海水全浸下碳钢表面电化学状态分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀产物覆盖下金属的腐蚀行为是一个复杂的电化学过程,金属表面电化学不均一性是影响金属腐蚀行为及腐蚀速度的重要因素。经典电化学方法在金属腐蚀研究中仅能获得金属表面平均电化学信息,很难得到腐蚀界面微区的阴极和阳极电化学分布特征。而表面电位及电流分布是研究腐蚀电化学微区特征的重要参数,因此本论文采用扫描微电极技术及新型阵列电极技术研究了海水中碳钢腐蚀过程的电位及电流分布,结果表明虽然海水全浸环境中碳钢表面电化学状态分布不均匀,但是其表面电位及电流呈现一定的时空分布特征:当水平浸泡时,阳极区主要分布在中间,而阴极区分布在电极边缘,呈现包围分布的特征;垂直浸泡初期,阴极区主要分布在电极上端,随着时间增长表面电位逐渐正移,5周后电极底端成为主要的阴极区。
     本文还探讨了形成这种分布特征的原因:当水平浸泡时,海水中的溶解氧较容易扩散到电极边缘,使得电极周边溶解氧浓度远远大于中间部位,发生溶解氧还原反应,形成阴极区,从而导致了阴阳极包围分布的特征;当竖直浸泡时,初期由于氧浓差的存在使得电极顶端形成阴极区,但是为何阴极区随时间增长转移到电极底端,研究仍在进行之中。
     由于电极表面电位差是腐蚀过程的驱动力,本文在测试表面电位分布的同时发现碳钢表面电位随浸泡时间增长趋于正移并逐渐稳定,而阴阳极电位差也呈现逐渐减小的趋势,表明金属腐蚀速度逐渐稳定。
     腐蚀产物的存在严重地影响金属的腐蚀速率,因此本文研究了腐蚀产物在金属表面的分布特征和结构特征,研究表明碳钢在海水中浸泡一段时间(约8周)后锈层开始分为外锈层和内锈层:外锈层棕黄色,疏松多孔,主要由γ-FeOOH构成,并且随着时间增长锈层成分变化不大;内锈层为黑色,较致密,紧密附着于金属表面,其成分随时间增长变化很大,其中γ-FeOOH的量开始减少甚至消失,而β-FeOOH, Fe3O4的含量逐渐超过了γ-FeOOH,并且随着时间增长而增多。随着浸泡时间增长,内锈层逐渐增厚,而外锈层逐渐减薄。文章还探讨了腐蚀产物分布与电位分布的相关性,证实了腐蚀产物分布与表面电位分布特征存在着必然的联系:阴极区的腐蚀产物主要为β-FeOOH和Fe304,阳极区的腐蚀产物主要为γ-FeOOH和α-FeOOH。
     通过对碳钢电极表面的电化学不均匀性进行研究发现其阴阳极分布呈现一定的规律性,并且这种规律影响了表面腐蚀产物的形成,导致表面锈层成分产生差异,研究结果还证实了整体电极的电化学性质及表面腐蚀产物的形成与电位分布特征存在相关性,对于金属电化学腐蚀机理的研究有着重要的意义。
Corrosion behavior of the metal covered with rust is a complex electrochemical system. The heterogeneous electrochemical characteristics of solution/metal interface can influence the corrosion behavior and corrosion rate which has drawn increasing attentions. Conventional electrochemical techniques, which have been successfully used in metal corrosion for many years can only obtain average data on metals surface. Therefore, it is very difficult to perform them in heterogeneous electrochemical research, but local electrochemical techniques can overcome these limitations. The current and potential distributions of metal surface are important parameters to study the micro-electrochemical characteristics. In order to study the current and potential distributions of the metal, scanning micro-electrode technique and wire beam electrode technique were used. The result showed that the current and potential had temporal and spatial distribution characteristics during the corrosion process though the metal surface was not uniform. When the samples were immersed into seawater horizontally, the cathodic region was chiefly distributed around the metal surface, while the middle area was the anode; when immersed vertically for only a few days, cathode was mainly located at the top of the electrode, with the immersion time increasing, potential on the surface shifted to positive direction and the bottom area with black products became the main cathodic region.
