硫酸盐还原菌的电化学快速检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以取自黄海淤泥的硫酸盐还原菌(SRB)为研究对象,利用生物化学反应和电化学反应探索电化学生物传感器的组装、构建和优化。构建了四种快速检测SRB的无标记免疫传感器平台和基于纳米信号标记的生物传感器技术,为快速检测微生物研究提供了新思路。主要研究内容如下:
     (1)研究了密闭体系的海水培养基中,SRB在有氧条件下的生长状态对环境参数及碳钢腐蚀行为的影响。发现SRB在有氧条件下可以存活,但出现了缓慢生长及快速衰亡的现象,且会导致碳钢的腐蚀电位发生正移,SRB在碳钢表面生成的生物膜也由无氧条件下致密的结构变为疏松的结构。
     (2)构建了快速检测SRB的无标记免疫传感器平台。设计了基于自组装单分子层、多巴胺生物自激发、电化学聚合和三维泡沫镍技术构筑的电化学生物传感器平台;研究了这些平台的传感器信号与微生物浓度的关系;发现了基于免疫传感器平台材料性能与生物传感器检测信号存在显著的关联。这些平台能够用于微生物快速高效检测和分析,对构筑生物相容性好和电化学性能优异的传感器平台具有应用价值。
     (3)发展了基于纳米信号标记的生物传感器。发现具有类过氧化物酶功能的氧化锰纳米线和自催化功能的氧化石墨烯,可用于生物传感器的信号标记物和增强信号作用;研究了磁性纳米粒子在石英晶体微天平生物传感器中的信号增强作用;发展了基于硫化铅沉淀的电位溶出伏安分析方法来检测SRB。证实了这些纳米材料可用于生物传感器的高效检测和分析。
This thesis focuses on the discussion for assembly, fabrication and optimizationof biosensor, the novel application of environmental monitoring for sulfate-reducingbacteria (SRB) detection. In the present dissertation, we fabricated several new sensorplatform for the immobilization of biochemical molecules. A series of new analysistechniques with and without nanoparticle labels were also developed for studying theresponse amplification, which provides as a novel pathway for bacteria detection. Themain content of the thesis are as follows:
     1. An original method for biocorrosion mechansim was reported. Wesystemically studied the dissolved oxygen for effect on biocorrosion mechanism.Oxygen dissolved in the culture solutions induced slow growth and fast decay of SRBand inhibited the biocorrosion. The biofilms that formed under aerobic conditionsexhibit a homogeneous and loose structure because the proliferation and metabolicactivities of SRB under aerobic conditions were inhibited, resulting in the change inthe thickness and density of biofilm.
     2. A new approach for the fabrication of sensor platform was reported. Fourkinds of sensor platforms based on self-assembled monolayer, bioinspired film,electropolymerization technique and three dimensional foam Ni were designed forstudying the correlation between impedimetric immunosensor response and microbialpopulations. The well correlation between sensor response and microbial populationswas established.
     3. A novel technique for bacteria detection with nanoparticle labels was alsoreported. We discovered the peroxidase-like property of Manganese oxide nanowireand the self catalytic property of graphene oxide nanosheets, which were used forsignal amplification in biosensor. We also studied the response enhancement ofmagnetic nanoparticles in quartz crystal microbalance and lead sulfide inpotentiometric stripping voltammetry for monitoring microbial population, whichdemonstrated that the present method can be used for high sensitivity detection ofSRB.
引文
[1] Muyzer G, Stams A J M, The Ecology and Biotechnology of Sulphate-ReducingBacteria[J], Nat Rev Microbiol,2008,6(6):441-54.
    [2] Vester F, Ingvorsen K, Improved Most-Probable-Number Method to DetectSulfate-Reducing Bacteria with Natural Media and a Radiotracer [J], Appl EnvironMicrob,1998,64(5):1700-7.
    [3] Gibson S A W, Gibson G R, A Rapid Method for Determination of ViableSulphate-Reducing Bacteria in Human Faeces[J], Lett Appl Microbiol,1988,7(2):33-5.
    [4]吉本斯R E布E,伯杰细菌鉴定手册[M],北京:科学出版社,1984.
    [5] Castro H F, Williams N H, Ogram A, Phylogeny of Sulfate-Reducing Bacteria1[J],Fems Microbiol Ecol,2000,31(1):1-9.
    [6] Postgate J R, Campbell L L, Classification of Desulfovibrio Species, theNonsporulating Sulfate-Reducing Bacteria.[J], Bacteriol Rev,1966,30(4):732-8.
    [7] Sigalevich P, Meshorer E, Helman Y et al., Transition From Anaerobic to AerobicGrowth Conditions for the Sulfate-Reducing Bacterium Desulfovibrio OxyclinaeResults in Flocculation [J], Appl Environ Microb,2000,66(11):5005-12.
    [8] Mogensen G L, Kjeldsen K U, Ingvorsen K, Desulfovibrio Aerotolerans Sp. Nov.,An Oxygen Tolerant Sulphate-Reducing Bacterium Isolated From ActivatedSludge[J],2005,11(6):339-49.
    [9] Santana M, Presence and Expression of Terminal Oxygen Reductases in StrictlyAnaerobic Sulfate-Reducing Bacteria Isolated From Salt-Marsh Sediments[J],2008,14(3):145-56.
    [10] Dolla A, Fournier M, Dermoun Z, Oxygen Defense in Sulfate-ReducingBacteria[J],2006,126(1):87-100.
    [11]陈效,孙立苹,徐盈等,硫酸盐还原菌的分离和生理特性研究[J],环境科学与技术,2006,29(9):38-40.
    [12] Klenk H, Clayton R A, Tomb J et al., The Complete Genome Sequence of theHyperthermophilic, Sulphate-Reducing Archaeon Archaeoglobus Fulgidus[J],1997,390(6658):364-70.
    [13] Haouari O, Fardeau M, Cayol J et al., Thermodesulfovibrio Hydrogeniphilus Sp.Nov., A New Thermophilic Sulphate-Reducing Bacterium Isolated From a TunisianHot Spring[J],2008,31(1):38-42.
    [14] Smith J S, Miller J D A, Nature of Sulphides and their Corrosive Effect OnFerrous Metals: A Review[J], Br Corros J,1975,10(3):136-43.
    [15] Biebl H, Pfennig N, Growth Yields of Green Sulfur Bacteria in Mixed Cultureswith Sulfur and Sulfate Reducing Bacteria[J], Arch Microbiol,1978,117(1):9-16.
    [16] Mccrady M H, The Numerical Interpretation of Fermentation Tube Results[J], JInfect Dis,1915,17:183-212.
    [17]易绍金,丁齐柱, SRB检测方法评述[J],世界石油科学,1993,2:66-9.
    [18]胡德蓉,林钦, SRB的生态学特性及检测方法研究进展[J],南方水产,2007,3:67-72.
    [19] Al-Hitti I K, Moody G J, Thomas J D R, Sulphide Ion-Selective ElectrodeStudies Concerning Desdfovibrio Species of Sulphate-Reducing Bacteria[J], Analyst,1983,108:1209-20.
    [20] Tabor P S, Neihof R A, Improved Microautoradiographic Method to DeterimineIndividual Microorganisms Active in Substrate Uptake in Natural Waters[J], ApplEnviron Microbiol,1982,44(4):945-53.
    [21]李婉义,向望清,郭稚弧,三碘甲基蓝法测定SRB菌量[J],油田化学,1991,3:73-7.
    [22] Tatnal R E, Stanton K M, Ebersole R C, Methods of Testing for the Presence ofSulfate-Reducing Bacteria. Corrosion[J], NACE, Houston,1988,88:1-34.
    [23] Maxwell S, Assessment of Sulfide Corrosion Risks in Offshore System byBiological Monitoring[J], SPE Pro Eng,1986,9:363-8.
    [24] Stubner S, Quantification of Gram-Negative Sulphate-Reducing Bacteria in RiceField Soil by16S rRNA Gene-Targeted Real-Time PCR[J], J Microbiol Methods,2004,57(2):219-30.
    [25]张伟,刘丛强,刘涛泽等,荧光原位杂交在喀斯特山地土壤硫酸盐还原菌检测中的应用[J],微生物学通报,2008,35(8):1273-7.
    [26] Scheid D, Stubner S, Conrad R, Identification of Rice Root Associated Nitrate,Sulfate and Ferric Iron Reducing Bacteria During Root Decomposition[J], FEMSMicrobiol Ecol,2004,50(2):101-10.
