石墨烯及其复合材料对溶解氧还原反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶解氧还原反应(Dissolved oxygen reduction reaction, ORR)在金属海洋腐蚀与新能源技术中扮有重要角色,不同材料上的ORR机理研究是电化学领域的研究热点之一。石墨烯作为一种新型碳纳米材料,能够降低ORR的过电位和增大电流,但其背后的作用机理尚不清晰。本论文采用循环伏安法、旋转圆盘电极伏安法、旋转圆环圆盘电极伏安法等电化学方法对石墨烯上的ORR行为进行深入研究,在动力学计算的基础上,提出作用机理。并根据作用机理,采用杂原子掺杂和复合材料构建的方法,进一步提高其ORR催化性能,实现较低过电位下O_2的四电子还原。主要成果与结论如下:
     (1)明确了制备方法对石墨烯ORR性能的影响。与电沉积法制备的石墨烯相比,化学还原石墨烯上的ORR具有更高的起始电位和更大的电流,因而具有更好的性能。
     (2)提出了不同电解液介质中化学还原石墨烯对ORR的作用机制。化学还原石墨烯能够降低ORR的过电位、增大电流、提高动力学电流密度,但在不同电解液介质中的作用机理不同。在0.1M KOH溶液中,化学还原石墨烯改变了ORR的路径,使得O_2到HO_2–的还原在较低的过电位下发生。在3.5%NaCl溶液中,化学还原石墨烯能够催化中间产物H2O_2的分解,使得O_2的四电子还原在较低的过电位下发生。
     (3)发现了电解液组成和电沉积参数对电沉积石墨烯的制备及ORR性能有重要影响。以LiClO_4为支持电解质时,不能成功制得石墨烯修饰电极。当支持电解质为NaCl时,恒电位和循环伏安扫描方法均可实现石墨烯在电极表面的沉积。恒电位法制备的修饰电极ORR催化活性高、稳定性差;循环伏安法制得的电极具有较好的催化活性与稳定性,且其性能与扫描圈数密切相关。
     (4)建立了氮掺杂石墨烯的氮含量、微观结构与ORR性能之间的关系。以不同比例的氧化石墨和尿素为原料,通过水热反应制备了不同氮含量和微观结构的氮掺杂石墨烯。发现氮含量为7%左右、缺陷密度适中(拉曼光谱中D带与G带强度比在1左右)时,氮掺杂石墨烯具有最高的活性。氮含量过低,活性位点数量不足;氮含量过高,缺陷密度高,阻碍载流子的传输。
     (5)构建了化学还原石墨烯与氧化锰的复合材料,且实现两组分的优势互补。氧化锰的ORR活性受晶型和形貌的影响,不同材料的活性顺序为:β-MnO_2微棱体<无定型MnOx纳米颗粒<-MnO_2纳米线。在化学还原石墨烯与-MnO_2纳米线复合材料中,前者使得ORR反应过电位减小,后者催化HO_2–的分解,从而实现较低过电位下O_2的四电子还原。
     (6)揭示了化学还原石墨烯与Co(OH)_2复合材料上的ORR机理,提出化学还原石墨烯的电化学活化。以Co(NO_3)_2为电解液在化学还原石墨烯表面沉积能够促进HO_2
     分解的Co(OH)_2时,化学还原石墨烯的微观结构发生变化进而得到活化。活化后的化学还原石墨烯能够进一步降低反应过电位并催化HO_2分解,其与Co(OH)_2的协同作用使得O_2的四电子还原在低的过电位下发生。
Dissolved oxygen reduction reaction (ORR) plays an important role in metal marinecorrosion and new energy conversion technologies, and the mechanism study of ORR ondifferent materials is one of the hottest topics in the field of electrochemistry. Graphene, anew carbon nanomaterial, can decrease the overpotential of ORR and increase its current.However, the mechanism behind these phenomena has not been clear. In this thesis, intensivestudies have been done to investigate the ORR on graphene with the help of electrochemicalmethods, including cyclic, rotating disk electrode, and rotating ring-disk electrodevoltammetry, and the mechanism is proposed based on the kinetics calculation. Givenproposed mechanism, hetero-atoms doping and composites constructing are adopted toimprove the ORR properties to achieve4-electron reduction of O_2at lower overpotentials.The main results and conclusions are as follows:
     (1) The effect of preparation methods on the activities of graphene towards ORR hasbeen defined. In comparison with electrodeposited graphene, graphene prepared via chemicalreduction (G-CR for short) leads to higher beginning potential and larger current of ORR, andtherefore possesses better properties.
     (2) The mechanism of G-CR towards ORR in different electrolytes has been proposed.G-CR can decrease the overpotential, increase the current, and improve the kinetic currentdensity of ORR, but functions differently in different electrolytes. The ORR pathway hasbeen changed by G-CR in0.1M KOH solution, which leads to the reduction of O_2to HO_2–atlower overpotentials. While in3.5%solution,4-electron reduction of O_2at loweroverpotentials is achieved via catalytic decomposition of H2O_2by G-CR.
     (3) Electrolyte compositions and electrodeposition parameters have great influence onthe preparation of electrodeposited graphene and its ORR properties. When LiClO_4is utilizedas supporting electrolyte, graphene modified electrodes can not be obtained. Theelectrodeposition of graphene can be achieved by potentiostatic and cyclic voltammetricmethods with NaCl as supporting electrolyte, in which modified electrodes via the formermethod possess high ORR activity and low stability, and the latter gives electrodes with goodactivity and stability, and their properties are dependent on the number of scanning cycles.
     (4) The relationship between the nitrogen content and microstructure of nitrogen-dopedgraphene and ORR activity has been established. Nitrogen-doped graphene materials withdifferent nitrogen contents and microstructure have been synthesized via hydrothermalreaction of graphite oxide and urea with different mass ratios. Nitrogen-doped graphene witha nitrogen content of ca.7%and a moderate defect density (the intensity ratio of D band to Gband in Raman spectrum has a value of ca.1) gives the best ORR activity. If nitrogen contentis lower, active sites available are not enough, and higher nitrogen content brings moredefects to hamper the transport of current carriers.
     (5) The composite of G-CR with manganese oxide has been constructed, and the roles ofthese two components are fully played. The ORR properties of manganese oxide materials areclosely related to their crystallographic structures and morphologies, which follow an order ofβ-MnO_2miciroprism      (6) ORR mechanism on the composite of G-CR with Co(OH)_2has been defined, andelectrochemical activation of G-CR is proposed. The microstructure of G-CR has beenchanged during the electrodeposition of Co(OH)_2with catalytic activity towards HO_2decomposition on G-CR surface from Co(NO_3)_2electrolyte, resulting in the activation ofG-CR. The activated G-CR brings a further decrease in overpotential and catalyticdecomposition of HO_2, and its combination with Co(OH)_2gives rise to4-electron reductionof O_2at lower overpotentials.
引文
[1]宋雪曙.金属材料的海水腐蚀与防护[J].机械工程材料7(1983)58-61.