     The reasons for these distribution characteristics were explored. When immersed horizontally, dissolved oxygen could reach the edge of the electrode more easily than the middle area, so regions around the electrode had higher dissolved oxygen concentration, the dissolved oxygen reduced into OH-1 which made the edges became the cathode and the middle area was the main anode. When immersed vertically, the top of the strip electrode was closer to the surface of seawater and free oxygen from the atmosphere entered the water easily to form higher concentration of dissolved oxygen which resulted in the oxygen concentration cell. But then why the bottom of the electrode became the main cathode was not clear.
     A large number of experimental data have showed that the impetus for galvanic cell came from the potential difference between the cathode and anode. The potential difference on the surface was tested and the result indicated that the surface potential difference diminished with time, by which indicated that the corrosion rate was steadier than the early immersion.
     The composition and distribution characteristics of corrosion products which can influence the corrosion rate were tested by IR spectroscopy and ESEM. Studies indicated that after a period of time (about 8 weeks), rust layers were divided into two layers:the outer layer and the inner layer. The outer layer was loose and porous which was mainly composed ofγ-FeOOH and the rust composition changed little with time. The inner layer was black, more compact and closely attached to the metal surface and which components changed with time:theγ-FeOOH reduced or even disappeared while theβ-FeOOH and Fe3O4 gradually accumulated. With the increase of immersion time, the inner rust layer gradually thickened and the outer rust layer thinning. The result also indicated that there was a certain correlation between the corrosion products and potential distribution. Rust layer in the anode region was composed of (3-FeOOH and Fe3O4, in the meanwhile cathodic area was mainlyγ-FeOOH andα-FeOOH.
     All in all, the distribution of anode/cathode regions had certain regular by study the heterogeneous electrochemical characteristics on metal surface. These distribution features influenced the generation of the corrosion products as well as the composition of the rust. It was concluded that the potential distribution on metal surface was closely related to the corrosion products which have great significance for the further research on the corrosion electrochemical properties and mechanism of metal covered with rust.
引文
[1]Robert E. Melchers. Effect on marine immersion corrosion of carbon content of low alloy steels [J].corrosion science,2003,45(11):2609-2625
    [2]R.E. Melchers, Robert. Jeffrey. Early corrosion of mild steel in seawater [J]. Corrosion Science, 2005,47 (7):1678-1693
    [3]S. Pineau, R. SabotL, Quillet.Formation of the Fe (Ⅱ-Ⅲ) hydroxysulphate green rust during marine corrosion of steel associated to molecular detection of dissimilatory sulphite-reductase [J].Corrosion Science,2008,50 (4):1099-1111
    [4]U. R. Evans, C. A. J. Taylor.Mechanism of atmospheric rusting [J]. Corrosion science 1972, 12(3):227-246
    [5]M. Stratmann, K. Bohnenkamp, H. J. Engell. An electrochemical study of phase-transition in rust layers [J].Corrosion Science,1983,23(9):969-985
    [6]Yuantai Ma, Ying Li, Fuhui Wang. The effect of P-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J].Materials Chemistry and Physics,2008, 112(3):844-852