    [27] Gaylarde C, Cook P, New Rapid Methods for the Identification ofSulphate-Reducing Bacteria[J], Inte Biodeter,1990,26(5):337-45.
    [28] Smith A D, Immunofluorescence of Sulphate-Reducing Bacteria[J], ArchMicrobiol,1982,133(2):118-21.
    [29] Mccrady M H, The Numerical Interpretation of Fermentation-Tube Results[J],1915,17(1):183-212.
    [30] Al-Hitti I K, Moody G J, Thomas J D R, Sulphide Ion-Selective ElectrodeStudies Concerning Desulfovibrio Species of Sulphate-Reducing Bacteria[J], Analyst,1983,108(1291):1209-20.
    [31] Maukonen J, Saarela M, Raaska L, Desulfovibrionales-Related Bacteria in aPaper Mill Environment as Detected with Molecular Techniques and Culture[J], J IndMicrobiol Biot,2006,33(1):45-54.
    [32] Cook K L, Whitehead T R, Spence C et al., Evaluation of the Sulfate-ReducingBacterial Population Associated with Stored Swine Slurry[J],2008,14(3):172-80.
    [33] Tanaka Y, Sogabe M, Okumura K et al., A Highly Selective Direct Method ofDetecting Sulphate-Reducing Bacteria in Crude Oil[J], Lett Appl Microbiol,2002,35(3):242-6.
    [34] Stubner S, Quantification of Gram-Negative Sulphate-Reducing Bacteria in RiceField Soil by16S Rrna Gene-Targeted Real-Time PCR[J], J Microbiol Methods2004,57(2):219-30.
    [35] Ben-Dov E, Brenner A, Kushmaro A, Quantification of Sulfate-ReducingBacteria in Industrial Wastewater, by Real-Time Polymerase Chain Reaction [J],Microbial Ecol,2007,54(3):439-51.
    [36]张伟,刘丛强,刘涛泽等,荧光原位杂交在喀斯特山地土壤SRB检测中的应用[J],微生物学通报,2008,35:1273-7.
    [37]王明义,袁晓燕,宋雪珍等,荧光原位杂交法在检测硫酸盐还原菌中的应用[J],中国现代医学杂志,2008,18(3):302-4.
    [38] Scheid D, Stubner S, Conrad R, Identification of Rice Root Associated Nitrate,Sulfate and Ferric Iron Reducing Bacteria During Root Decomposition[J], FemsMicrobiol Ecol,2004,50(2):101-10.
    [39] Severinghaus J, Astrup P, History of Blood Gas Analysis. Iv. Leland Clark'SOxygen Electrode[J], J Clin Monit Comp,1986,2(2):125-39.
    [40] Clark L C, Lyons C, Electrode Systems for Continuous MonitoringCardiovascular Surgery[J], Ann. N. Y. Acad. Sci,1962,102:29.
    [41] Mosbach K, Danielsson B, An Enzyme Thermistor[J], Biochim Biophys Acta,1974,364(1):140-5.
    [42] Shons A, Dorman F, Najarian J, The Piezoelectric Quartz Immunosensor[J], JBiomed Mater Res,1972,6:565.
    [43] Liedberg B, Nylander C, Lundstrom I, Surface-Plasmon Resonance forGas-Detection and Biosensing[J], Sens Actuat,1983,4(2):299-304.
    [44] Turner A P F, Karube I, Wilson G S, Biosensors: Fundamentals andApplications[M],: Oxford University Press,1987.
    [45] Turner A P F, Biosensors90: The First World Congress On Biosensors,2-4May1990, Mandarin Hotel, Orchard Road, Singapore[M], Elsevier Science Publishers,1990.
    [46] Elghanian R, Storhoff J J, Mucic R C et al., Selective Colorimetric Detection ofPolynucleotides Based On the Distance-Dependent Optical Properties of GoldNanoparticles [J], Science,1997,277(5329):1078-81.
    [47] Chan W C W, Nie S, Quantum Dot Bioconjugates for Ultrasensitive NonisotopicDetection [J], Science,1998,281(5385):2016-8.
    [48] Bruchez M, Moronne M, Gin P et al., Semiconductor Nanocrystals asFluorescent Biological Labels[J], Science,1998,281(5385):2013-6.
    [49] Rothberg J M, Hinz W, Rearick T M et al., An Integrated Semiconductor DeviceEnabling Non-Optical Genome Sequencing[J], Nature,2011,475(7356):348-52.
    [50] Branton D, Deamer D W, Marziali A et al., The Potential and Challenges ofNanopore Sequencing [J], Nat Biotechnol,2008,26(10):1146-53.
    [51] Http://Www.Journals.Elsevier.Com/Biosensors-and-Bioelectronics/.
    [52] Alonso-Lomillo M A, Dominguez-Renedo O, Arcos-Martinez M J,Screen-Printed Biosensors in Microbiology; A Review[J], Talanta,2010,82(5):1629-36.
    [53] Fang Y, Label-Free Cell-Based Assays with Optical Biosensors in DrugDiscovery [J], Assay Drug Dev Technol,2006,4(5):583-95.
    [54] Lagarde F, Jaffrezic-Renault N, Cell-Based Electrochemical Biosensors forWater Quality Assessment[J], Anal Bioanal Chem,2011,400(4):947-64.
    [55] Shamah S M, Cunningham B T, Label-Free Cell-Based Assays Using PhotonicCrystal Optical Biosensors[J], Analyst,2011,136(6):1090-102.
    [56] Saerens D, Huang L, Bonroy K et al., Antibody Fragments as Probe in BiosensorDevelopment[J], Sensors,2008,8(8):4669-86.
    [57]张先恩,生物传感器[M],北京:化学工业出版社,2006.
    [58] Li D, Song S P, Fan C H, Target-Responsive Structural Switching for NucleicAcid-Based Sensors [J], Accounts Chem Res,2010,43(5):631-41.
    [59] Ye L, Mosbach K, Molecular Imprinting: Synthetic Materials as Substitutes forBiological Antibodies and Receptors[J], Chem Mater,2008,20(3):859-68.
    [60]王镜岩,朱圣庚,徐长法,生物化学[M],北京:高等教育出版社,2002.
    [61] Ghasemi-Varnamkhasti M, Mohtasebi S S, Siadat M, Biomimetic-Based Odorand Taste Sensing Systems to Food Quality and Safety Characterization: AnOverview On Basic Principles and Recent Achievements[J], J Food Eng,2010,100(3):377-87.
    [62] Mao C B, Liu A H, Cao B R, Virus-Based Chemical and Biological Sensing[J],Angew Chem Int Edit,2009,48(37):6790-810.
    [63] Fang Y, Non-Invasive Optical Biosensor for Probing Cell Signaling B [J],Sensors,2007,7(10):2316-29.
    [64] Miura T, Fragment Screening Using Surface Plasmon Resonance OpticalBiosensor Technology[J], Yakugaku Zasshi,2010,130(3):341-8.
    [65] Rich R L, Myszka D G, Survey of the Year2006Commercial Optical BiosensorLiterature[J], J Mol Recognit,2007,20(5):300-66.
    [66] Lange K, Rapp B E, Rapp M, Surface Acoustic Wave Biosensors: A Review[J],Anal Bioanal Chem,2008,391(5):1509-19.
    [67] Lucklum R, Hauptmann P, Acoustic Microsensors-the Challenge BehindMicrogravimetry[J], Anal Bioanal Chem,2006,384(3):667-82.
    [68] Rocha-Gaso M I, March-Iborra C, Montoya-Baides A et al., Surface GeneratedAcoustic Wave Biosensors for the Detection of Pathogens: A Review[J], Sensors,2009,9(7):5740-69.
    [69] Lucklum R, Hauptmann P, Acoustic Microsensors-the Challenge BehindMicrogravimetry[J], Anal Bioanal Chem,2006,384(3):667-82.
    [70] Arora P, Sindhu A, Dilbaghi N et al., Biosensors as Innovative Tools for theDetection of Food Borne Pathogens[J], Biosens Bioelectron,2011,28(1):1-12.
    [71] Murphy L, Biosensors and Bioelectrochemistry[J], Curr Opin Chem Biol,2006,10(2):177-84.
    [72] Wilson G S, Gifford R, Biosensors for Real-Time in Vivo Measurements[J],Biosens Bioelectron,2005,20(12):2388-403.
    [73] Navratil M, Tkac J, Svitel J et al., Monitoring of the Bioconversion of Glycerolto Dihydroxyacetone with Immobilized Gluconobacter Oxydans Cell UsingThermometric Flow Injection Analysis[J], Process Biochem,2001,36(11):1045-52.