    [2] R.E. Melchers, R. Jeffrey. Early corrosion of mild steel in seawater [J]. Corros. Sci.47(2005)1678-1693.
    [3] J. Larminie, A. Dicks. Fuel cell systems explained (second edition)[M]. John Wiley&Sons Ltd., Chichester, England,2003, P52.
    [4] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Electric field effect in atomically thincarbon films [J]. Science306(2004)666-669.
    [5] M.J. McAllister, J.L. Li, D.H. Adamson, et al. Single sheet functionalized graphene byoxidation and thermal expansion of graphite [J]. Chem. Mater.19(2007)4396-4404.
    [6] M.D. Stoller, S. Park, Y. Zhu, et al. Graphene-Based Ultracapacitors [J]. Nano Lett.8(2008)3498-3502.
    [7] J. Wang, S. Yang, D. Guo, et al. Comparative studies on electrochemical activity ofgraphene nanosheets and carbon nanotubes [J]. Electrochem. Commun.11(2009)1892-1895.
    [8] R. Kou, Y. Shao, D. Wang, et al. Enhanced activity and stability of Pt catalysts onfunctionalized graphene sheets for electrocatalytic oxygen reduction [J]. Electrochem.Commun.11(2009)954-957.
    [9] L. Tang, Y. Wang, Y. Li, et al. Preparation, Structure, and Electrochemical Properties ofReduced Graphene Sheet Films [J]. Adv. Funct. Mater.19(2009)2782-2789.
    [10] H.S. Wroblowa, Y.C. Pan, G. Razumney. Electroreduction of oxygen-new mechanisticcriterion [J]. J. Electroanal.Chem.69(1976)195-201.
    [11] F. Elkadiri, R. Faure, R. Durand. Electrochemical reduction of molecular-oxygen onplatinum single-crystals [J]. J. Electroanal. Chem.301(1991)177-188.
    [12] N.M. Markovic, R.R. Adzic, B.D. Cahan, et al. Structural effects inelectrocatalysis-oxygen reduction on platinum low-index single-crystal surfaces inperchloric-acid solutions [J]. J. Electroanal. Chem.377(1994)249-259.
    [13] B.N. Grgur, N.M. Markovic, P.N. Ross. Underpotential deposition of lead on Pt(111) inperchloric acid solution: RRDPt(111)E measurements [J]. Langmuir13(1997)6370-6374.
    [14] N.M. Markovic, N.S. Marinkovic, R.R. Adzic. Elctrosorption of hydrogen andsulfuric-acid anions on single-crystal platinum stepped surfaces: Part Ι. The110zone [J]. J.Electroanal.Chem.241(1988)309-328.
    [15] A. Wieckowski. Interfacial electrochemistry: theory, experiment, and applications [M].Marcal Dekker Inc., New York, USA,1999, P821.
    [16] N.M. Markovic, H.A. Gasteiger, N. Philip. Oxygen reduction on platinum low-indexsingle-crystal surfaces in alkaline solution: Rotating ring disk(Pt(hkl)) studies [J]. J. Phys.Chem.100(1996)6715-6721.
    [17] H.A. Gasteiger, S.S. Kocha, B. Sompalli, et al. Activity benchmarks and requirementsfor Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J]. App. Catal. B:Environ.56(2005)9-35.
    [18] N.M. Markovic, T.J. Schmidt, V. Stamenkovic, et al. Oxygen reduction reaction on Ptand Pt bmetallic surfaces: a selective review [J]. Fuel Cells1(2001)105-116.
    [19] C. Wang, H. Daimon, T. Onodera, et al. A general approach to the size-andshape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen[J]. Angew. Chem. Int. Ed.47(2008)3588-3591.
    [20] R. Narayanan, M.A. El-Sayed. Catalysis with transition metal nanoparticles in colloidalsolution: Nanoparticle shape dependence and stability [J]. J. Phys. Chem. B109(2005)12663-12676.
    [21] N. Tian, Z.-Y. Zhou, S.-G. Sun, et al. Synthesis of tetrahexahedral platinum nanocrystalswith high-index facets and high electro-oxidation activity [J]. Science316(2007)732-735.
    [22] Y. Bing, H. Liu, L. Zhang, et al. Nanostructured Pt-alloy electrocatalysts for PEM fuelcell oxygen reduction reaction [J]. Chem. Soc. Rev.39(2010)2184-2202.
    [23] S. Mukerjee, S. Srinivasan. Enhanced electrocatalysis of oxygen reduction on platinumalloys in proton-exchange membrane fuel-cells [J]. J. Electroanal. Chem.357(1993)201-224.
    [24] E. Antolini, J.R.C. Salgado, E.R. Gonzalez. The stability of Pt-M (M=first rowtransition metal) alloy catalysts and its effect on the activity in low temperature fuel cells-Aliterature review and tests on a Pt-Co catalyst [J]. J. Power Sources160(2006)957-968.
    [25] S.L.H. Sarah C. Ball, Joe Hei Leung, Andrea E. Russell. Mechanisms of activity loss inPtCo alloy systems [J]. ECS Trans.11(2007)1247-1257.
    [26] V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, et al. Changing the activity ofelectrocatalysts for oxygen reduction by tuning the surface electronic structure [J]. Angew.Chem. Int. Ed.45(2006)2897-2901.
    [27] J. Zhang, F.H.B. Lima, M.H. Shao, et al. Platinum monolayer on nonnoble metal-noblemetal core-shell nanoparticle electrocatalysts for O-2reduction [J]. J. Phys. Chem. B109(2005)22701-22704.
    [28] J.X. Wang, H. Inada, L.J. Wu, et al. Oxygen reduction on well-defined core-shellnanocatalysts: particle size, facet, and Pt shell thickness effects [J]. J. Am. Chem. Soc.131(2009)17298-17302.
    [29] N.A. Anastasijevic, Z.M. Dimitrijevic, R.R. Adzic. Oxygen reduction on a ruthenium inacid electrolytes [J]. Electrochim. Acta31(1986)1125-1130.
    [30] J.-W. Lee, B.N. Popov. Ruthenium-based electrocatalysts for oxygen reduction reaction-a review [J]. J. Solid State Electrochem.11(2007)1355-1364.
    [31] N. Alonso-Vante, H. Tributsch. Energy-conversion catalysis using semicongductingtransition-metal cluster compounds [J]. Nature323(1986)431-432.
    [32] N. Alonso-Vante, W. Jaegermann, H. Tributsch, et al. Electrocatalysis of oxygenreduction by chalcogenides containing mixed transition-metal clusters [J]. J. Am. Chem. Soc.109(1987)3251-3257.
    [33] S.S. Ozenler, F. Kadirgan. The effect of the matrix on the electro-catalytic properties ofmethanol tolerant oxygen reduction catalysts based on ruthenium-chalcogenides [J]. J. PowerSources154(2006)364-369.