    [7]黄桂桥.碳钢在我国不同海域的海水腐蚀行为[J].腐蚀科学与防护技术,2001,13(2):81-84
    [8]黄桂桥,戴明安.含铬低合金钢在海水中的腐蚀研究[J].腐蚀科学与防护技术,2000,12(6):315-317
    [9]夏兰廷,黄桂桥,丁路平.碳钢及低合金钢的海水腐蚀性能[J].铸造设备研究,2002,(4):14-17
    [10]宋诗哲,雒娅楠,金威贤,尹立辉.海水腐蚀试验站碳钢低合金钢全浸试片的现场腐蚀检测[J].中国腐蚀与防护学报,2007,27(6):321-325
    [11]王建军,郭小丹,郑文龙,陈家光,吴建生.海洋大气暴露3年的碳钢与耐候钢表面锈层分析[J].腐蚀与防护,2002,23(7):288-291
    [12]J. Wielant, V. Goossens, R. Hausbrand, H. Terryn. Electronic properties of thermally formed thin iron oxide films[J]. Electrochemical Acta,2007,52(27):7617-7625
    [13]Yuxin Wu, Lee Slater, Roelof Versteeg, Douglas LaBrecque. A comparison of the low frequency electrical signatures of iron oxide versus calcite precipitation in granular zero valent iron columns [J].Contaminant Hydrology,2008,95(3):154-167
    [14]E.A. Deliyanni, D. N. Bakoyannakis, A. I. Zouboulis, K. A. Matis, L. Nalbandian. Akaganeite-type β-FeO(OH) nanocrystals:preparation and characterization[J]. Microporous and Mesoporous Materials,2001,42(1):49-57
    [15]Toshiaki Ohtsuka, Tomohiro Komatsu. Enhancement of electric conductivity of the rust layer by adsorption of water [J].Corrosion Science,2005,47(10) 2571-2577
    [16]Ph. Dillmann, F. Mazaudier, S. Hoerl_e. Advances in understanding atmospheric corrosion of iron.I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corrosion Science [J].2004,46(6)1401-1429
    [17]S. Hoerle, F. Mazaudier, Ph. Dillmann, G. Santarini. Advances in understanding atmospheric corrosion of iron.II. Mechanistic modelling of wet-dry cycles [J].Corrosion Science,2004, 46(6):1431-1465
    [18]Deyang Qu. Application of a.c. impedance technique to the study of the proton diffusion process in the porous MnO2 electrode [J].Electrochemical Acta,2003,48 (12):1675-1684
    [19]J. B. Memet, P. Girault,R.Sabot, C. Compere, C. Deslouis. Electrochemical impedance spectroscopy of a free-standing oxide film [J]. Electrochemical Acta,2002,47(7):1043-1053.
    [20]刘国超,董俊华,韩恩厚,柯伟.耐候钢锈层研究进展[J]腐蚀科学与防护技术,2006,18(4):269-272
    [21]张全成,王建军,吴建生,郑文龙,陈家光,李爱柏.锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响[J].金属学报,2001,37(02):193-196
    [22]V. Lair, H.Antony, L.Legrand,A.Chausse. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron [J].Corros.Sci,2006,48(8):2050-2063
    [23]Nishimura T, Katayama H, Noda K. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion,2000,56 (9):935-941
    [24]侯宝荣钢材在海水一海气交换界面区的腐蚀行为[J].海洋与湖沼,1995,26(5):514-519
    [25]Dillmann P, Mazaudier F, HoerleS. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corrosion Science,2004,46(6):1401-1429
    [26]HoerleS,Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. Ⅱ. Mechanistic modelling of wet dry cycles [J]. Corrosion Science,2004,46 (6): 1431-1465
    [27]崔秀岭,王相润,马巾华,张陆,黄桂桥.飞溅区15MnMoVN钢锈层的研究[J].钢铁研究学报,1995,7(4):43-49
    [28]化学工业部化工机械研究院.腐蚀与防护手册-腐蚀理论实验及检测[M].北京:化学工业出版社,1989.164-174
    [29]P. Refait, J.-M.R. Gemin. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution:the formation of akaganeite vs goethite[J].Corrosion Science,1997,39(3):539-553
    [30]M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, H. Uchida.In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J].Corrosion Science.2005,47 (10):2492-2498
    [31]I.M. Allam, J.S. Arlow, H. Saricimen. Initial stages of atmospheric corrosion of steel in the Arabian Gulf[J].Corrosion Science,1991,32 (4):417-432
    [32]黄锦花,李自刚,钱余海.低合金耐海水腐蚀钢在模拟腐蚀环境下的耐蚀性能研究[J].上海金属,2006,28(4):6-13
    [33]R.E. Melchers. Effect of small compositional changes on marine immersion corrosion of low alloy steels [J].Corrosion Science,2004,46 (7):1669-1691