    [74] Preininger C, Danielsson B, Thermometric Determination of Copper(II) UsingAcid Urease[J], Analyst,1996,121(11):1717-20.
    [75] Ramanathan K, Jonsson B R, Danielsson B, Thermometric Sensing of Peroxidein Organic Media. Application to Monitor the Stability of Rbp-Retinol-HRPComplex[J], Anal Chem,2000,72(15):3443-8.
    [76] Xie B, Tang X J, Wollenberger U et al., Hybrid Biosensor for SimultaneousElectrochemical and Thermometric Detection[J], Anal Lett,1997,30(12):2141-58.
    [77] Chaniotakis N, Sofikiti N, Novel Semiconductor Materials for the Developmentof Chemical Sensors and Biosensors: A Review[J], Anal Chim Acta,2008,615(1):1-9.
    [78] Chen K I, Li B R, Chen Y T, Silicon Nanowire Field-Effect Transistor-BasedBiosensors for Biomedical Diagnosis and Cellular Recording Investigation[J], NanoToday,2011,6(2):131-54.
    [79] He B, Morrow T J, Keating C D, Nanowire Sensors for Multiplexed Detection ofBiomolecules[J], Curr Opin Chem Biol,2008,12(5):522-8.
    [80] Lee C S, Kim S K, Kim M, Ion-Sensitive Field-Effect Transistor for BiologicalSensing[J], Sensors,2009,9(9):7111-31.
    [81] Hwang K S, Lee S M, Kim S K et al., Micro-And Nanocantilever Devices andSystems for Biomolecule Detection[J], Annu Rev Anal Chem,2009,77-98.
    [82] Arlett J L, Myers E B, Roukes M L, Comparative Advantages of MechanicalBiosensors[J], Nat Nanotechnol,2011,6(4):203-15.
    [83] Llandro J, Palfreyman J J, Ionescu A et al., Magnetic Biosensor Technologies forMedical Applications: A Review[J], Med Biol Eng Comput,2010,48(10SI):977-98.
    [84]路福平,微生物学[M],北京:中国轻工业出版社,2005.
    [85] Belgrader P, Benett W, Hadley D et al., Infectious Disease-PCR Detection ofBacteria in Seven Minutes[J], Science,1999,284(5413):449-50.
    [86] Zourob M, Elwary S, Turner A, Principles of Bacterial Detection: Biosensors,Recognition Receptors, and Microsystems[M], Springer,2008.
    [87] Wilkins J R, Use of Platinum-Electrodes for Electrochemical Detection ofBacteria[J], Appl Environ Microb,1978,36(5):683-7.
    [88] Neufeld T, Schwartz-Mittelmann A, Biran D et al., Combined Phage Typing andAmperometric Detection of Released Enzymatic Activity for the SpecificIdentification and Quantification of Bacteria[J], Anal Chem,2003,75(3):580-5.
    [89] Thomas J D R, Ion-Selective Electrode and Enzyme Sensors for Flow-TypeEnvironmental-Analysis[J], Collect Czech Chem C,1991,56(1):178-91.
    [90] Akimenko V K, Khomutov S M, Obraztsova A Y et al., A Rapid Method forDetection of Clostridium Thermocellum by Field-Effect Transistor-BasedImmunodetection[J], J Microbiol Meth,1996,24(3):203-9.
    [91] So H M, Park D W, Jeon E K et al., Detection and Titer Estimation ofEscherichia Coli Using Aptamer-Functionalized Single-Walled Carbon-NanotubeField-Effect Transistors[J], Small,2008,4(2):197-201.
    [92] Villamizar R A, Maroto A, Rius F X et al., Fast Detection of Salmonella Infantiswith Carbon Nanotube Field Effect Transistors[J], Biosens Bioelectron,2008,24(2):279-83.
    [93] Stewart G N, The Changes Produced by the Growth of Bacteria in the MolecularConcentration and Electrical Conductivity of the Culture Media[J], J Exp Med,1899,4:235-43.
    [94] Ur A, Brown D F J, Rapid Detection of Bacterial Activity Using ImpedanceMeasurements[J], Biomed Eng,1974,9(1):18-20.
    [95] Maalouf R, Fournier-Wirth C, Coste J et al., Label-Free Detection of Bacteria byElectrochemical Impedance Spectroscopy: Comparison to Surface PlasmonResonance[J], Anal Chem,2007,79(13):4879-86.
    [96] Varshney M, Li Y B, Interdigitated Array Microelectrodes Based ImpedanceBiosensors for Detection of Bacterial Cells[J], Biosens Bioelectron,2009,24(10):2951-60.
    [97] Yang L, Bashir R, Electrical/Electrochemical Impedance for Rapid Detection ofFoodborne Pathogenic Bacteria[J], Biotechnol Adv,2008,26(2):135-50.
    [98] Lindholm-Sethson B, Nystrom J, Malmsten M et al., Electrochemical ImpedanceSpectroscopy in Label-Free Biosensor Applications: Multivariate Data Analysis for anObjective Interpretation[J], Anal Bioanal Chem,2010,398(6):2341-9.
    [99] Lisdat F, Schafer D, The Use of Electrochemical Impedance Spectroscopy forBiosensing[J], Anal Bioanal Chem,2008,391(5):1555-67.
    [100] Park J Y, Park S M, Dna Hybridization Sensors Based On ElectrochemicalImpedance Spectroscopy as a Detection Tool[J], Sensors,2009,9(12):9513-32.
    [101] Saito T, Kawasaki Y, Kaneko T et al., Fluorescent Microscopic System forDetection of Microorganisms and Organic Compounds On Mars, Bellingham:Spie-Int Soc Optical Engineering,1999,24-32.
    [102] Rodriguez-Saona L E, Khambaty F M, Fry F S et al., Rapid Detection andIdentification of Bacterial Strains by Fourier Transform Near-InfraredSpectroscopy[J], J Agr Food Chem,2001,49(2):574-9.
    [103] Anonymous, Bacteria are Counted Quickly in Water through Laser-ExcitedRaman-Spectra[J], Laser Focus with Fiberoptic Technology,1979,15(9):34.
    [104] Li J F, Huang Y F, Ding Y et al., Shell-Isolated Nanoparticle-Enhanced RamanSpectroscopy [J], Nature,2010,464(7287):392-5.
    [105] Wiggli M, Ghosh R, Bachofen R, Optical Fiber-Based in Situ Spectroscopy ofPigmented Single Colonies[J], Appl Environ Microb,1996,62(9):3339-43.
    [106] Holmes S D, May K, Johansson V et al., Studies On the Interaction ofStaphylococcus Aureus and Staphylococcus Epidermidis with Fibronectin UsingSurface Plasmon Resonance (Biacore)[J], J Microbiol Meth,1997,28(1):77-84.
    [107] Sauerbrey G, Verwendung Von Schwingquarzen Zur W gung DünnerSchichten Und Zur Mikrow gung[J], Z Phys,1959,155(2):206.
    [108] Nivens D E, Chambers J Q, Anderson T R et al., Long-Term, OnlineMonitoring of Microbial Biofilms Using a Quartz Crystal Microbalance[J], AnalChem,1993,65(1):65-9.
    [109] Shen Z H, Huang M C, Xiao C D et al., Nonlabeled Quartz CrystalMicrobalance Biosensor for Bacterial Detection Using Carbohydrate and LectinRecognitions[J], Anal Chem,2007,79(6):2312-9.
    [110] Widjojoatmodjo M N, Fluit A C, Torensma R et al., Evaluation of the MagneticImmuno Pcr Assay for Rapid Detection of Salmonella [J], Eur J Clin Microbiol,1991,10(11):935-8.
    [111] Kaittanis C, Naser S A, Perez J M, One-Step, Nanoparticle-Mediated BacterialDetection with Magnetic Relaxation[J], Nano Lett,2007,7(2):380-3.
    [112] Elghanian R, Storhoff J J, Mucic R Cet al., Selective Colorimetric Detection ofPolynucleotides Based On the Distance-Dependent Optical Properties of GoldNanoparticles [J], Science,1997,277(5329):1078-81.
    [113] Bruchez M, Moronne M, Gin Pet al., Semiconductor Nanocrystals asFluorescent Biological Labels [J], Science,1998,281(5385):2013-6.
    [114] Chan W C W, Nie S, Quantum Dot Bioconjugates for UltrasensitiveNonisotopic Detection [J], Science,1998,281(5385):2016-8.
