碳基氧电极的制备及其在碱性溶液中的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧气的电化学还原反应是最重要的电催化反应之一。聚四氟乙烯(PTFE)粘结的碳基氧电极广泛地应用在燃料电池、金属/空气电池、有机电合成及电化学废水处理等领域中。本文在全面综述国内外燃料电池和氧电极研究进展的基础上,采用SEM、XRD、TPD、TG、N_2吸附等材料分析测试手段和线性极化、循环伏安、电化学阻抗谱等电化学实验方法对碱性溶液中活性碳(AC)和多壁纳米碳管(MWNTs)氧电极的电化学性能和氧在MWNTs表面的电化学还原行为进行了研究。
     本文在第三章中首先从基础工艺入手,研究了催化层和防水层组成、导电骨架等制备条件对氧气扩散电极性能的影响,为后续工作打好基础。研究发现,碳基氧气扩散电极的性能与其制备条件密切相关,采用下述条件制成的气体扩散电极具有较好的综合性能:催化层中PTFE与活性碳的质量比为0.15:0.85;防水层中PTFE、乙炔黑与硫酸钠的质量比为1:1:1;以80目镍网为导电骨架;电极成型压力为10MPa,冷压时间为1min。
     在第四章中采N_2吸附和TPD法详细研究了硝酸氧化和空气氧化处理对活性碳孔结构和表面化学性质的影响,考察了活性碳性质与气体扩散电极性能之间的关系。研究发现,氧气扩散电极的性能随催化层中活性碳表面含氧基团的增多而下降;当活性碳孔隙增大时下降趋势更为显著。
     在第五章中,采用循环伏安法研究了碱性溶液中溶解氧在纳米碳管和石墨表面的电化学还原行为。结果表明,多壁纳米碳管具有比石墨更好的催化活性,纳米碳管表面上O_2还原为HO_2~-的反应为准可逆反应;石墨电极上O_2还原为HO_2~-的反应和HO_2~-进一步被还原为OH~-的反应均受反应物的扩散过程控制,而在纳米碳管电极上这两个反应均为吸附控制。反应控制步骤的不同可能与碳管表面存在大量拓扑学缺陷有关。
     在实验过程中还发现,空气氧化和浓硝酸浸泡处理后的纳米碳管出现了2~4nm的孔隙,BET比表面显著增大,表明处理后MWNTs的端口被打开。但开口率的增加并未引起电极性能的显著改善,空气氧化法处理的MWNTs电极上氧还原反应电流反而下降,而且开口处理后碳管表面氧还原反应转变为扩散控制过程。其原因可能与开口处理时破坏了碳管表面具有较高反应活性的拓扑学缺陷有关。
    
    浙江工业大学博士学位论文
     第六章中采用线性极化和电化学阻抗谱法研究了纳米碳管氧气扩散电极的极
    化行为。研究发现,纳米碳管氧电极的Tafel曲线存在两个线性区。低过电位时的
    Tafe!斜率在一0.055一0.061 v.dec一’之间,其反应对氧分压为一级反应。催化层碳材
    料的性质对氧气扩散电极的电化学阻抗谱具有显著影响。纳米碳管氧气扩散电极
    的Nyqulst图在高频部分呈近似45“的直线,而在低频部分形成一个压扁的圆弧。
    高频部分的线性区对应氧在电极催化层薄液膜中的有限长度扩散。低频部分圆弧
    的直径随电极极化电位的增加而减小,表明该阻抗对应于氧的电化学还原过程。
    而活性碳氧气扩散电极在高频部分还出现了一个大小与极化电位无关的圆弧,对
    应于多孔催化层内的欧姆极化过程。催化层中活性碳与纳米碳管的质量比为卜1时
    电极具有最好的性能。
     在第七章中采用碳还原KMnO;的方法制成碳载锰氧化物(Mnox/C),并对
    其电化学活性和氧还原催化活性进行了研究。实验结果表明,制成的MnO、具有类
    似于Bimessites矿的层状结构:Mnox/M WNTs具有比Mnox/AC更好的电化学活
    性。Mno扩C的加入并未引起MWNTs电极上氧两电子还原反应峰电位的改变,这
    表明该反应是在MWNTs表面进行的。Mnox/C对Ho万具有良好的催化分解作用,
    使氧在两电子还原反应电位区被完全还原,从而表现出类似于四电子直接还原的
    反应电流。Mnox/M WNTs、Mnox/AC和EMD(电解二氧化锰)催化分解H202的
    活性依次递减。催化分解反应的速率常数k分别为2.384x10一S一’、1.863、1丫s-l、
    1 .ol6xlo礴s‘1。
Electrochemical reduction of oxygen is one of the most important electrocatalytic reations. Polytetrafluoroethylene (PTFE) bonded carbon-based oxygen electrode are widely used in many important electrochemical technologies, such as fuel cells, matal/air batteries, organic electrosynthetic processes and electrochemical devices for decontamination of wastewaters. Based on the review of research and development of fuel cells and oxygen electrodes, electrochemical performances of oxygen electrodes made from activated carbon (AC) and multi-walled carbon nanotubes (MWNTs) as well as electrochemical reduction behavior of oxygen at the surface of MWNTs were investigated by different material characterization methods and electrochemical techniques, such as SEM, XRD, TPD, TG, N2 adsorption, linear polarization, cyclic voltammetry and electrochemical impedance spectroscopy.