    [34]王建军,郭小丹,郑文龙,陈家光,吴建生.海洋大气暴露3年的碳钢与耐候钢表面锈层分析[J].腐蚀与防护,2002,23(7):288-291
    [35]Ph. Refait, J.B. Memet, C. B on, R. Sabot,J.-M.R. Genin. Formation of the Fe(Ⅱ)-Fe(Ⅲ) hydroxysulphate green rust during marine corrosion of steel[J].Corrosion Science,2003,45 (4):833-845
    [36]G. Ona-Nguema, M. Abdelmoula, F. Jorand, O. Benali, A. Genin, J.C. Block, J.-M.R. Genin. Iron (Ⅱ, Ⅲ). Hydroxycarbonate Green Rust Formation and Stabilization from Lepidocrocite Bioreduction [J].Environment Science Technology,2002,36,16-20
    [37]陈惠玲,李晓娟,魏雨.碳钢在含氯离子环境中腐蚀机理的研究[J].腐蚀与防护,2007,28(1):17-19
    [38]T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida. Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J]. Corrosion Science,2006,48 (9):2799-2812
    [39]Sei J O, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corrosion Science,1999,41(9):1687-1702
    [40]克舍.金属腐蚀[M].北京:化学工业出版社,1984,7:230-239
    [41]Hui Liu, Yu Wei, Yuhan Sun. The formation mechanism from ferrihydrite to hematite when Fe (Ⅱ) used as a catalyst [J].Journal of Molecular CatalysisA:Chemical,2005,226 (1):135-140
    [42]P. Refait, M. Abdelmoula, J. M.R. Ge'nin. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions[J].Corros.Sci,1998,40 (9):1547-1560
    [43]Robert Jeffrey, Robert E. Melchers. The changing topography of corroding mild steel surface in seawater [J].Corrosion science,2007,49(5):2270-2288
    [44]钟庆东,郦希,谢巧敏,周国定.大面积金属电极腐蚀电位随时间变化的Monte-Carlo模拟[J].上海电力学院学报,2001,7(2):5-8
    [45]A.P. Yadav, H. Katayama, K. Noda, et al. Surface potential distribution over a zinc/steel galvanic couple corroding under thin layer of electrolyte[J]. Electrochimica Acta,2007,52(9): 3121-3129
    [46]Koji Fushimi, Atsushi Naganuma, Kazuhisa Azumi, et al. Current distribution during galvanic orrosion of carbon steel welded with type-309 stainless steel in NaCl solution[J]. Corrosion Science,2008,50(3):903-911
    [47]邱枫,徐乃欣.码头钢管桩阴极保护时的电位分布[J].中国腐蚀与防护学报,1997,17(1):12-18
    [48]邱枫,徐乃欣.用带状牺牲阳极对埋地钢管实施阴极保护时的电位和电流分布[J].中国腐蚀与防护学报,1997,17(2):106-110
    [49]田昭武,林昌健.电化学实验方法进展.厦门:厦门大学出版社,1989.254
    [50]Michael Rohwerder,Florin Turcu. High-resolution Kelvin probe microscopy in corrosion science:Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP) [J].Electrochimica Acta,2007,53(2):290-299
    [51]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量[J].中国腐蚀与防护学报,1995,15(3):173-179
    [52]Yasutake M,Aoki D,Fujihira M. Surface potential measurements using the Kelvin probe force microscope [J]. Thin Solid Films,1996,273(1-2):279-283
    [53]邹锋,韩薇,龙康,等.线性回归法进行Kelvin电位测试[J].腐蚀科学与防护技术,1995,7(1):17-22.
    [54]Eimutis Juzeliunas, Aloyzas Sudavieius, Klaus Juttner, et al. Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II)environment by a scanning Kelvin probe and XPS[J]. Electrochemistry Communications,2003,5(2):154-158
    [55]S.Saraf, M.Molotskii, Y.Rosenwaks. Local measurement of surface states energy distribution in semiconductors using Kelvin probe force microscope. Applied Physics Letters 86, 2005,172104
    [56]乔利杰,肖纪美,林昌健.黄铜应力腐蚀开裂的电位前驱效应[J].中国腐蚀与防护学报,1991,11(1):67-74
    [57]陈铠,叶赐麒.海水中921钢及其焊接接头的腐蚀性能[J].北京工业大学学报,1992,18(1):11-16
    [58]张士华,李异.微电极扫描测量焊缝电位的分布[J].化工腐蚀与防护,1991,3:12-15
    [59]R.Akid, D.J.Mills. A comparison between convential macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion[J]. Corrosion Science,2001, 43(7):1203-1216
    [60]郭海丁,田锡唐,王杰.夹层体的电偶腐蚀[J].腐蚀科学与防护技术,1996,8(1):72-78
    [61]N.D.Budiansky,F.Bocher,H,Cong,M.F.Hurley,J.R.Scully. Use of coupled Multi-Electrode Arrays to Advance the Understangding of Selected Corrosion Phenomena[J]. Corrosion, 2007,63(6):537-554