    [1]匡飞,硫酸盐还原菌对海洋腐蚀行为的影响[D],博士,中国科学院海洋研究所,2007.
    [3]李永娟,氯离子和硫酸盐还原菌对Q235钢溶解氧还原反应的影响[D],硕士,中国科学院海洋研究所,2009.
    [4]刘怀群,硫酸盐还原菌代谢产物对海水中溶解氧电化学还原反应的影响[D],硕士,中国科学院海洋研究所,2010.
    [5] Jain D K, Evaluation of the Semisolid Postgate’S B Medium for EnumeratingSulfate-Reducing Bacteria [J], J. Microbiol Meth,1995,22:27-38.
    [6] Abdelmalek Y, Rizk S G, Counting of Sulphate-Reducing Bacteria in MixedBacterial Populations [J], Nature,1958,182(4634):538.
    [7] Gaylarde C, Cook P, New Rapid Methods for the Identification ofSulphate-Reducing Bacteria[J], Int Biodeter Biodegr,1990,26:337-45.
    [8] Kuehr W V, Vlugt V, The Graphitization of Cast Iron as an ElectrochemicalProcess in Anaerobic Soils [J], Water,1934,8:147-65.
    [9] Booth G H, Tiller A K, Cathodic Characteristics of Mild Steel in Suspensions ofSulphate-Reducing Bacteria [J], Corros Sci,1968,8(8):583.
    [10] King R A, Miller J, Corrosion by Sulphate-Reducing Bacteria [J], Nature,1971,233(5320):491.
    [11] Pope D H, Morris E A, Some Experiments with Microbiologically InfluencedCorrosion of Pipelines [J], Mater perfor,1995,5:23-8.
    [12] Henrici A T, Studies of Freshwater Bacteria I a Direct Microscopic Technique [J],J Bacteriol,1933,25(3):277-87.
    [13] Monds R D, O'Toole G A, The Developmental Model of Microbial Biofilms:Ten Years of a Paradigm Up for Review [J], Trends Microbiol,2009,17(2):73-87.
    [14] O'Toole G, Kaplan H B, Kolter R, Biofilm Formation as Microbial Development[J], Annu Rev Microbiol,2000,54:49-79.
    [15] Cowan M M, Warren T M, Fletcher M, Mixed Species Colonization of SolidSurfaces in Laboratory Biofilms [J], Biofouling,1991,3:23-34.
    [16] Little B J, Lee J S, Ray R I, The Influence of Marine Biofilms On Corrosion: AConcise Review [J], Electrochim Acta,2008,54(1SI):2-7.
    [17] Washizu N, Katada Y, Kodama T, Role of H2O2in Microbially InfluencedEnnoblement of Open Circuit Potentials for Type316L Stainless Steel in Seawater [J],Corros Sci,2004,46(5):1291-300.
    [18] Kuang F, Wang J, Yan L et al., Effects of Sulfate-Reducing Bacteria On theCorrosion Behavior of Carbon Steel [J], Electrochim Acta,2007,52(20):6084-8.
    [19] Gonzalez J, Santana F, Mirza-Rosca J C, Effect of Bacterial Biofilm On316SsCorrosion in Natural Seawater by Eis [J], Corros Sci,1998,40(12):2141-54.
    [20] Sheng X X, Ting Y P, Pehkonen S A, The Influence of Sulphate-ReducingBacteria Biofilm On the Corrosion of Stainless Steel Aisi316[J], Corros Sci,2007,49(5):2159-76.
    [1] Narasaiah D, Mitra C K, A Polytryptophan-Modified Electrode [J], Electroanal,1993,5(7):589-94.
    [2] Daniels J S, Pourmand N, Label-Free Impedance Biosensors: Opportunities andChallenges [J], Electroanal,2007,19(12):1239-57.
    [3] K'Owino I O, Sadik O A, Impedance Spectroscopy: A Powerful Tool for RapidBiomolecular Screening and Cell Culture Monitoring [J], Electroanal,2005,17(23):2101-13.
    [4] Vestergaard M, Kerman K, Tamiya E, An Overview of Label-FreeElectrochemical Protein Sensors [J], Sensors,2007,7(12):3442-58.
    [5] Wang W, Foley K, Shan X et al., Single Cells and Intracellular Processes Studiedby a Plasmonic-Based Electrochemical Impedance Microscopy [J], Nat Chem,2011,3(3):249-55.
    [6] Bigelow W C, Pickett D L, Zisman W A, Oleophobic Monolayers.1. FilmsAdsorbed From Solution in Non-Polar Liquids [J], J Colloid Sci,1946,1(6):513-38.
    [7] Nuzzo R G, Allara D L, Adsorption of Bifunctional Organic Disulfides On GoldSurfaces [J], J Am Chem Soc,1983,105(13):4481-3.
    [8] Mandler D, Kraus-Ophir S, Self-Assembled Monolayers (Sams) forElectrochemical Sensing [J], J Solid State Electr,2011,15(7-8):1535-58.
    [9] Aswal D K, Lenfant S, Guerin D et al., Self Assembled Monolayers On Silicon forMolecular Electronics [J], Anal Chim Acta,2006,568(1-2):84-108.
    [10] Al-Rawashdeh N, Azzam W, Gold Nanoparticles Chemisorbed by aTerphenyldithiol Self-Assembled Monolayer for Fabrication of a Protein Biosensor[J], Res Chem Intermediat,2011,37(7SI):759-70.
    [11] Shin S K, Yoon H J, Jung Y J et al., Nanoscale Controlled Self-AssembledMonolayers and Quantum Dots [J], Curr Opin Chem Biol,2006,10(5):423-9.
    [12]Pulsipher A, Yousaf M N, Self-Assembled Monolayers as Dynamic ModelSubstrates for Cell Biology [M], Advances in Polymer Science Springer, Berlin/Heidelberg,2011,103-34.
    [13] Arya S K, Solanki P R, Datta M et al., Recent Advances in Self-AssembledMonolayers Based Biomolecular Electronic Devices [J], Biosens Bioelectron,2009,24(9):2810-7.
    [14] Maalouf R, Fournier-Wirth C, Coste J et al., Label-Free Detection of Bacteria byElectrochemical Impedance Spectroscopy: Comparison to Surface PlasmonResonance [J], Anal Chem,2007,79(13):4879-86.
    [15] Geng P, Zhang X N, Meng W W et al., Self-Assembled Monolayers-BasedImmunosensor for Detection of Escherichia Coli Using Electrochemical ImpedanceSpectroscopy [J], Electrochim Acta,2008,53(14):4663-8.
    [16] Ruan C M, Yang L J, Li Y B, Immunobiosensor Chips for Detection ofEscherichia Coli O157: H7Using Electrochemical Impedance Spectroscopy [J], AnalChem,2002,74(18):4814-20.
    [17] De La Rica R, Baldi A, Fernandez-Sanchez C et al., Selective Detection of LivePathogens Via Surface-Confined Electric Field Perturbation On Interdigitated SiliconTransducers [J], Anal Chem,2009,81(10):3830-5.
    [18] Gamella M, Campuzano S, Parrado C et al., Microorganisms Recognition andQuantification by Lectin Adsorptive Affinity Impedance[J], Talanta,2009,78(4-5):1303-9.
    [19] Mejri M B, Baccar H, Baldrich E et al., Impedance Biosensing Using Phages forBacteria Detection: Generation of Dual Signals as the Clue for in-Chip AssayConfirmation[J], Biosens Bioelectron,2010,26(4SI):1261-7.
    [20] Mantzila A G, Maipa V, Prodromidis M I, Development of a FaradicImpedimetric Immunosensor for the Detection of Salmonella Typhimurium in Milk[J], Anal Chem,2008,80(4):1169-75.
    [21] Yang L J, Electrical Impedance Spectroscopy for Detection of Bacterial Cells inSuspensions Using Interdigitated Microelectrodes [J], Talanta,2008,74(5):1621-9.
    [22] Yang L, Bashir R, Electrical/Electrochemical Impedance for Rapid Detection ofFoodborne Pathogenic Bacteria [J], Biotechnol Adv,2008,26(2):135-50.
    [23] La Belle J T, Shah M, Reed J et al., Label-Free and Ultra-Low Level Detectionof Salmonella Enterica Serovar Typhimurium Using Electrochemical ImpedanceSpectroscopy [J], Electroanal,2009,21(20):2267-71.
    [24] Yang G J, Huang J L, Meng W J et al., A Reusable Capacitive Immunosensor forDetection of Salmonella Spp. Based On Grafted Ethylene Diamine andSelf-Assembled Gold Nanoparticle Monolayers [J], Anal Chim Acta,2009,647(2):159-66.