    In the third chapter of this dissertation, the effects of the preparation conditions, such as the compositions of catalyst layer and hydrophobic layer, and different electric conductors on the performance of gas diffusion electrode were studied by using linear polariztion technique. The experimental results showed that the performance of gas diffusion electrode is greatly depended on its preparation conditions, and the electrodes with better performance can be obtained with the following prepartion conditions: mass ratio of PTFE to activated carbon in catalyst layer is 0.15:0.85; mass ratio of PTFE, acetylene black and Na2SO4 in hydrophobic layer is 1:1:1; 80 mesh nickel net is used as electric conductor; each part of the electrode is pressed together at 10 MPa for 1 min.
    In the fourth chapter, the techniques of N2 adsorption and TPD were used to examine the texture and surface chemical properties of activated carbon before and after treatment of nitric acid and air oxidation, and effects on the performance of gas diffusion electrode were also studied. It is found that the performance of oxygen diffusion electrode declines with the increasing of oxygen functional groups at the carbon surface.
    In the fifth chapter, electrochemical reduction behavior of dissolved oxygen in alkaline solution at the surface of MWNTs and graphite were investigated by using cyclic voltammetric method. Compared with other carbon materials, MWNTs show
    higher electrocatalytic activity for oxygen reduction, and the reduction of O2 to HO2-
    
    
    is a quasi-reversible process at MWNTs electrode. The reduction of O2 to HO2- and
    the further reduction of HO2- to OH- at graphite electrode are controlled by the
    diffusion of reative species in the solution, while at MWNTs electrode, both reactions are controlled by adsorptive process. This can be ascribed to the great difference of the surface texture between MWNTs and graphite powders.
    Furthermore, it has been found that the tops of MWNTs can be opened by air oxidation and concentric nitric acid treatment, which resuts in the appearance of pores with diameter of 2-4 nm and the great increasement of BET surface of MWNTs. However, the electrode performance of treated MWNTs does not improve remarkably, on the contrary, the decline of the electrode performance of air oxidized MWNTs is observed. These can be partly attributed to the destruction of topological defects on the MWNTs surface after air oxidation.
    In the sixth chapter, the polarization behavior of MWNTs oxygen diffusion electrode was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). It is found that two Tafel linear parts exist in the polarization curves of MWNTs oxygen diffusion electrode. Tafel slope at low overpotential is -0.055--0.061 V dec-1, and the corresponding reaction is first order for oxygen partial pressure. EIS of gas diffusion electrode depends on the carbonaceous materials of catalyst layer. The Nyquist plots of MWNTs gas diffusion electrode show a linear region with a phase angle of 45 in the high frequency range and a depressed semicircle at lower frequencies. The linear behavior at higher frequency implies a
引文
[1] Word Energy Council. Survey of Energy Resources, 1998.
    [2] A B Stambouli, E Traversa. Renewable and Sustainable Energy Reviews, 2002, 6: 297.
    [3] World Bank Review 2000.
    [4] W R Grove. Philos Mag, 1839, 14(3): 127.
    [5] F T Bacon. BEAMA J, 1954, 6: 61.
    [6] S Sarangapani. US Patent 5,683,829, 1997.