    [34] H. Schulenburg, M. Hilgendorff, I. Dorbandt, et al. Oxygen reduction at carbonsupported ruthenium-selenium catalysts: Selenium as promoter and stabilizer of catalyticactivity [J]. J. Power Sources155(2006)47-51.
    [35] H. Tributsch, M. Bron, M. Hilgendorff, et al. Methanol-resistant cathodic oxygenreduction catalysts for methanol fuel cells [J]. J. Appl. Electrochem.31(2001)739-748.
    [36] L. Liu, H. Kim, J.-W. Lee, et al. Development of ruthenium-based catalysts for oxygenreduction reaction [J]. J. Electrochem. Soc.154(2007) A123-A128.
    [37] L. Liu, J.-W. Lee, B.N. Popov. Development of ruthenium-based bimetallicelectrocatalysts for oxygen reduction reaction [J]. J. Power Sources162(2006)1099-1103.
    [38] P. ó towski, D.M. Dra i, L. Vorkapi. Carbon-air electrode with regenerative shorttime overload capacity: Part1. Effect of manganese dioxide [J]. J. Appl. Electrochem.3(1973)271-283.
    [39] J.P. Brenet. Electrochemical behavior of metallic oxides [J]. J. Power Sources4(1979)183-190.
    [40] K. Matsuki, H. Kamada. Oxygen reduction electrocatalysis on some manganese oxides[J]. Electrochim. Acta31(1986)13-18.
    [41] L.Q. Mao, D. Zhang, T. Sotomura, et al. Mechanistic study of the reduction of oxygen inair electrode with manganese oxides as electrocatalysts [J]. Electrochim. Acta48(2003)1015-1021.
    [42] T. Ohsaka, L.Q. Mao, K. Arihara, et al. Bifunctional catalytic activity of manganeseoxide toward O-2reduction: novel insight into the mechanism of alkaline air electrode [J].Electrochem. Commun.6(2004)273-277.
    [43] Y.L. Cao, H.X. Yang, X.P. Ai, et al. The mechanism of oxygen reduction onMnO2-catalyzed air cathode in alkaline solution [J]. J. Electroanal. Chem.557(2003)127-134.
    [44] J.S. Yang, J.J. Xu. Nanoporous amorphous manganese oxide as electrocatalyst foroxygen reduction in alkaline solutions [J]. Electrochem. Commun.5(2003)306-311.
    [45] P. Clechet, C. Martelet, J.R. Martin, et al. Photoelctrochemical behavior of TiO2andformation of hydrogen-peroxide [J]. Electrochim. Acta24(1979)457-461.
    [46] V.B. Baez, J.E. Graves, D. Pletcher. The reduction of xoygen on titanium-oxideelectrodes [J]. J. Electroanal. Chem.340(1992)273-286.
    [47] N. Ohno, Y. Akeboshi, M. Saito, et al. Oxygen reduction electrode properties ofmanganese oxide nanosheet-based materials [J]. Top. Catal.52(2009)903-911.
    [48] K.L.K. Yeung, A.C.C. Tseung. Reduction of oxygen on teflon-bonded perovskite oxideelectrodes [J]. J. Electrochem. Soc.125(1978)878-882.
    [49] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, et al. Design principles for oxygen-reductionactivity on perovskite oxide catalysts for fuel cells and metal-air batteries [J]. Nat. Chem.3(2011)546-550.
    [50] D. Baresel, W. Sarholz, P. Scharner, et al. Transtion-metal chalcogenides as oxygencatalysts for fuel-cells [J]. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.78(1974)608-611.
    [51] H. Behret, H. Binder, Sandsted.G. Electrocatalytic oxygen reduction on thiospinels andother sulfieds of transtion-metals [J]. Chem. Ing. Tech.46(1974)118-118.
    [52] R.A. Sidik, A.B. Anderson. Co9S8as a catalyst for electroreduction of O-2: Quantumchemistry predictions [J]. J. Phys. Chem. B110(2006)936-941.
    [53] E. Vayner, R.A. Sidik, A.B. Anderson, et al. Experimental and theoretical study of cobaltselenide as a catalyst for O-2electroreduction [J]. J. Phys. Chem. C111(2007)10508-10513.
    [54] D. Susac, A. Sode, L. Zhu, et al. A methodology for investigating new nonprecious metalcatalysts for PEM fuel cells [J]. J. Phys. Chem. B110(2006)10762-10770.
    [55] Y.J. Feng, T. He, N. Alonso-Vante. In situ free-surfactant synthesis andORR-Electrochemistry of carbon-supported Co3S4and CoSe2nanoparticles [J]. Chem.Mater.20(2008)26-28.
    [56] G. Wu, G.F. Cui, D.Y. Li, et al. Carbon-supported Co1.67Te2nanoparticles aselectrocatalysts for oxygen reduction reaction in alkaline electrolyte [J]. J. Mater. Chem.19(2009)6581-6589.
    [57] J. Giner, L. Swette. Oxygen reduction on titanium nitride in alkaline electrolyte [J].Nature211(1966)1291-1292.
    [58] H.X. Zhong, X.B. Chen, H.M. Zhang, et al. Proton exchange membrane fuel cells withchromium nitride nanocrystals as electrocatalysts [J]. Appl. Phys. Lett.91(2007).
    [59] Y. Ohgi, A. Ishihara, Y. Shibata, et al. Catalytic activity of partially oxidizedtransition-metal carbide-nitride for oxygen reduction reaction in sulfuric acid [J]. Chem. Lett.37(2008)608-609.
    [60] Q. Zhu, S.H. Zhou, X.Q. Wang, et al. Controlled synthesis of mesoporous carbonmodified by tungsten carbides as an improved electrocatalyst support for the oxygenreduction reaction [J]. J. Power Sources193(2009)495-500.
    [61] B. Avasarala, T. Murray, W.Z. Li, et al. Titanium nitride nanoparticles basedelectrocatalysts for proton exchange membrane fuel cells [J]. J. Mater. Chem.19(2009)1803-1805.
    [62] R. Jasinski. A new fuel cell cathode catalyst [J]. Nature201(1964)1212-1213.
    [63] K. Wiesener, D. Ohms, V. Neumann, et al. N-4macrocycles as electrocatalysts for thereduction of oxygen [J]. Mater. Chem. Phys.22(1989)457-475.
    [64] C. Fierro, A.B. Anderson, D.A. Scherson. Electron-donor acceptor properties ofporphyrins, phthalocyanines, and related ring chelates-A molecular-orbital approach [J]. J.Phys. Chem.92(1988)6902-6907.
    [65] S. Gupta, D. Tryk, I. Bae, et al. Heat-treated polyacrylonitrile-based catalysts for oxygenelectroreduction [J]. J. Appl. Electrochem.19(1989)19-27.
    [66] C.W.B. Bezerra, L. Zhang, K. Lee, et al. A review of Fe-N/C and Co-N/C catalysts forthe oxygen reduction reaction [J]. Electrochim. Acta53(2008)4937-4951.