    [25] Tan F, Leung P, Liu Z B et al., A Pdms Microfluidic Impedance Immunosensorfor E. Coli O157:H7and Staphylococcus Aureus Detection ViaAntibody-Immobilized Nanoporous Membrane [J], Sensor Actuat B-Chem,2011,159(1):328-35.
    [26] Hassen W M, Abdelghani A, Vonna L et al., Electrochemical Properties andTopology of Gold Electrodes with Adsorbed Penicillin G for Biosensor Applications[J], Sensor Actuat B-Chem,2007,120(2):621-7.
    [27] Cloarec J P, Martin J R, Polychronakos C et al., Functionalization of Si/SiO2Substrates with Homooligonucleotides for a DNA Biosensor [J], Eurisensors XII,Vols1and2,1998,:793-6.
    [28] Seo K S, Chang H N, Park J K et al., Effects of Dilution On Dissolved OxygenDepletion and Microbial Populations in the Biochemical Oxygen DemandDetermination [J], Appl Microbiol Biot,2007,76(4):951-6.
    [29] Han H C, Chang Y R, Hsu W L et al., Application of Parylene-Coated QuartzCrystal Microbalance for On-Line Real-Time Detection of Microbial Populations [J],Biosens Bioelectron,2009,24(6):1543-9.
    [30] Guntupalli R, Lakshmanan R S, Hu J et al., Rapid and Sensitive MagnetoelasticBiosensors for the Detection of Salmonella Typhimurium in a Mixed MicrobialPopulation [J], J Microbiol Meth,2007,70(1):112-8.
    [31] Lee H, Dellatore S M, Miller W M et al., Mussel-Inspired Surface Chemistry forMultifunctional Coatings [J], Science,2007,318(5849):426-30.
    [32] Shirakawa H, Louis E J, Macdiarmid A G et al., Synthesis of ElectricallyConducting Organic Polymers-Halogen Derivatives of Polyacetylene,(Ch)X [J], JChem Soc Chem Commun,1977,(16):578-80.
    [33] Nguyen A L, Luong J, Yacynych A M, Retention of Enzyme byElectropolymerized Film-A New Approach in Developing a HypoxanthineBiosensor [J], Biotechnol Bioeng,1991,37(8):729-35.
    [34] Zhu N N, Chang Z, He P G et al., Electrochemically Fabricated PolyanilineNanowire-Modified Electrode for Voltammetric Detection of DNA Hybridization [J],Electrochim Acta,2006,51(18):3758-62.
    [35] Tolani S B, Craig M, Delong R K et al., Towards Biosensors Based OnConducting Polymer Nanowires [J], Anal Bioanal Chem,2009,393(4):1225-31.
    [36] Dhand C, Solanki P R, Pandey M K et al., Electrophoretically DepositedPolyaniline Nanotubes Based Film for Cholesterol Detection [J], Electrophoresis,2010,31(22SI):3754-62.
    [37] Lakard B, Magnin D, Deschaume O et al., Urea Potentiometric EnzymaticBiosensor Based On Charged Biopolymers and Electrodeposited Polyaniline [J],Biosens Bioelectron,2011,26(10):4139-45.
    [38] Lee I, Luo X L, Cui X T et al., Highly Sensitive Single Polyaniline NanowireBiosensor for the Detection of Immunoglobulin G and Myoglobin [J], BiosensBioelectron,2011,26(7):3297-302.
    [39] Spain E, Kojima R, Kaner R B et al., High Sensitivity Dna Detection Using GoldNanoparticle Functionalised Polyaniline Nanofibres [J], Biosens Bioelectron,2011,26(5):2613-8.
    [40] Song M J, Kim J H, Lee S K et al., Pt-Polyaniline Nanocomposite OnBoron-Doped Diamond Electrode for Amperometic Biosensor with Low DetectionLimit [J], Microchim Acta,2010,171(3-4):249-55.
    [41] Chen X J, Chen Z X, Zhu J W et al., A Novel H2O2Amperometric BiosensorBased On Gold Nanoparticles/Self-Doped Polyaniline Nanofibers [J],Bioelectrochemistry,2011,82(2):87-94.
    [42] Cesarino I, Moraes F C, Machado S, A Biosensor Based On Polyaniline-CarbonNanotube Core-Shell for Electrochemical Detection of Pesticides [J], Electroanal,2011,23(11):2586-93.
    [43] Truong L, Chikae M, Ukita Y et al., Labelless Impedance Immunosensor BasedOn Polypyrrole-Pyrolecarboxylic Acid Copolymer for HCG Detection [J], Talanta,2011,85(5):2576-80.
    [44] Senel M, Construction of Reagentless Glucose Biosensor Based On FerroceneConjugated Polypyrrole [J], Synthetic Met,2011,161(17-18):1861-8.
    [45] Tam P D, Hieu N V, Conducting Polymer Film-Based Immunosensors UsingCarbon Nanotube/Antibodies Doped Polypyrrole [J], Appl Surf Sci,2011,257(23):9817-24.
    [46] Apetrei C, Rodriguez-Mendez M L, De Saja J A, Amperometric TyrosinaseBased Biosensor Using an Electropolymerized Phosphate-Doped Polypyrrole Film asan Immobilization Support. Application for Detection of Phenolic Compounds [J],Electrochim Acta,2011,56(24):8919-25.
    [47] Bourigua S, El Ichi S, Korri-Youssoufi H et al., Electrochemical Sensing ofTrimethylamine Based On Polypyrrole-Flavin-Containing Monooxygenase (FMO3)and Ferrocene as Redox Probe for Evaluation of Fish Freshness [J], BiosensBioelectron,2011,28(1):105-11.
    [48] Lin M, Yang J, Cho M et al., Hydrogen Peroxide Detection Using aPolypyrrole/Prussian Blue Nanowire Modified Electrode [J], Macromol Res,2011,19(7):673-8.
    [49] Li J H, Kuang D Z, Feng Y L et al., Preparation of Glucose Biosensor Based Onthe Nanocomposite Film of Titanium Dioxide/Carbon Nanotubes/Chitosan [J],Chinese J Inorg Chem,2011,27(11):2172-8.
    [50] Sun J Y, Huang K J, Zhao S F et al., Direct Electrochemistry and Electrocatalysisof Hemoglobin On Chitosan-Room Temperature Ionic Liquid-TiO2-GrapheneNanocomposite Film Modified Electrode [J], Bioelectrochemistry,2011,82(2):125-30.
    [51] Liu X J, Luo L Q, Ding Y P et al., Hydrogen Peroxide Biosensor Based On theImmobilization of Horseradish Peroxidase On Gamma-Al2O3Nanoparticles/ChitosanFilm-Modified Electrode [J], J Solid State Electr,2011,15(3):447-53.
    [52] Narang J, Pundir C S, Construction of a Triglyceride Amperometric BiosensorBased On Chitosan-ZnO Nanocomposite Film [J], Int J Biol Macromol,2011,49(4):707-15.
    [53] Yu C M, Gou L L, Zhou X H et al., Chitosan-Fe3O4Nanocomposite BasedElectrochemical Sensors for the Determination of Bisphenol [J], Electrochim Acta,2011,56(25):9056-63.
    [54] Shen G Y, Cai C B, Yang J F, Fabrication of an Electrochemical ImmunosensorBased On a Gold-Hydroxyapatite Nanocomposite-Chitosan Film [J], ElectrochimActa,2011,56(24):8272-7.
    [55] Kuralay F, Vural T, Bayram C et al., Carbon Nanotube-Chitosan ModifiedDisposable Pencil Graphite Electrode for Vitamin B12Analysis [J], Colloid Surface B,2011,87(1):18-22.
    [56] Abdelmalek Y, Rizk S G, Counting of Sulphate-Reducing Bacteria in MixedBacterial Populations [J], Nature,1958,182(4634):538.
    [57] Vester F, Ingvorsen K, Improved Most-Probable-Number Method to DetectSulfate-Reducing Bacteria with Natural Media and a Radiotracer [J], Appl EnvironMicrob,1998,64(5):1700-7.
    [58] Gaylarde C, Cook P, New Rapid Methods for the Identification ofSulfate-Reducing Bacteria [J], Inter Biodeter,1990,26(5):337-45.
    [59] Lucker S, Steger D, Kjeldsen K U et al., Improved16S Rrna-Targeted Probe Setfor Analysis of Sulfate-Reducing Bacteria by Fluorescence in Situ Hybridization [J], JMicrobiol Meth,2007,69(3):523-8.