    [7] D A L, D J. Platinum Metal Rev, 1995, 39:165
    [8] V Jalan, S Taylor. J Electrochem Soc, 1983, 130:2299
    [9] A J Appleby. Energy, 1986, 11:13.
    [10] M Watanabe, K Tsurumi, T Mizukami, et al. J Electrochem Soc, 1994, 141: 2659.
    [11] R Parsons, T Vandernoot. J Electrochem Soc, 1988, 257: 9.
    [12] S Mukerjee, S Srinivasan, M P Soriaga, et al. J Electrochem Soc, 1995, 142: 1409.
    [13] M Watanabe, K Makita, H Usami, et al. J Electroanal Chem, 1986, 197: 195.
    [14] M Watanabe, S Motoo. J Chem Soc Jpn, 1988: 1308.
    [15] N Hara, K Tsurumi, M Watanabe. J Electroanal Chem, 1996, 413: 81.
    [16] Y Nagamori. Japan Patent 9,293,517, 1997.
    [17] T Maoka. Japan Patent 9,161,809, 1997.
    [18] K Yamashita, T Taniguchin. J Electrochem Soc, 1998, 145: 45.
    [19] P Andricacos, P Ross. J Electroanal Chem, Interfacial Electrochem, 1983, 154:
    
    205.
    [20] A A Adams, H Barger. J Electrochem Soc, 1974, 121: 987.
    [21] K Striebel, P Andricacos, P Ross, et al. J Electrochem Soc, 1984, 132: 2381.
    [22] W M Vogel, Lundquist. J Electrochem Soc, 1970, 117: 1513.
    [23] J Mcbreen, H Olender, Srinivasan. J Appl Electrochem, 1981, 11: 787.
    [24] 黄倬,屠海令,张冀强,詹峰.质子交换膜燃料电池的研究开发与应用,冶金工业出版社,2000.
    [25] 郑重德,王丰,胡淘等.电源技术,1988,22:133.
    [26] 陈昀.浙江大学博士论文.2002.
    [27] 衣宝廉.燃料电池—高效、环境友好的发电方式,化学工业出版社,2000.
    [28] F T Bacon. Electrochm. Acta, 1969, 14: 569.
    [29] D W Sheibley, R A Martin. Prog Batteries Solar Cells, 1987, 6: 155.
    [30] F T Bacon, T M Fry. Proc Royal Soc (London), 1973,334A: 427.
    [31] E Gulzow. J Power Sources, 1996, 61:99
    [32] K Hassman, R Ripel. J Power Sources, 1998, 71: 75.
    [33] E De Geeter, M Mangan, S Spaepen, et al. J Power Sources, 1999, 80: 207.
    [34] K Kordesch, J Gsellmann, M Cifrain, et al. J Power Sources, 1999, 80: 190.
    [35] Fuel Cell Reformer Conference. Los Angeles: 1998.
    [36] H van den Broeck, L Vermeeren, P Bout, et al. 1994 Fuel Cell Seminar. California: San Diego, CA, USA, 1994: 212.
    [37] D Browning, P Jones, K Paker. J Power Sources, 1997, 65: 195.
    [38] 李瑛,王林山.燃料电池,冶金工业出版社,2000.
    [39] B Trygve, G Pascal, S C Emilio, et al. Fuel, 2002, 81: 2151.
    [40] R Holze, W Vielstich. J Electrochem Soc, 1984, 131: 2298.
    [41] M Sudoh, N Kamiya, in: C W Walton, E J Rudd(Eds.). Energy and Electrochemical Porcessing for a Cleaner Environment, 97-28, The Electrochemical Society, Pennington, NJ, 1997: 129.
    [42] H Arai, S Muller, O Haas. J Electrochem Soc, 2000, 147: 3584.
    [43] S Ahn, B J Tatarchuk. J Electrochem Soc, 1995, 142: 4169.
    [44] M Sudoh, T Kondoh, N Kamiya, T Ueda, et al. J Electrochem Soc, 2000, 147: 3739.
    [45] A S Arico, V Alderucci, V Antonucci, et al. Electrochim Acta, 1992, 37: 523.
    [46] N Jia, R B Martin, Z Qi, et al. Electrochim Acta, 2001, 46: 2863.
    [47] E Brillas, E Mur, J Casado. J Electrochem Soc, 1996, 143: L49.
    [48] E Brillas, R Sauleda, J Casado. J Electrochem Soc, 1997, 144: 2374.