    [62]Yong Jun Tan. Wire beam electrode:A new tool for studying localised corrosion and other heterogeneous electrochemical processes [J]. Corrosion Science,1999,41(2):229-247
    [63]Naing Naing Aung, Yong-Jun Tan, Tie Liu. Novel corrosion experiments using the wire beam electrode:(Ⅱ) Monitoring the effects of ions transportation on electrochemical corrosion processes [J]. Corrosion Science,2006,48(1):39-52
    [64]Naing Naing Aung, Yong-Jun Tan. A new method of studying buried steel corrosion and its inhibition using the wire beam electrode [J]. Corrosion Science,2004,46(12):3057-3067
    [65]钟庆东.采用丝束电极研究金属的缝隙腐蚀[J].中国腐蚀与防护学报,1999,19(3):189-192
    [66]王丹,李国希,章红春等.用丝束电极研究SO42-对纯铝缝隙腐蚀的影响[J].腐蚀与防护,2006,27(1):7-10
    [67]翁永基,赵海燕.用丝束电极评价不锈钢在NaCl溶液中点蚀敏感性[J].防腐保温技术,2004,]2(1):1-3
    [68]Tan Y J. Monitoring localized corrosion processes and estimating localized corrosion rates using a wirebeam electrode [J]. Corrosion,1998,54(5):403-413
    [69]黄桂芳,吴翠兰,靳九成,等.油膜下局部腐蚀的探讨[J].腐蚀科学与防护技术,2000,12(1):30-31
    [70]黄桂芳,吴翠兰, 靳九成.用丝束电极研究防锈油的防护性能[J].材料保护,1996,29(4):9-10
    [71]董泽华,郭兴蓬,刘宏芳.用丝束电极研究SRB微生物诱导腐蚀的电化学特征[J].中国腐蚀与防护学报,2002,22(1):48-53
    [72]B. Vuillemin, X. Philippe, R. Oltra, et al. SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection [J]. Corrosion Science,2003,45(6):1143-1159
    [73]H. Krawiec, V. Vignal, R. Oltra. Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochemistry Communications,2004,6(7):655-660
    [74]陈丽姣,李宁,胡会利,等.检测涂层防护性能的电化学方法.涂料工业.2008,38(5):53-57
    [75]A. Schulte, S. Belger, M. Etienne, W. Schuhmann. Imaging localised corrosion of NiTi shape memory alloys by means of alternating current scanning electrochemical microscopy (AC-SECM).Materials Science and Engineering A 378 (2004) 523-526
    [76]C. Gabrielli, S. Joiret, M. Keddam, H. Perrot, N. Portail, P. Rousseau, V. Vivier. A SECM assisted EQCM study of iron pitting. Electrochimica Acta,2007,52(27):7706-7714
    [77]A. Leng, H. Streckel, M.Stratmann. The delamination of polymeric coatings from steel[J].Corrosion science,1999,41(3):579-597
    [78]Robert Jeffrey, Robert E. Melchers. Corrosion of vertical mild steel strips in seawaterfJ]. Corrosion science,2009,51 (10):2291-2297
    [79]R. Vera, B. M. Rosales, C. Tapia Effect of the exposure angle in the corrosion rate of plain carbon steel in a marine atmosphere[J].Corros.Sci,2003,45(2):321-337
    [80]张祖训.超微电极电化学[M].北京:科学出版社,1998
    [81]Liu Shaoqin, Wang Baoxing, Liu Baifeng, et al. Electrochemical behavior of redox species at carbon fibre microdisk array electrode modified with mixed-valent molybdenum(Ⅵ,Ⅴ) oxide [J]. Electrochemical Acta,2000,45(10):1683-1690
    [82]Hsueh Chen-Chan, Liu Yi, Henry Matthew, et al. Chemically diverse modified electrodes: A new approach to the design and implementation of sensor arrays [J].Analytica Chimica Acta,1999,397(123):135-144
    [83]Y.J. Tan, T. Liu, N. N. Aung. Novel corrosion experiments using the wire beam electrode: (Ⅲ) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases [J].Corrosion Science,2006,48(1):53-66
    [84]Q.D. Zhong, Z. Zhang. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode[J]. Corrosion Science,2002,44(12):2777-2787
    [85]韩磊,宋诗哲.基于虚拟仪器的便携式腐蚀电化学测试装置[J].仪器仪表学报,2008,29(5):903-907
    [86]Garcia K E, Morales A L, Barrero C A, Greneche J M. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test [J]. Corrosion Science,2006,48(9):2813-2830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700