    [67] G. Wei, J.S. Wainright, R.F. Savinell. Catalytic activity for oxygen reduction reaction ofcatalysts consisting of carbon, nitrogen and cobalt [J]. J. New Mater. Electrochem. Syst.3(2000)121-129.
    [68] H. Wang, R. Cote, G. Faubert, et al. Effect of the pre-treatment of carbon black supportson the activity of Fe-based electrocatalysts for the reduction of oxygen [J]. J. Phys. Chem. B103(1999)2042-2049.
    [69] F. Jaouen, F. Charreteur, J.P. Dodelet. Fe-based catalysts for oxygen reduction inPEMFCs-Importance of the disordered phase of the carbon support [J]. J. Electrochem. Soc.153(2006) A689-A698.
    [70] G. Faubert, R. Cote, J.P. Dodelet, et al. Oxygen reduction catalysts for polymerelectrolyte fuel cells from the pyrolysis of Fe-II acetate adsorbed3,4,9,10-perylenetetracarboxylic dianhydride [J]. Electrochim. Acta44(1999)2589-2603.
    [71] I. Morcos, E. Yeager. Kinetic studies of oxygen-peroxide couple on pyrolytic graphite [J].Electrochim. Acta15(1970)953-975.
    [72] S. Maldonado, K.J. Stevenson. Influence of nitrogen doping on oxygen reductionelectrocatalysis at carbon nanofiber electrodes [J]. J. Phys. Chem. B109(2005)4707-4716.
    [73] M.G. Sullivan, R. Kotz, O. Haas. Thick active layers of electrochemically modifiedglassy carbon-Electrochemical impedance studies [J]. J. Electrochem. Soc.147(2000)308-317.
    [74] J. Maruyama, I. Abe. Cathodic oxygen reduction at the interface between Nafion (R) andelectrochemically oxidized glassy carbon surfaces [J]. J. Electroanal. Chem.527(2002)65-70.
    [75] W. He, M. Chen, Z. Zou, et al. Oxygen reduction on Pd3Pt1bimetallic nanoparticleshighly loaded on different carbon supports [J]. Appl. Catal. B: Environ.97(2010)347-353.
    [76] J. Zeng, C. Francia, M.A. Dumitrescu, et al. Electrochemical performance of Pt-basedcatalysts supported on different ordered mesoporous carbons (Pt/OMCs) for oxygen reductionreaction [J]. Ind. Eng. Chem. Res.51(2012)7500-7509.
    [77] J.-S. Zheng, X.-S. Zhang, P. Li, et al. Effect of carbon nanofiber microstructure onoxygen reduction activity of supported palladium electrocatalyst [J]. Electrochem. Commun.9(2007)895-900.
    [78] F. Charreteur, F. Jaouen, S. Ruggeri, et al. Fe/N/C non-precious catalysts for PEM fuelcells: Influence of the structural parameters of pristine commercial carbon blacks on theiractivity for oxygen reduction [J]. Electrochim. Acta53(2008)2925-2938.
    [79] A. Morozan, S. Campidelli, A. Filoramo, et al. Catalytic activity of cobalt and ironphthalocyanines or porphyrins supported on different carbon nanotubes towards oxygenreduction reaction [J]. Carbon49(2011)4839-4847.
    [80] P.J. Britto, K.S.V. Santhanam, A. Rubio, et al. Improved charge transfer at carbonnanotube electrodes [J]. Adv. Mater.11(1999)154-157.
    [81] I. Kruusenberg, N. Alexeyeva, K. Tammeveski, et al. Effect of purification of carbonnanotubes on their electrocatalytic properties for oxygen reduction in acid solution [J].Carbon49(2011)4031-4039.
    [82] K. Matsubara, K. Waki. Oxygen reduction characteristics of bamboo-shaped,multi-walled carbon nanotubes without nitrogen in acid media [J]. Electrochim. Acta55(2010)9166-9173.
    [83] P.H. Matter, E. Wang, M. Arias, et al. Oxygen reduction reaction catalysts prepared fromacetonitrile pyrolysis over alumina-supported metal particles [J]. J. Phys. Chem. B110(2006)18374-18384.
    [84] K. Gong, F. Du, Z. Xia, et al. Nitrogen-Doped Carbon Nanotube Arrays with HighElectrocatalytic Activity for Oxygen Reduction [J]. Science323(2009)760-764.
    [85] Z. Mo, S. Liao, Y. Zheng, et al. Preparation of nitrogen-doped carbon nanotube arraysand their catalysis towards cathodic oxygen reduction in acidic and alkaline media [J].Carbon50(2012)2620-2627.
    [86] C.V. Rao, C.R. Cabrera, Y. Ishikawa. In Search of the Active Site in Nitrogen-DopedCarbon Nanotube Electrodes for the Oxygen Reduction Reaction [J]. J. Phys. Chem. Lett.1(2010)2622-2627.
    [87] Z. Chen, D. Higgins, Z. Chen. Electrocatalytic activity of nitrogen doped carbonnanotubes with different morphologies for oxygen reduction reaction [J]. Electrochim. Acta55(2010)4799-4804.
    [88] S. Wang, D. Yu, L. Dai. Polyelectrolyte Functionalized Carbon Nanotubes as EfficientMetal-free Electrocatalysts for Oxygen Reduction [J]. J. Am. Chem. Soc.133(2011)5182-5185.
    [89] L. Yang, S. Jiang, Y. Zhao, et al. Boron-Doped Carbon Nanotubes as Metal-FreeElectrocatalysts for the Oxygen Reduction Reaction [J]. Angew. Chem. Int. Ed.50(2011)7132-7135.
    [90] B. Lang. Leed study of deposition of carbon on platinum crystal-surfaces [J]. Surf. Sci.53(1975)317-329.
    [91] L.M. Viculis, J.J. Mack, R.B. Kaner. A chemical route to carbon nanoscrolls [J]. Science299(2003)1361-1361.
    [92] V. Huc, N. Bendiab, N. Rosman, et al. Large and flat graphene flakes produced by epoxybonding and reverse exfoliation of highly oriented pyrolytic graphite [J]. Nanotechnol.19(2008).
    [93] A. Shukla, R. Kumar, J. Mazher, et al. Graphene made easy: High quality, large-areasamples [J]. Solid State Commun.149(2009)718-721.
    [94] Y. Hernandez, V. Nicolosi, M. Lotya, et al. High-yield production of graphene byliquid-phase exfoliation of graphite [J]. Nat. Nanotechnol.3(2008)563-568.
    [95] M. Lotya, Y. Hernandez, P.J. King, et al. Liquid phase production of graphene byexfoliation of graphite in surfactant/water solutions [J]. J. Am. Chem. Soc.131(2009)3611-3620.
    [96] P.R. Somani, S.P. Somani, M. Umeno. Planer nano-graphenes from camphor by CVD [J].Chem. Phys. Lett.430(2006)56-59.
    [97] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, et al. Chemical vapor deposition ofthin graphite films of nanometer thickness [J]. Carbon45(2007)2017-2021.