    
    
    [49] E Brillas, R Sauleda, J Casado. J Electrochem Soc, 1998, 145: 759.
    [50] T Harrington, D Pletcher. J Electrochem Soc, 1999, 146:2983.
    [51] D Pletcher. Acta Chem Scand, 1999, 53: 745.
    [52] E Brillas, J C Calpe, J Casado. Water Res, 2000, 34: 2253.
    [53] A Damjanovic, M A Genshaw, J O' M Bockris. J Phys Chem, 1964, 45: 4057.
    [54] M R Tarasevich. Electrokhimiya, 1968, 4: 210.
    [55] R W Zurilla, E B Yeager. Technical Report No. 23. Cleveland: Case Western Reserve University, 1969.
    [56] V S Bagotskii, M R Tarasevich, V Yu. Filinovskii. Electrokhimiya, 1969, 5: 1216.
    [57] N A Anastasijevic, V B Vesovic, R R Adzic. J Electroanal Chem, 1987, 229: 305; 1987, 229: 317.
    [58] 查全性.电极过程动力学导论.科学出版社,2002.
    [59] F G Will. J Electrochem Soc, 1963, 110(145): 152.
    [60] C Chakkaravarthy, A K A Waheed, H V K Udupa. J Power Sources, 1981, 6: 203.
    [61] I Morcos, E Yeager. Electrochim Acta, 1970, 15: 953.
    [62] V A Garten, P E Weiss. Austral J Chem, 1955, 8: 81.
    [63] V A Garten, P E Weiss. Rev Pure appl Chem, 1957, 7: 69.
    [64] M Davies, M Clark, E Yeager, et al. J Electrochem Soc, 1959, 106: 56.
    [65] P Fischer, J Heitbaum. J Electroanal Chem, 1980, 112:R31.
    [66] D T Sawyer, G Chlericato, C T Angells, et al. Anal Chem, 1982, 54:1720.
    [67] D Pletcher. Acta Chem Scand, 1999, 53: 745.
    [68] E Brillas, E Mur, J Casado. J Electrochem Soc, 1996, 143: L49.
    [69] E Brillas, R Sauleda, J Casado. J Electrochem Soc. 1997, 144: 1374.
    [70] E Brillas, R Sauleda, J Casado. J Electrochem Soc, 1998, 145: 759.
    [71] T Harrington, D Pletcher. J Electrochem Soc, 1999, 146: 2983.
    [72] E Brillas, J C Calpe, J Casado. Wat Res, 2000, 34: 2253.
    [73] E Yeager. J Mol Catal, 1986, 38: 5.
    [74] M Appel, A J Appleby. Electrochim Acta, 1978, 23: 1243.
    [75] A J Appleby, J Marie. Electrochmi Acta, 1978, 24: 1243.
    [76] R J Taylor, A A Humphray. J Electroanal Chem, 1975, 64: 63.
    [77] J Wang, N Naser, L Angnes, et al. Anal Chem, 1992, 64: 1285.
    [78] M S Hossain, D Tryk, E Yeager. Electrochim Acta, 1989, 34: 1733.
    [79] J F Evans, T Kuwana. Anal Chem, 1979, 51: 358.
    [80] T Nagaoka, T Sakai, K Ogura, et al. Anal Chem, 1986, 58: 1953.
    [81] M Pirjamali, Y Kiros. J Power Sources, 2002, 109: 446.
    [82] 黄成德,田建华,史晶石等.应用化学,2001,18(6):444.
    
    
    [83] S Iijima. Nature, 1991, 354: 565.
    [84] S Fan, M G Chapline, N R Fraklin, et al. Science, 1999, 283: 512,
    [85] 李志杰,梁奇,陈栋梁,et al.应用化学,2001,18(6):462.
    [86] G L Che, B B Lakshml, E E Fisher, et al. Nature, 1998, 393: 346.
    [87] P J Britto, K S V Santhanam, A Rubio, et al. Adv Mater, 1999, 11(2): 154.
    [88] W Z Li, C H Liang, J S Qiu, et al. Carbon, 2002, 40: 787.
    [89] 黄辉,张文魁,赵峰鸣等.应用化学,2002,19(8):759.
    [90] 黄辉,张文魁,马淳安等.高等学校化学学报,2002,23(11):2151.
    [91] Y J Li, C C Chang, T C Wen. J Appl Electrochem, 1997, 27: 227.
