Prakash, et al. Dielectric behaviour of microwave sintered rare-earth doped BaTiO3 ceramics[J]. Journal of Materials Science and Engineering:B,2006,134(1):36~40
    [64]Rajashree Rajagopal, Mona J, Joshee R S, et al. Lao.67Ceo.o3Sro.3Mn03 coupled microwave assisted ultra-fast synthesis of nanocrystalline Cobalt oxide and Bismuth oxide[J]. Journal of Materials letters,2007,9(52):106~112
    [65]Naoyuki Takahashi. Simple and rapid synthesis of MgO with nano-cube shape by means of a domestic microwave oven[J]. Journal of Solid State Sciences, 2007,9:722~724
    [66]Naoyuki Takahashi. Simple and rapid synthesis of ZnO with nano-fiber shape by means of a domestic microwave oven[J]. Journal of Materials letters, 2007,10(62):120~122
    [67]任志伟,周德璧,屠赛琦.纳米晶型MnCo2O4的微波加热法制备及其电催化性能[J].催化学报,2007,28(3):217~221
    [68]Masahiro Miyauchi,Minoru Takashio,Hiroki Tobimatsu.Photocatalytic Activity of SrTiO3 Codoped with Nitrogen and Lanthanum under Visible Light Illumination.Langmuir,2004,19:232~236
    [69]Happe J J.Ind Eng Chem:Prod Res Dev.Inerting Characteristics of Halogenat-ed[J].Hydrocabons(Halons),1975,14:54~59
    [70]Forni L, Oliva C, Vatti F P, et al.La-Ce-Co Perovskites as Catalysts for Exhaust Gas Depollution[J].Applied Catalysis B:Environmental,1996,7:269~284
    [71]Roya B, Dasb S. Magnetic and electrical transport properties of La0.5A0.5CoO3 nanopar ticles(A= Sr, Ca, and Ba)[J]. Journal of Alloys and Compounds,2011, 509(22):5537-5544
    [72]Alifanti M, Auer R, Kirchnerova J,et al. Activity in methane combustion and sensitivity to sulfur poisoning of La1-xCexMn1-yCoyO3 perovskite oxides[J]. App-lied Catalysis B:Environmental,2003,41(1221):71~81
    [73]Prabhu Ganesan, Hector Colon, Bala Haran,et al. Performance of La0.8Sr0.2CoO3 coated NiO as cathodes for molten carbonate fuel cells [J].Journal of Power Sources,2003,115(122):12-18
    [74]Zhou D B,Huang K L,Zhang S M.Tran Nonferrous[J].Met Soc China,2004, 14(4):817~818
    [75]ZHOU De-bi,et al. Electro-catalytic effect of manganese oxide on oxygen reduction at Teflonbonded carbon electrode[J]. Trasactions of Nonferrous Metals Society of China,2006,16:217~222.
    [76]Zhou D B, Vander Poorten H. Impedance Characteristics of Oxygen Reduction at a Platinum Electrode in Alkaline Electrolyte [J]. J Electrochem. Soc,1998,145(3):936~945
    [77]Nora A Merino, Bibiana P Barbero, Paul Grange.La1-xCaxCoO3 perovskite-type oxides:preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane[J]. Journal of Catalysis,2005,231(1):232~244
    [78]程翔,周德璧,黄玉等Nd0.6Ca0.4MnO3的制备及电化学性能研究[J].电源技术,2010,1:24~27
    [79]张红杰.钙钛矿型复合氧化物吸附小分子的密度泛函理论研究[硕士毕业论文].哈尔滨工业大学.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700