    [98] Q. Yu, J. Lian, S. Siriponglert, et al. Graphene segregated on Ni surfaces and transferredto insulators [J]. Appl. Physic. Lett.93(2008).
    [99] A. Reina, X. Jia, J. Ho, et al. Large Area, Few-layer graphene films on arbitrarysubstrates by chemical vapor deposition [J]. Nano Lett.9(2009)30-35.
    [100] X. Wang, H. You, F. Liu, et al. Large-scale synthesis of few-layered graphene usingCVD [J]. Chem. Vap. Deposition15(2009)53-56.
    [101] X. Li, W. Cai, J. An, et al. Large-area synthesis of high-quality and uniform graphenefilms on copper foils [J]. Science324(2009)1312-1314.
    [102] J.J. Wang, M.Y. Zhu, R.A. Outlaw, et al. Synthesis of carbon nanosheets by inductivelycoupled radio-frequency plasma enhanced chemical vapor deposition [J]. Carbon42(2004)2867-2872.
    [103] M. Zhu, J. Wang, B.C. Holloway, et al. A, mechanism for carbon nanosheet formation[J]. Carbon45(2007)2229-2234.
    [104] S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al. Graphene-based compositematerials [J]. Nature442(2006)282-286.
    [105] S. Stankovich, D.A. Dikin, R.D. Piner, et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide [J]. Carbon45(2007)1558-1565.
    [106] D. Li, M.B. Mueller, S. Gilje, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nat. Nanotechnol.3(2008)101-105.
    [107] C.A. Amarnath, C.E. Hong, N.H. Kim, et al. Efficient synthesis of graphene sheetsusing pyrrole as a reducing agent [J]. Carbon49(2011)3497-3502.
    [108] C. Nethravathi, M. Rajamathi. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon46(2008)1994-1998.
    [109] D. Zhou, Q.-Y. Cheng, B.-H. Han. Solvothermal synthesis of homogeneous graphenedispersion with high concentration [J]. Carbon49(2011)3920-3927.
    [110] S. Dubin, S. Gilje, K. Wang, et al. A One-Step, Solvothermal Reduction Method forProducing Reduced Graphene Oxide Dispersions in Organic Solvents [J]. Acs Nano4(2010)3845-3852.
    [111] H.C. Schniepp, J.L. Li, M.J. McAllister, et al. Functionalized single graphene sheetsderived from splitting graphite oxide [J]. J. Phys. Chem. B110(2006)8535-8539.
    [112] X. Wang, L. Zhi, K. Muellen. Transparent, conductive graphene electrodes fordye-sensitized solar cells [J]. Nano Lett.8(2008)323-327.
    [113] W. Chen, L. Yan. Preparation of graphene by a low-temperature thermal reduction atatmosphere pressure [J]. Nanoscale2(2010)559-563.
    [1] Q. He, X. Yang, X. Ren, et al. A novel CuFe-based catalyst for the oxygen reductionreaction in alkaline media [J]. J. Power Sources196(2011)7404-7410.
    [2] X. Li, B.N. Popov, T. Kawahara, et al. Non-precious metal catalysts synthesized fromprecursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells[J]. J. Power Sources196(2011)1717-1722.
    [3] G.C. Gil, I.S. Chang, B.H. Kim, et al. Operational parameters affecting the performance ofa mediator-less microbial fuel cell [J]. Biosens. Bioelectron.18(2003)327-334.
    [4] J.C. Biffinger, J. Pietron, R. Ray, et al. A biofilm enhanced miniature microbial fuel cellusing Shewanella oneidensis DSP10and oxygen reduction cathodes [J]. Biosens. Bioelectron.22(2007)1672-1679.
    [5] H. Rismani-Yazdi, S.M. Carver, A.D. Christy, et al. Cathodic limitations in microbial fuelcells: An overview [J]. J. Power Sources180(2008)683-694.
    [6] Z. He, L.T. Angenent. Application of bacterial biocathodes in microbial fuel cells [J].Electroanal.18(2006)2009-2015.
    [7] N. Wagner, M. Schulze, E. Gulzow. Long term investigations of silver cathodes foralkaline fuel cells [J]. J. Power Sources127(2004)264-272.
    [8] T. Ohsaka, L.Q. Mao, K. Arihara, et al. Bifunctional catalytic activity of manganese oxidetoward O-2reduction: novel insight into the mechanism of alkaline air electrode [J].Electrochem. Commun.6(2004)273-277.
    [9] H. Meng, P.K. Shen. Novel Pt-free catalyst for oxygen electroreduction [J]. Electrochem.Commun.8(2006)588-594.
    [10] R.W. Reeve, P.A. Christensen, A.J. Dickinson, et al. Methanol-tolerant oxygen reductioncatalysts based on transition metal sulfides and their application to the study of methanolpermeation [J]. Electrochim. Acta45(2000)4237-4250.
    [11] B. Erable, I. Vandecandelaere, M. Faimali, et al. Marine aerobic biofilm as biocathodecatalyst [J]. Bioelectrochem.78(2010)51-56.
    [12] F. Zhao, F. Harnisch, U. Schroder, et al. Application of pyrolysed iron(II) phthalocyanineand CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells [J].Electrochem. Commun.7(2005)1405-1410.
    [13] F. Harnisch, N.A. Savastenko, F. Zhao, et al. Comparative study on the performance ofpyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction inpH neutral electrolyte solutions [J]. J. Power Sources193(2009)86-92.
    [14] Y. Yuan, S. Zhou, L. Zhuang. Polypyrrole/carbon black composite as a novel oxygenreduction catalyst for microbial fuel cells [J]. J. Power Sources195(2010)3490-3493.
    [15] I. Roche, K. Scott. Carbon-supported manganese oxide nanoparticles as electrocatalystsfor oxygen reduction reaction (orr) in neutral solution [J]. J. Appl. Electrochem.39(2009)197-204.
    [16] X. Li, B. Hu, S. Suib, et al. Manganese dioxide as a new cathode catalyst in microbialfuel cells [J]. J. Power Sources195(2010)2586-2591.
    [17] J.M. Morris, S. Jin, J. Wang, et al. Lead dioxide as an alternative catalyst to platinum inmicrobial fuel cells [J]. Electrochem. Commun.9(2007)1730-1734.
    [18] S. Freguia, K. Rabaey, Z. Yuan, et al. Non-catalyzed cathodic oxygen reduction atgraphite granules in microbial fuel cells [J]. Electrochim. Acta53(2007)598-603.
    [19] B. Erable, N. Duteanu, S.M.S. Kumar, et al. Nitric acid activation of graphite granules toincrease the performance of the non-catalyzed oxygen reduction reaction (ORR) for MFCapplications [J]. Electrochem. Commun.11(2009)1547-1549.
    [20] R. Kou, Y. Shao, D. Wang, et al. Enhanced activity and stability of Pt catalysts onfunctionalized graphene sheets for electrocatalytic oxygen reduction [J]. Electrochem.Commun.11(2009)954-957.