    [60] Munoz-Berbel X, Vigues N, Mas J et al., Impedimetric Characterization of theChanges Produced in the Electrode-Solution Interface by Bacterial Attachment [J],Electrochem Commun,2007,9(11):2654-60.
    [61] Hnaien M, Lagarde F, Bausells J et al., A New Bacterial Biosensor forTrichloroethylene Detection Based On a Three-Dimensional Carbon NanotubesBioarchitecture [J], Anal Bioanal Chem,2011,400(4):1083-92.
    [62] Xie J S, Feng X M, Hu J Q et al., Al3+-Directed Self-Assembly and theirElectrochemistry Properties of Three-Dimensional Dendriform HorseradishPeroxidase/Polyacrylamide/Platinum/Single-Walled Carbon Nanotube CompositeFilm [J], Biosens Bioelectron,2010,25(5):1186-92.
    [63] Jiang F, Wang S, Lin J J et al., Aligned Swcnt-Copper Oxide Array as aNonenzymatic Electrochemical Probe of Glucose [J], Electrochem Commun,2011,13(4):363-5.
    [64] Claussen J C, Artiles M S, Mclamore E S et al., Electrochemical GlutamateBiosensing with Nanocube and Nanosphere Augmented Single-Walled CarbonNanotube Networks: A Comparative Study [J], J Mater Chem,2011,21(30):11224-31.
    [65] Charles P T, Goldman E R, Rangasammy J G et al., Fabrication andCharacterization of3D Hydrogel Microarrays to Measure Antigenicity and AntibodyFunctionality for Biosensor Applications [J], Biosens Bioelectron,2004,20(4):753-64.
    [66] Jia J B, Wang B Q, Wu A G et al., A Method to Construct a Third-GenerationHorseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles toThree-Dimensional Sol-Gel Network [J], Anal Chem,2002,74(9):2217-23.
    [67] Liang R P, Qiu H D, Cai P X, A Novel Amperometric Immunosensor Based OnThree-Dimensional Sol-Gel Network and Nanoparticle Self-Assemble Technique [J],Anal Chim Acta,2005,534(2):223-9.
    [68] Jiang X, Zhang L, Dong S J, Assemble ofPoly(Aniline-Co-O-Aminobenzenesulfonic Acid) Three-Dimensional TubalNet-Works Onto Ito Electrode and its Application for the Direct Electrochemistry andElectrocatalytic Behavior of Cytochrome C [J], Electrochem Commun,2006,8(7):1137-41.
    [69] Liang R P, Peng H Z, Qiu J D, Fabrication, Characterization, and Application ofPotentiometric Immunosensor Based On Biocompatible and ControllableThree-Dimensional Porous Chitosan Membranes [J], J Colloid Interf Sci,2008,320(1):125-31.
    [70] Parra-Alfambra A M, Casero E, Petit-Dominguez M D et al., NewNanostructured Electrochemical Biosensors Based On Three-Dimensional(3-Mercaptopropyl)-Trimethoxysilane Network [J], Analyst,2011,136(2):340-7.
    [71] Chen H W, Yuan R, Chai Y Q et al., Glucose Biosensor Based OnElectrodeposited Platinum Nanoparticles and Three-Dimensional Porous ChitosanMembranes [J], Biotechnol Lett,2010,32(10):1401-4.
    [72] Shen Q M, Jiang L P, Zhang H et al., Three-Dimensional Dendritic PtNanostructures: Sonoelectrochemical Synthesis and Electrochemical Applications [J],JF Phys Chem C,2008,112(42):16385-92.
    [73] Chen X J, Xuan J, Jiang L P et al., Preparation of the Glucose Sensor Based OnThree-Dimensional Ordered Macroporous Gold Film and Room Temperature IonicLiquid [J], Sci China Ser B,2009,52(11):1999-2005.
    [74] Xuan J, Jiang L P, Zhu J J, Nonenzymatic Hydrogen Peroxide Sensor Based OnThree-Dimensional Ordered Macroporous Gold Film Modified Electrode [J], ChineseJ Anal Chem,2010,38(4):513-6.
    [75] Guo L H, Chen G N, Kim D H, Three-Dimensionally Assembled GoldNanostructures for Plasmonic Biosensors [J], Anal Chem,2010,82(12):5147-53.
    [76] Konig A, Reul T, Harmeling C et al., Multimicrobial Sensor UsingMicrostructured Three-Dimensional Electrodes Based On Silicon Technology [J],Anal Chem,2000,72(9):2022-8.
    [77] Ressine A, Vaz-Dominguez C, Fernandez V M et al., Bioelectrochemical Studiesof Azurin and Laccase Confined in Three-Dimensional Chips Based OnGold-Modified Nano-/Microstructured Silicon [J], Biosens Bioelectron,2010,25(5):1001-7.
    [78] Das R D, Roychaudhuri C, Maji S et al., Macroporous Silicon Based Simple andEfficient Trapping Platform for Electrical Detection of Salmonella TyphimuriumPathogens [J], Biosens Bioelectron,2009,24(11):3215-22.
    [79] Massad-Ivanir N, Shtenberg G, Tzur A et al., Engineering Nanostructured PorousSio(2) Surfaces for Bacteria Detection Via "Direct Cell Capture"[J], Anal Chem,2011,83(9):3282-9.
    [80] Massad-Ivanir N, Shtenberg G, Zeidman T et al., Construction andCharacterization of Porous Sio(2)/Hydrogel Hybrids as Optical Biosensors for RapidDetection of Bacteria [J], Adv Funct Mater,2010,20(14):2269-77.
    [81]Wu C C, Alvarez S D, Rang C U et al., Label-Free Optical Detection of BacteriaOn a1-D Photonic Crystal of Porous Silicon, Bellingham: Spie-Int Soc OpticalEnginnering,2009.
    [82] Tsou P H, Sreenivasappa H, Hong S M et al., Rapid Antibiotic EfficacyScreening with Aluminum Oxide Nanoporous Membrane Filter-Chip and OpticalDetection System [J], Biosens Bioelectron,2010,26(1):289-94.
    [83]Moreno-Hagelsieb L, Nizet Y, Tang X et al., Cmos Compatible Anodic Al2O3Based Sensors for Bacteria Detection. Amsterdam: Elsevier Science BV,2009,1283-6.
    [84] Jha A K, Tripathi A, Bose A, A Microfluidic Device for Bacteria Detection inAqueous Samples [J], Environ Technol,2011,32(14):1661-7.
    [85] Min J H, Baeumner A, The Micro-Total Analytical System for the Detection ofBacteria/Viruses [J], J Ind Eng Chem,2003,9(1):1-8.
    [1] Sanvicens N, Pastells C, Pascual N et al., Nanoparticle-Based Biosensors forDetection of Pathogenic Bacteria [J], Trac-Trend Anal Chem,2009,28(11):1243-52.
    [2] Joung H A, Lee N R, Lee S K et al., High Sensitivity Detection of16S rRNAUsing Peptide Nucleic Acid Probes and a Surface Plasmon Resonance Biosensor [J],Anal Chim Acta,2008,630(2):168-73.
    [3] Zhu S L, Du C L, Fu Y Q, Localized Surface Plasmon Resonance-Based HybridAu-Ag Nanoparticles for Detection of Staphylococcus Aureus Enterotoxin B [J], OptMater,2009,31(11):1608-13.
    [4] Hill H D, Vega R A, Mirkin C A, Nonenzymatic Detection of Bacterial GenomicDna Using the Bio Bar Code Assay[J], Anal Chem,2007,79(23):9218-23.
    [5] Liu Y C, Brandon R, Cate M et al., Detection of Pathogens Using LuminescentCdse/Zns Dendron Nanocrystals and a Porous Membrane Immunofilter [J], AnalChem,2007,79(22):8796-802.
    [6] Mechery S J, Zhao X, Wang L et al., Using Bioconjugated Nanoparticles toMonitor E-Coli in a Flow Channel [J], Chem Asian J,2006,1(3):384-90.
    [7] Baeumner A J, Jones C, Wong C Y et al., A Generic Sandwich-Type Biosensorwith Nanomolar Detection Limits [J], Anal Bioanal Chem,2004,378(6):1587-93.
    [8] Koets M, Van Der Wijk T, Van Eemeren J et al., Rapid Dna Multi-AnalyteImmunoassay On a Magneto-Resistance Biosensor [J], Biosens Bioelectron,2009,24(7):1893-8.