    [92] P Costamagna, S Srinivasan. J Power Sources, 2001, 102: 242.
    [93] J McBreen, S Mukerjee. in: Interfacial Electrochemistry: Theory, Experiments, and Applications. Ed. By Wieckowski. New York: Marcel Dekker, 1999: 895.
    [94] L Genies, R Faure, R Durand. Electrochim Acta, 1998, 44: 1317.
    [95] J Bett, J Lundquist, E Washington, et al. Electrochem Acta, 1973, 18: 343.
    [96] M L Sattler, P N Ross. Ultramicroscopy, 1986, 20(1-2): 21.
    [97] K Kinoshita. J Electrochem Soc, 1990, 137: 845.
    [98] N Markovic, H Gasteiger, P N Ross. J Electrochem Soc, 1997, 144: 1591.
    [99] K Myoung, C Jihoon, C Kyuwoong, et al. Electrochim Acta, 2000, 45: 4211.
    [100] V M Jalan. USP: 4876115, 1978.
    [101] C A Landsman, F J Luczak. USP: 4316944, 1980.
    [102] F J Luzak, D A Landsman. USP: 4447506, 1983.
    [103] B C Beard, PN Ross. J Electrochem Soc, 1986, 133: 1839.
    [104] 文纲要,李长志,孙公权.电池,1999,29(3):110.
    [105] S Mukerjee, S Srinivasan, M P Soriaga. J Electrochem Soc, 1995,142(5): 1409.
    [106] M K Min, J Cho, K Cho, et al. Electrochim Acta, 2000, 45(25-26): 4211.
    [107] S Mukerjee, S Srinivasan. J Electroanal Chem, 1993, 357: 201.
    [108] M T Paffett, J G Beery, S Gottesfeld. J Electrochem Soc, 1988, 135(6): 1431.
    [109] J T Glass, G L Cohen, G E Stoner. J Electrochem Soc, 1987, 134(1): 58.
    [110] T Toda, H Igarashi, H Uchida. J Electrochem Soc, 1999, 146(10): 3750.
    [111] C Z Wan. EPA: 84303984.3, 1984.
    [112] T Toda, H Igarashi, M Watanabe. J Electrochem Soc, 1999, 460(1-2): 258.
    [113] B C Beard, P N Ross. J Electrochem Soc, 1990, 137: 3368.
    [114] T Ito, S Matsuzawa, K Kato. USP: 4716807, 1986.
    [115] C Z Wan. USP: 4822699, 1982.
    [116] K V Ramesh, A K Schukla. J Power Sources, 1987, 19: 279.
    
    
    [117] M A Shibli, M Noel. J Power Sources, 1993, 45: 139.
    [118] O Savadogo, P Beck. J Electrochem Soc, 1996, 143(12): 3842.
    [119] T Ito, K Kato, S Mastsuzawa. USP: 4794054, 1987.
    [120] J Shim, D Y Yoo, J S Lee. Electrochim Acta, 2000, 45(12): 1943.
    [121] S Ryun, S B Lee. J Power Sources, 1999, 77:170.
    [122] D A Landsman, F J Luczak. USP: 4880711, 1988.
    [123] G Tamizhmani, G A Capuano. J Electrochem Soc, 1994, 141(4): 968.
    [124] G Tamizhmani, G A Capuano. J Electrochem Soc, 1994, 141(9): L132
    [125] F J Luczak, D A Landsman. USP: 4711829, 1987.
    [126] V Jalan, E J Taylor. J Electrochem Soc, 1983, 130: 2299.
    [127] S Ye, A K Vijh, H Daol. J New Materials for electrochemical Systems, 1998, 1(1): 17.
    [128] C K Mark, Z G Qi, G P Peter. J Electrochem Soc, 1999, 146: 2054.
    [129] 清华大学锌空气电池研究组.锌空气(氧)电池进展.北京:科学出版社,1975.
    [130] 宋文顺.化学电源工艺学.北京:中国轻工业出版社,1998.
    [131] 滕加伟,金丽华,唐伦成.电化学,1997,3(4):428.
    [132] 滕加伟,金丽华,唐伦成.电源技术,1997,21(6):252.
    [133] 滕加伟,金丽华,唐伦成.电源技术,1998,22(1):21.
    [134] 候雨风.电源技术,1984,8(3):9.