    [21] L. Tang, Y. Wang, Y. Li, et al. Preparation, structure, and electrochemical properties ofreduced graphene sheet films [J]. Adv. Funct. Mater.19(2009)2782-2789.
    [22] C. Shan, H. Yang, J. Song, et al. Direct electrochemistry of glucose oxidase andbiosensing for glucose based on graphene [J]. Anal. Chem.81(2009)2378-2382.
    [23] W.S. Hummers, R.E. Offeman. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.80(1958)1339-1339.
    [24] D. Li, M.B. Mueller, S. Gilje, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nat. Nanotechnol.3(2008)101-105.
    [25] J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, et al. Atomic force and scanningtunneling microscopy imaging of graphene nanosheets derived from graphite oxide [J].Langmuir25(2009)5957-5968.
    [26] J. Shen, Y. Hu, M. Shi, et al. Fast and facile preparation of graphene oxide and reducedgraphene oxide nanoplatelets [J]. Chem. Mater.21(2009)3514-3520.
    [27] K. Tammeveski, K. Kontturi, R.J. Nichols, et al. Surface redox catalysis for O-2reduction on quinone-modified glassy carbon electrodes [J]. J. Electroanal. Chem.515(2001)101-112.
    [28] M.N. Zhang, Y.M. Yan, K.P. Gong, et al. Electrostatic layer-by-layer assembled carbonnanotube multilayer film and its electrocatalytic activity for O-2reduction [J]. Langmuir20(2004)8781-8785.
    [29] D. Zhang, J.F. Wu, L.Q. Mao, et al. Hydrodynamic chronocoulometric estimation ofdiffusion coefficients and saturated concentrations of dioxygen in KOH solutions [J]. Indian J.Chem. Sect. A42(2003)801-806.
    [30] F. Kuang, D. Zhang, Y. Li, et al. Electrochemical impedance spectroscopy analysis foroxygen reduction reaction in3.5%NaCl solution [J]. J. Solid State Electrochem.13(2009)385-390.
    [31] A.J. Vanstroe, L.J.J. Janssen. Determination of the diffusion-coefficient of oxygen insodium-chloride solutions with a transient pulse technique [J]. Anal. Chim. Acta279(1993)213-219.
    [32] S.L. Gojkovic, S.K. Zecevic, M.D. Obradovic, et al. Oxygen reduction on a duplexstainless steel [J]. Corros. Sci.40(1998)849-860.
    [1] G.K. Ramesha, S. Sampath. Electrochemical reduction of oriented graphene oxide films:an in situ Raman spectroelectrochemical study [J]. J. Phys. Chem. C113(2009)7985-7989.
    [2] Z. Wang, X. Zhou, J. Zhang, et al. Direct electrochemical reduction of single-layergraphene oxide and subsequent functionalization with glucose oxidase [J]. J. Phys. Chem. C113(2009)14071-14075.
    [3] M. Zhou, Y. Wang, Y. Zhai, et al. Controlled synthesis of large-area and patternedelectrochemically reduced graphene oxide films [J]. Chem. Eur. J.15(2009)6116-6120.
    [4] Y. Harima, S. Setodoi, I. Imae, et al. Electrochemical reduction of graphene oxide inorganic solvents [J]. Electrochim. Acta56(2011)5363-5368.
    [5] X.-Y. Peng, X.-X. Liu, D. Diamond, et al. Synthesis of electrochemically-reducedgraphene oxide film with controllable size and thickness and its use in supercapacitor [J].Carbon49(2011)3488-3496.
    [6] L. Chen, Y. Tang, K. Wang, et al. Direct electrodeposition of reduced graphene oxide onglassy carbon electrode and its electrochemical application [J]. Electrochem. Commun.13(2011)133-137.
    [7] K. Sheng, Y. Sun, C. Li, et al. Ultrahigh-rate supercapacitors based on eletrochemicallyreduced graphene oxide for ac line-filtering [J]. Sci. Rep.2(2012) Doi:10.1038/srep00247.
    [8] Y. Li, K. Sheng, W. Yuan, et al. A high-performance flexible fibre-shaped electrochemicalcapacitor based on electrochemically reduced graphene oxide [J]. Chem. Commun.49(2013)291-293.
    [9] C. Liu, Y. Teng, R. Liu, et al. Fabrication of graphene films on TiO2nanotube arrays forphotocatalytic application [J]. Carbon49(2011)5312-5320.
    [10] J. Ping, Y. Wang, K. Fan, et al. Direct electrochemical reduction of graphene oxide onionic liquid doped screen-printed electrode and its electrochemical biosensing application [J].Biosens. Bioelectron.28(2011)204-209.
    [11] Y.-G. Zhou, J.-J. Chen, F.-b. Wang, et al. A facile approach to the synthesis of highlyelectroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells[J]. Chem. Commun.46(2010)5951-5953.
    [12] C. Liu, K. Wang, S. Luo, et al. Direct electrodeposition of graphene enabling theone-Step synthesis of graphene-metal nanocomposite films [J]. Small7(2011)1203-1206.
    [13] Y. Jiang, Y. Lu, F. Li, et al. Facile electrochemical codeposition of "clean" graphene-Pdnanocomposite as an anode catalyst for formic acid electrooxidation [J]. Electrochem.Commun.19(2012)21-24.
    [14] S. Yang, Z. Lu, S. Luo, et al. Direct electrodeposition of a biocomposite consisting ofreduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for directsensing of glucose [J]. Microchim. Acta180(2013)127-135.
    [15] K. Chen, L. Chen, Y. Chen, et al. Three-dimensional porous graphene-based compositematerials: electrochemical synthesis and application [J]. J. Mater. Chem.22(2012)20968-20976.
    [16] M. Hilder, B. Winther-Jensen, D. Li, et al. Direct electro-deposition of graphene fromaqueous suspensions [J]. Phys. Chem. Chem. Phys.13(2011)9187-9193.
    [17] A. Sarapuu, K. Vaik, D.J. Schiffrin, et al. Electrochemical reduction of oxygen onanthraquinone-modified glassy carbon electrodes in alkaline solution [J]. J. Electroanal.Chem.541(2003)23-29.
    [1] K.R. Lee, K.U. Lee, J.W. Lee, et al. Electrochemical oxygen reduction on nitrogen dopedgraphene sheets in acid media [J]. Electrochem. Commun.12(2010)1052-1055.
    [2] Y. Li, J. Wang, X. Li, et al. Discharge product morphology and increased chargeperformance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect ofsulphur doping [J]. J. Mater. Chem.22(2012)20170-20174.
    [3] S.Y. Wang, L.P. Zhang, Z.H. Xia, et al. BCN graphene as efficient metal-freeelectrocatalyst for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed.51(2012)4209-4212.
    [4] L.T. Qu, Y. Liu, J.B. Baek, et al. Nitrogen-doped graphene as efficient metal-freeelectrocatalyst for oxygen reduction in fuel cells [J]. Acs Nano4(2010)1321-1326.