    [9] Mujika M, Arana S, Castano E et al., Magnetoresistive Immunosensor for theDetection of Escherichia Coli O157:H7Including a Microfluidic Network [J],Biosens Bioelectron,2009,24(5SI):1253-8.
    [10] Maalouf R, Hassen W M, Fournier-Wirth C et al., Comparison of TwoInnovatives Approaches for Bacterial Detection: Paramagnetic Nanoparticles andSelf-Assembled Multilayer Processes [J], Microchim Acta,2008,163(3-4):157-61.
    [11] Lee H, Sun E, Ham D et al., Chip-Nmr Biosensor for Detection and MolecularAnalysis of Cells [J], Nat Med,2008,14(8):869-74.
    [12] Lin Y H, Chen S H, Chuang Y C et al., Disposable AmperometricImmunosensing Strips Fabricated by Au Nanoparticles-Modified Screen-PrintedCarbon Electrodes for the Detection of Foodborne Pathogen Escherichia Coli O157:H7[J], Biosens Bioelectron,2008,23(12):1832-7.
    [13] Marques P, Lermo A, Campoy S et al., Double-Tagging Polymerase ChainReaction with a Thiolated Primer and Electrochemical Genosensing Based On GoldNanocomposite Sensor for Food Safety [J], Anal Chem,2009,81(4):1332-9.
    [14] Pinijsuwan S, Rijiravanich P, Somasundrum M et al., Sub-FemtomolarElectrochemical Detection of DNA Hybridization Based On Latex/GoldNanoparticle-Assisted Signal Amplification [J], Anal Chem,2008,80(17):6779-84.
    [15] Yeung S W, Lee T, Cai H et al., A Dna Biochip for On-the-Spot MultiplexedPathogen Identification [J], Nucleic Acids Res,2006,34(e11818).
    [16] Yang Q Y, Liang Y, Zhou T S et al., Electrochemical Investigation ofPlatinum-Coated Gold Nanoporous Film and its Application for Escherichia ColiRapid Measurement [J], Electrochem Commun,2009,11(4):893-6.
    [17] Villamizar R A, Maroto A, Rius F X et al., Fast Detection of Salmonella Infantiswith Carbon Nanotube Field Effect Transistors [J], Biosens Bioelectron,2008,24(2):279-83.
    [18] So H M, Park D W, Jeon E K et al., Detection and Titer Estimation ofEscherichia Coli Using Aptamer-Functionalized Single-Walled Carbon-NanotubeField-Effect Transistors [J], Small,2008,4(2):197-201.
    [19] Apetrei C, Rodriguez-Mendez M L, De Saja J A, Amperometric TyrosinaseBased Biosensor Using an Electropolymerized Phosphate-Doped Polypyrrole Film asan Immobilization Support. Application for Detection of Phenolic Compounds [J],Electrochim Acta,2011,56(24):8919-25.
    [20] Pal S, Alocilja E C, Electrically Active Polyaniline Coated Magnetic (EAPM)Nanoparticle as Novel Transducer in Biosensor for Detection of Bacillus AnthracisSpores in Food Samples [J], Biosens Bioelectron,2009,24(5SI):1437-44.
    [21] Kim H J, Bennetto H P, Halablab M A et al., Performance of an ElectrochemicalSensor with Different Types of Liposomal Mediators for the Detection of HemolyticBacteria [J], Sensor Actuat B-Chem,2006,119(1):143-9.
    [22] Wan Y, Wang Y, Wu J J et al., Graphene Oxide Sheet-Mediated SilverEnhancement for Application to Electrochemical Biosensors [J], Anal Chem,2011,83(3):648-53.
    [23] Wang L J, Wei Q S, Wu C Set al., The Escherichia Coli O157: H7DNADetection On a Gold Nanoparticle-Enhanced Piezoelectric Biosensor [J], Chinese SciBull,2008,53(8):1175-84.
    [24] Mao X L, Yang L J, Su X L et al., A Nanoparticle Amplification Based QuartzCrystal Microbalance Dna Sensor for Detection of Escherichia Coli O157: H7[J],Biosens Bioelectron,2006,21(7):1178-85.
    [25] Wan Y, Zhang D, Hou B R, Determination of Sulphate-Reducing Bacteria BasedOn Vancomycin-Functionalised Magnetic Nanoparticles Using a Modification-FreeQuartz Crystal Microbalance [J], Biosens Bioelectron,2010,25(7):1847-50.
    [26] Zhang Z X, Zhu H, Wang X L et al., Sensitive Electrochemical Sensor forHydrogen Peroxide Using Fe3O4Magnetic Nanoparticles as a Mimic for Peroxidase[J], Microchim Acta,2011,174(1-2):183-9.
    [27] Park K S, Kim M I, Cho D Y et al., Label-Free Colorimetric Detection ofNucleic Acids Based On Target-Induced Shielding Against the Peroxidase-MimickingActivity of Magnetic Nanoparticles [J], Small,2011,7(11):1521-5.
    [28] Jiang J Z, Zou J, Zhu L H et al., Degradation of Methylene Blue with H2O2Activated by Peroxidase-Like Fe3O4Magnetic Nanoparticles [J], J NanosciNanotechno,2011,11(6):4793-9.
    [29] Gao L Z, Zhuang J, Nie L et al., Intrinsic Peroxidase-Like Activity ofFerromagnetic Nanoparticles [J], Nat Nanotechnol,2007,2(9):577-83.
    [30] Wu Y H, Song M J, Xin Z A et al., Ultra-Small Particles of Iron Oxide asPeroxidase for Immunohistochemical Detection [J], Nanotechnology,2011,22(22570322).
    [31] Zhu H L, Hu Y, Jiang G X et al., Peroxidase-Like Activity ofAminopropyltriethoxysilane-Modified Iron Oxide Magnetic Nanoparticles and itsApplication to Clenbuterol Detection [J], Eur Food Res Technol,2011,233(5):881-7.
    [32] Chen W, Chen J, Liu A L et al., Peroxidase-Like Activity of Cupric OxideNanoparticle[J], Chem Cat Chem,2011,3(7):1151-4.
    [33] Cui L, Yin H S, Dong J et al., A Mimic Peroxidase Biosensor Based On CalcinedLayered Double Hydroxide for Detection of H2O2[J], Biosens Bioelectron,2011,26(7):3278-83.
    [34] Zhang K, Hu X N, Liu J B et al., Formation of Pdpt Alloy Nanodots On GoldNanorods: Tuning Oxidase-Like Activities Via Composition [J], Langmuir,2011,27(6):2796-803.
    [35] He W W, Liu Y, Yuan J S et al., Au@Pt Nanostructures as Oxidase andPeroxidase Mimetics for Use in Immunoassays [J], Biomaterials,2011,32(4):1139-47.
    [36] Fan J, Yin J J, Ning B et al., Direct Evidence for Catalase and PeroxidaseActivities of Ferritin-Platinum Nanoparticles [J], Biomaterials,2011,32(6):1611-8.
    [37] Asati A, Kaittanis C, Santra S et al., Ph-Tunable Oxidase-Like Activity ofCerium Oxide Nanoparticles Achieving Sensitive Fluorigenic Detection of CancerBiomarkers at Neutral pH [J], Anal Chem,2011,83(7):2547-53.
    [38] Asati A, Santra S, Kaittanis C et al., Oxidase-Like Activity of Polymer-CoatedCerium Oxide Nanoparticles [J], Angew Chem Int Ed,2009,48(13):2308-12.
    [39] Song Y J, Qu K G, Zhao C et al., Graphene Oxide: Intrinsic Peroxidase CatalyticActivity and its Application to Glucose Detection [J], Adv Mater,2010,22(19):2206.
    [40] Dai Z, Liu S, Bao J et al., Nanostructured Fes as a Mimic Peroxidase forBiocatalysis and Biosensing [J], Chem-Eur J,2009,15(17):4321-6.
    [41] Guo Y J, Deng L, Li J et al., Hemin-Graphene Hybrid Nanosheets with IntrinsicPeroxidase-Like Activity for Label-Free Colorimetric Detection of Single-NucleotidePolymorphism [J], ACS Nano,2011,5(2):1282-90.
    [42] Http://En.Wikipedia.Org/Wiki/Manganese_Dioxide.
    [43] Kai K, Yoshida Y, Kageyama Het al., Room-Temperature Synthesis ofManganese Oxide Monosheets [J], J Am Chem Soc,2008,130(47):15938-43.