    [135] J A R Vanveen, C Visser. Electrochim Acta, 1979, 24: 921.
    [136] J Zagal. Coord Chem Rev, 1992, 119: 89.
    [137] G Tamizhmani, J P Dodelet, D Guay, et al. J Electrochem Soc, 1994, 141: 41.
    [138] G Lalande, G Faubert, R Cote, et al. J Power Sources, 1996, 61:227.
    [139] 吕鸣祥.电源技术,1987,11(3):21.
    [140] L Jaakko. J Electrochem Soc, 1991, 138(94): 905.
    [141] Z D Wei, W H Huang, S T Zhang, et al. J Power Sources, 2000, 91:83.
    [142] 森田是宜.电池,1988,(1):50.
    [143] 池玉娟,王占良,景晓燕.电源技术,1999,23(5):275.
    [144] S Muller, K Striebel, O Haas. Electrochim Acta, 1994, 39(11-12): 1661.
    [145] C K Lee, KA Striebel, F R Mclamon. J Electrochem Soc, 1997, 144(11):3801.
    [146] S K Tiwari, J F Koenig, G Poillerat, et al. J Appl Electrochem, 1998, 28:114.
    [147] M Bursell, M Pirjamali, Y Kiros. Electrochim Acta, 2002, 47:1651.
    [148] R Manoharan, A K Shukla. Electrochim Acta, 1985, 30(2): 205.
    [149] 唐致远,宋世栋,刘建华.电源技术,2003,27(增刊):233.
    
    
    [150] 王连驰,于作龙,吴越.稀土,1990,11(5):36.
    [151] 钟子宜,曹学强,曾跃.分子催化,1997,11(2):95.
    [152] 肖益鸿,詹瑛瑛,蔡国辉.华侨大学学报(自然科学版),2000,21(4):399.
    [153] V R Choudhary, B S Uphade, S G Pataskar. Fuel, 1999, 78: 919.
    [154] 刘社田,于作龙,吴越.无机材料学报,1994,9(4):443.
    [155] R N Singh, B Lal. Int J Hydrogen Energy, 2002, 27: 45.
    [156] T Hyodo, M Hayashi, N Miura, et al. J Electrochem Soc, 1996, 143(11): L266.
    [157] 李春鸿.电源技术,1992,16(2):24.
    [158] A M Kannan, A K Shukla, S Sathyanara. J Power Sources, 1989, 25: 141.
    [159] H M Zhang, T Yasutake, Y Noboru. Chem Lett, 1987: 665.
    [160] S Youichi, U Kenchi, M Norio, et al. Chem Lett, 1988: 1979.
    [161] T Hyodo, Hayashi, T S Mitsu, et al. J Appl Electrochem, 1997, 27: 745.
    [162] T Yasutake, K Hirofumi, M Isamu, et al. Chem Lett, 1991: 673.
    [163] 王鹏,姚立广,王明贤等.化学工业与工程,2000,17(1):19.
    [164] 马紫峰,林维明,黄传荣等.电源技术,1993,17(6):1.
    [165] R E Carbonio, C Fierro, D Tryk, et al. J Power Sources, 1988, 22: 387.
    [166] S Masakazu, O Masatoshi. J Electrochem Soc, 1990, 136(7): 1923.
    [167] S Youichi, M Haruyuki, M Norio, et al. Chem Lett, 1992: 1033.
    [168] 顾军,隋升,李光强等.无机材料学报,1999,14(4):618.
    [169] N Miuran, M Hayashi, T Hyodo, et al. Materials Science Forum, 1999, 315-317: 562.
    [170] S Youichi, U Kenichi, M Haruyuki, et al. J Electrochem Soc, 1990, 137(11): 3430.
    [171] G Karlsson. J Power Sources, 1983, (10): 319.
    [172] M S G Baythoun, F R Sale. J Mater Sci, 1982, 17: 2757.
    [173] G Sinquin, C Ptit, J P Hindermann, et al. Catalysis Today, 2001, 70(1-3):183.
    [174] Y H Huang, Z G Xu, C H Yan, et al. Solid State Commun, 2000, 114(1): 43.
    [175] Isupova, A Lyubov, V Sergey, et al. Solid State Ionics, 2001, 141-142: 417.
    [176] J Philip, T R N Kutty. Materials Chemistry and Physics, 2000, 63(3): 218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700