    [5] S.B. Yang, L.J. Zhi, K. Tang, et al. Efficient synthesis of heteroatom (N or S)-dopedgraphene based on ultrathin graphene oxide-porous silica sheets for oxygen reductionreactions [J]. Adv. Func. Mater.22(2012)3634-3640.
    [6] D.S. Geng, Y. Chen, Y.G. Chen, et al. High oxygen-reduction activity and durability ofnitrogen-doped graphene [J]. Energy Environ. Sci.4(2011)760-764.
    [7] D.W. Boukhvalov, Y.-W. Son. Oxygen reduction reactions on pure and nitrogen-dopedgraphene: a first-principles modeling [J]. Nanoscale4(2012)417-420.
    [8] Z.Q. Luo, S.H. Lim, Z.Q. Tian, et al. Pyridinic N doped graphene: synthesis, electronicstructure, and electrocatalytic property [J]. J. Mater. Chem.21(2011)8038-8044.
    [9] Z.H. Sheng, L. Shao, J.J. Chen, et al. Catalyst-free synthesis of nitrogen-doped graphenevia thermal annealing graphite oxide with melamine and its excellent electrocatalysis [J]. AcsNano5(2011)4350-4358.
    [10] D.C. Wei, Y.Q. Liu, Y. Wang, et al. Synthesis of N-doped graphene by chemical vapordeposition and its electrical properties [J]. Nano Lett.9(2009)1752-1758.
    [11] Y. Wang, Y.Y. Shao, D.W. Matson, et al. Nitrogen-doped graphene and its application inelectrochemical biosensing [J]. Acs Nano4(2010)1790-1798.
    [12] K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, et al. Simple method of preparinggraphene flakes by an arc-discharge method [J]. J. Phys. Chem. C113(2009)4257-4259.
    [13] X.L. Li, H.L. Wang, J.T. Robinson, et al. Simultaneous nitrogen doping and reduction ofgraphene oxide [J]. J. Am. Chem. Soc.131(2009)15939-15944.
    [14] D.H. Long, W. Li, L.C. Ling, et al. Preparation of nitrogen-doped graphene sheets by acombined chemical and hydrothermal reduction of graphene oxide [J]. Langmuir26(2010)16096-16102.
    [15] S.A. Hasan, E.K. Tsekoura, V. Sternhagen, et al. Evolution of the composition andsuspension performance of nitrogen-doped graphene [J]. J. Phys. Chem. C116(2012)6530-6536.
    [16] L. Sun, L. Wang, C.G. Tian, et al. Nitrogen-doped graphene with high nitrogen level viaa one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energystorage [J]. Rsc Adv.2(2012)4498-4506.
    [17] Y.J. Zhang, K. Fugane, T. Mori, et al. Wet chemical synthesis of nitrogen-doped graphenetowards oxygen reduction electrocatalysts without high-temperateure pyrolysis [J]. J. Mater.Chem.22(2012)6575-6580.
    [18] X.B. Fan, W.C. Peng, Y. Li, et al. Deoxygenation of exfoliated graphite oxide underalkaline conditions: a green route to graphene preparation [J]. Adv. Mater.20(2008)4490-4493.
    [19] L.Y. Feng, Y.G. Chen, L. Chen. Easy-to-operate and low-temperature synthesis ofgram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuelcells [J]. Acs Nano5(2011)9611-9618.
    [20] G.X. Ma, R.R. Jia, J.H. Zhao, et al. Nitrogen-doped hollow carbon nanoparticles withexcellent oxygen reduction performances and their electrocatalytic kinetics [J]. J. Phys. Chem.C115(2011)25148-25154.
    [21] C.V. Rao, Y. Ishikawa. Activity, selectivity, and anion-exchangemembrane fuel cellperformance of virtually metal-free nitrogen-doped carbon nanotube electrodes for oxygenreduction reaction [J]. J. Phys. Chem. C116(2012)4340-4346.
    [22] A.C. Ferrari, J.C. Meyer, V. Scardaci, et al. Raman spectrum of graphene and graphenelayers [J]. Phys. Rev. Lett.97(2006).
    [23] Z.H. Ni, T. Yu, Y.H. Lu, et al. Uniaxial strain on graphene: Raman spectroscopy studyand band-gap opening [J]. Acs Nano2(2008)2301-2305.
    [24] Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, et al. Structure and electricalconductivity of nitrogen-doped carbon nanofibers [J]. Carbon47(2009)1922-1929.
    [25] K.P. Gong, F. Du, Z.H. Xia, et al. Nitrogen-doped carbon nanotube arrays with highelectrocatalytic activity for oxygen reduction [J]. Science323(2009)760-764.
    [1] L.Q. Mao, D. Zhang, T. Sotomura, et al. Mechanistic study of the reduction of oxygen inair electrode with manganese oxides as electrocatalysts [J]. Electrochim. Acta48(2003)1015-1021.
    [2] Y.L. Cao, H.X. Yang, X.P. Ai, et al. The mechanism of oxygen reduction onMnO2-catalyzed air cathode in alkaline solution [J]. J. Electroanal. Chem.557(2003)127-134.
    [3] F. Cheng, Y. Su, J. Liang, et al. MnO(2)-based nanostructures as catalysts forelectrochemical oxygen reduction in alkaline media [J]. Chem. Mater.22(2010)898-905.
    [4] W. Xiao, D. Wang, X.W. Lou. Shape-controlled synthesis of MnO(2) nanostructures withenhanced electrocatalytic activity for oxygen reduction [J]. J. Phys. Chem. C114(2010)1694-1700.
    [5] G. Qiu, H. Huang, S. Dharmarathna, et al. Hydrothermal synthesis of manganese oxidenanomaterials and their catalytic and electrochemical properties [J]. Chem. Mater.23(2011)3892-3901.
    [6] T. Ohsaka, L.Q. Mao, K. Arihara, et al. Bifunctional catalytic activity of manganese oxidetoward O-2reduction: novel insight into the mechanism of alkaline air electrode [J].Electrochem. Commun.6(2004)273-277.
    [7] M.S. El-Deab, T. Ohsaka. Electrocatalytic reduction of oxygen at Aunanoparticles-manganese oxide nanoparticle binary catalysts [J]. J. Electrochem. Soc.153(2006) A1365-A1371.
    [8] D. Zhang, D. Chi, T. Okajima, et al. Catalytic activity of dual catalysts system based onnano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction ofoxygen in alkaline media [J]. Electrochim. Acta52(2007)5400-5406.
    [9] D. Zhang, T. Sotomura, T. Ohsaka. Dual catalysts system based on nano-manganese oxideand multiwall carbon nanotube for four-electron oxygen reduction [J]. Chem. Lett.35(2006)520-521.
    [10] J. Yan, Z.J. Fan, T. Wei. Fast and reversible surface redox reaction of graphene-MnO2composites as supercapacitor electrodes [J]. Carbon48(2010)3825-3823.