    [44] Zhang X, Yang W S, Yang J J et al., Synthesis and Characterization ofAlpha-Mno2Nanowires: Self-Assembly and Phase Transformation to Beta-Mno2Microcrystals [J], J Cryst Growth,2008,310(3):716-22.
    [45] Http://En.Wikipedia.Org/Wiki/Magnetic_Nanoparticles.
    [46] Wang H, Li Y B, Wang A et al., Rapid, Sensitive, and Simultaneous Detection ofThree Foodborne Pathogens Using Magnetic Nanobead-Based Immunoseparation andQuantum Dot-Based Multiplex Immunoassay [J], J Food Protect,2011,74(12):2039-47.
    [47] Yang K, Jenkins D M, Su W W, Rapid Concentration of Bacteria UsingSubmicron Magnetic Anion Exchangers for Improving PCR-Based MultiplexPathogen Detection [J], J Microbiol Meth,2011,86(1):69-77.
    [48] Geng P, Zhang X A, Teng Y Q et al., A Dna Sequence-Specific ElectrochemicalBiosensor Based On Alginic Acid-Coated Cobalt Magnetic Beads for the Detection ofE. Coli [J], Biosens Bioelectron,2011,26(7):3325-30.
    [49] Guven B, Basaran-Akgul N, Temur E et al., Sers-Based Sandwich ImmunoassayUsing Antibody Coated Magnetic Nanoparticles for Escherichia Coli Enumeration [J],Analyst,2011,136(4):740-8.
    [50] Varshney M, Yang L J, Su X L et al., Magnetic Nanoparticle-AntibodyConjugates for the Separation of Escherichia Coli O157: H7in Ground Beef [J], JFood Protect,2005,68(9):1804-11.
    [51] Gao J H, Li L, Ho P L et al., Combining Fluorescent Probes and BiofunctionalMagnetic Nanoparticles for Rapid Detection of Bacteria in Human Blood [J], AdvMater,2006,18(23):3145.
    [52] Goransson J, De La Torre T, Stromberg M et al., Sensitive Detection of BacterialDna by Magnetic Nanoparticles [J], Anal Chem,2010,82(22):9138-40.
    [53] Taban B M, Aytac S A, Application of Magnetic Immuno-Polymerase ChainReaction Assay for Detection of Salmonella Spp. In Chicken Meats [J], Eur Food ResTechnol,2009,229(4):623-8.
    [54] Wang Y L, Ravindranath S, Irudayaraj J, Separation and Detection of MultiplePathogens in a Food Matrix by Magnetic Sers Nanoprobes [J], Anal Bioanal Chem,2011,399(3):1271-8.
    [55] Amagliani G, Omiccioli E, Brandi G et al., A Multiplex Magnetic CaptureHybridisation and Multiplex Real-Time Pcr Protocol for Pathogen Detection inSeafood [J], Food Microbiol,2010,27(5):580-5.
    [56] Stormer M, Kleesiek K, Dreier J, High-Volume Extraction of Nucleic Acids byMagnetic Bead Technology for Ultrasensitive Detection of Bacteria in BloodComponents [J], Clin Chem,2007,53(1):104-10.
    [57] Widjojoatmodjo M N, Fluit A C, Torensma R et al., Evaluation of the MagneticImmuno Pcr Assay for Rapid Detection of Salmonella [J], Eur J Clin Microbiol,1991,10(11):935-8.
    [58] Kaittanis C, Naser S A, Perez J M, One-Step, Nanoparticle-Mediated BacterialDetection with Magnetic Relaxation [J], Nano Lett,2007,7(2):380-3.
    [59] Tareste D, Pincet F, Lebeau L et al., Hydrophobic Forces and Hydrogen Bonds inthe Adhesion Between Retinoid-Coated Surfaces [J], Langmuir,2007,23(6):3225-9.
    [60] Mccomas C C, Crowley B M, Boger D L, Partitioning the Loss in VancomycinBinding Affinity for D-Ala-D-Lac Into Lost H-Bond and Repulsive Lone PairContributions [J], J Am Chem Soc,2003,125(31):9314-5.
    [61] Nivens D E, Chambers J Q, Anderson T R et al., Long-Term, Online Monitoringof Microbial Biofilms Using a Quartz Crystal Microbalance [J], Anal Chem,1993,65(1):65-9.
    [62] Shen Z H, Huang M C, Xiao C D et al., Nonlabeled Quartz Crystal MicrobalanceBiosensor for Bacterial Detection Using Carbohydrate and Lectin Recognitions [J],Anal Chem,2007,79(6):2312-9.
    [63] Geim A K, Graphene: Status and Prospects [J], Science,2009,324(5934):1530-4.
    [64] Http://Baike.Baidu.Com/View/1744041.Htm.
    [65] Http://Www.Gatech.Edu/Graphene/.
    [66] Novoselov K S, Geim A K, Morozov S V et al., Electric Field Effect inAtomically Thin Carbon Films [J], Science,2004,306(5696):666-9.
    [67] Reich E S, Nobel Document Triggers Debate [J], Nature,2010,468(7323):486.
    [68] Boehm H P, Naturforeschung B,1962,17:150.
    [69] Schedin F, Geim A K, Morozov S V et al., Detection of Individual GasMolecules Adsorbed On Graphene [J], Nat Mater,2007,6(9):652-5.
    [70] Dong X C, Shi Y M, Huang W et al., Electrical Detection of Dna Hybridizationwith Single-Base Specificity Using Transistors Based On Cvd-Grown GrapheneSheets [J], Adv Mater,2010,22(14):1649.
    [71] Song Y J, Qu K G, Zhao C et al., Graphene Oxide: Intrinsic Peroxidase CatalyticActivity and its Application to Glucose Detection [J], Adv Mater,2010,22(19):2206.
    [72] Feng L Y, Chen Y, Ren J S et al., A Graphene Functionalized ElectrochemicalAptasensor for Selective Label-Free Detection of Cancer Cells [J], Biomaterials,2011,32(11):2930-7.
    [73] Http://Baike.Baidu.Com/View/4837445.Htm.
    [74] Http://Www.18Show.Cn/Blog/Knowledge/D108459_159.Html.
    [75] Abdelmalek Y, Rizk S G, Counting of Sulphate-Reducing Bacteria in MixedBacterial Populations [J], Nature,1958,182(4634):538.
    [76] Tatnal E R, Stanton M K, Ebersole C R, Methods of Testing for the Presence ofSulfate-Reducing Bacteria. Corrosion [J], NACE, Houston,1988,88:1-34.
    [77] Cook K L, Whitehead T R, Spence C et al., Evaluation of the Sulfate-ReducingBacterial Population Associated with Stored Swine Slurry [J], Anaerobe,2008,14(3):172-80.
    [78]张伟,刘丛强,刘涛泽等,荧光原位杂交在喀斯特山地土壤SRB检测中的应用[J],微生物学通报,2008,35:1273-7.
    [79] Jung J H, Cheon D S, Liu F et al., A Graphene Oxide Based Immuno-Biosensorfor Pathogen Detection [J], Angew Chem Int Edit,2010,49(33):5708-11.
    [80] Wang L H, Pu K Y, Li J et al., A Graphene-Conjugated Oligomer Hybrid Probefor Light-Up Sensing of Lectin and Escherichia Coli [J], Adv Mater,2011,23(38):4386.
    [81] Liu F, Choi K S, Park T J et al., Graphene-Based Electrochemical Biosensor forPathogenic Virus Detection [J], Biochip J,2011,5(2):123-8.
    [82] Widdel F, Anaerober Abbau Von Fetts uren Und Benzoes ure Durch NeuIsolierte Arten Sulfatreduzierender Bakterien [D], G ttingen Univ.,1980.
    [83] Baena S, Fardeau M L, Labat M et al., Desulfovibrio Aminophilus Sp. Nov., ANovel Amino Acid Degrading and Sulphate Reducing Bacterium From an AnaerobicDairy Wastewater Lagoon [J], J Syst Appl Microbiol,1998,21:498-504.
    [84] Ollivier B, Cordruwisch R, Hatchikian E C et al., Characterization ofDesulfovibrio-Fructosovorans Sp-Nov [J], Arch Microbiol,1988,149(5):447-50.
    [85] Nanninga H J, Gottschal J C, Properties of Desulfovibrio-Carbinolicus Sp-Novand Other Sulfate-Reducing Bacteria Isolated From an Anaerobic-Purification Plant[J], Appl Environ Microb,1987,53(4):802-9.
    [86] Larry B, Sulfate-Reducing Bacteria[M], Springer,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700