    [11] Y. Qian, S.B. Lu, F.L. Gao. Synthesis of manganese dioxide/reduced graphene oxidecomposites with excellent electrocatalytic activity toward reduction of oxygen [J]. Mater. Lett.65(2011)56-58.
    [12] J.T. Zhang, J.W. Jiang, X.S. Zhao, et al. Synthesis and capacitive properties ofmanganese oxide nanosheets dispersed on functionlized graphene sheets [J]. J. Phys. Chem. C115(2011)6448-6454.
    [13] Z.S. Wu, W.C. Ren, D.W. Wang, et al. High-energy MnO2nanowire/graphene andgraphene asymmetric electrochemical capcitors [J]. ACS Nano4(2010)5835-5842.
    [14] Q. Cheng, J. Tang, J. Ma, et al. Graphene and nanostructured MnO2compositeelectrodes for supercapacitors [J]. Carbon49(2011)2917-2925.
    [15] S. Chen, J. Zhu, X. Wu, et al. Graphene oxide-MnO2nanocomposites for supercapacitors[J]. Acs Nano4(2010)2822-2830.
    [16] X. Fan, W. Peng, Y. Li, et al. Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation [J]. Adv. Mater.20(2008)4490-4493.
    [17] D. Li, M.B. Mueller, S. Gilje, et al. Processable aqueous dispersions of graphenenanosheets [J]. Nat. Nanotechnol.3(2008)101-105.
    [18] C. Nethravathi, M. Rajamathi. Chemically modified graphene sheets produced by thesolvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon46(2008)1994-1998.
    [19] X. Zhang, W. Yang, J. Yang, et al. Synthesis and characterization of alpha-MnO2nanowires: Self-assembly and phase transformation to beta-MnO2microcrystals [J]. J. Cryst.Growth310(2008)716-722.
    [20] J.S. Lee, K.H. You, C.B. Park. Highly Photoactive, Low bandgap TiO2nanoparticleswrapped by graphene [J]. Adv. Mater.24(2012)1084-1088.
    [21] F.H.B. Lima, M.L. Calegaro, E.A. Ticianelli. Electrocatalytic activity of manganeseoxides prepared by thermal decomposition for oxygen reduction [J]. Electrochim. Acta52(2007)3732-3738.
    [22] J. Mooi, P.W. Selwood. Catalytic activity of supported maganese oxides for the hydrogenperoxide decomposition [J]. J. Am. Chem. Soc.74(1952)1750-1754.
    [23] W. Zhang, H. Wang, Z. Yang, et al. Promotion of H2O2decomposition activity overbeta-MnO2nanorod catalysts [J]. Colloid Surf. A-Physicochem. Eng. Asp.304(2007)60-66.
    [24] J.K. Chang, Y.L. Chen, W.T. Tsai. Effect of heat treatment on material characteristics andpseudo-capacitive properties of manganese oxide prepared by anodic deposition [J]. J. PowerSources135(2004)344-353.
    [25] K. Vaik, U. Maeorg, F.C. Maschion, et al. Electrocatalytic oxygen reduction on glassycarbon grafted with anthraquinone by anodic oxidation of a carboxylate substituent [J].Electrochim. Acta50(2005)5126-5131.
    [26] I. Kruusenberg, L. Matisen, H. Jiang, et al. Electrochemical reduction of oxygen ondouble-walled carbon nanotube modified glassy carbon electrodes in acid and alkalinesolutions [J]. Electrochem. Commun.12(2010)920-923.
    [1] V. Pralong, A. Delahaye-Vidal, B. Beaudoin, et al. Bismuth-enhanced electrochemicalstability of cobalt hydroxide used as an additive in Ni/Cd and Ni/metal hydride batteries [J]. J.Electrochem. Soc.147(2000)2096-2103.
    [2] W.Y. Li, S.Y. Zhang, J. Chen. Synthesis, characterization, and electrochemical applicationof Ca(OH)(2)-, CO(OH)(2)-, and Y(OH)(3)-coated Ni(OH)(2) tubes [J]. J. Phys. Chem. B109(2005)14025-14032.
    [3] L. Cao, F. Xu, Y.Y. Liang, et al. Preparation of the novel nanocompositeCo(OH)(2)/ultra-stable Y zeolite and its application as a supercapacitor with high energydensity [J]. Adv. Mater.16(2004)1853-1857.
    [4] Y.Y. Liang, L. Cao, L.B. Kong, et al. Synthesis of Co(OH)(2)/USY composite and itsapplication for electrochemical supercapacitors [J]. J. Power Sources136(2004)197-200.
    [5] V. Gupta, T. Kusahara, H. Toyama, et al. Potentiostatically deposited nanostructuredalpha-Co(OH)(2): A high performance electrode material for redox-capacitors [J].Electrochem. Commun.9(2007)2315-2319.
    [6] M. Jafarian, M.G. Mahjani, H. Heli, et al. A study of the electro-catalytic oxidation ofmethanol on a cobalt hydroxide modified glassy carbon electrode [J]. Electrochim. Acta48(2003)3423-3429.
    [7] L.F. Fan, X.Q. Wu, M.D. Guo, et al. Cobalt hydroxide film deposited on glassy carbonelectrode for electrocatalytic oxidation of hydroquinone [J]. Electrochim. Acta52(2007)3654-3659.
    [8] M. Hasanzadeh, G. Karim-Nezhad, N. Shadjou, et al. Cobalt hydroxide nanoparticlesmodified glassy carbon electrode as a biosensor for electrooxidation and determination ofsome amino acids [J]. Anal. Biochem.389(2009)130-137.
    [9] Y. Wang, D. Zhang, H.Q. Liu. A study of the catalysis of cobalt hydroxide towards theoxygen reduction in alkaline media [J]. J. Power Sources195(2010)3135-3139.
    [10] W.J. Zhou, D.D. Zhao, M.W. Xu, et al. Effects of the electrode position potential andtemperature on the electrochemical capacitance behavior of ordered mesoporous cobalthydroxide films [J]. Electrochim. Acta53(2008)7210-7219.
    [11] L.B. Kong, M.C. Liu, J.W. Lang, et al. Porous cobalt hydroxide film electrodeposited onnickel foam with excellent electrochemical capacitive behavior [J]. J. Solid State Electrochem.15(2011)571-577.
    [12] F. Tuinstra, J.L. Koenig. Raman spectrum of graphite [J]. J Chem. Phys.53(1970)1126-1130.
    [13] S. Stankovich, D.A. Dikin, R.D. Piner, et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide [J]. Carbon45(2007)1558-1565.
    [14] H.L. Guo, X.F. Wang, Q.Y. Qian, et al. A Green approach to the synthesis of graphenenanosheets [J]. ACS Nano3(2009)2653-2659.
    [15] G.K. Ramesha, S. Sampath. Electrochemical reduction of oriented graphene oxide films:an in situ Raman spectroelectrochemical study [J]. J. Phys. Chem. C113(2009)7985-7989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700