旋毛虫丝氨酸蛋白酶抑制因子基因的克隆、表达及抗原性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋毛虫病是由旋毛虫引起的一种危害严重的食源性人兽共患寄生虫病,可在包括人类在内的150多种动物之间广泛传播。人主要因为生食或半生食含有旋毛虫肌幼虫包囊的动物肉类而感染,严重时可以致人死亡。旋毛虫病是一个非常重要的公共卫生问题,不仅威胁着人类健康,而且给畜牧业生产造成巨大经济损失。
     本研究根据GenBank数据库中旋毛虫丝氨酸蛋白酶抑制因子基因序列设计引物,从旋毛虫肌幼虫提取总RNA,应用RT-PCR扩增获得目的基因片段,进行限制性酶切后连接到表达质粒载体pET30a,构建重组表达质粒pET30a-TsSerPIN1,转化大肠杆菌DH5α,筛选阳性克隆,经PCR、限制性酶切分析及测序鉴定后,转化大肠杆菌BL21(DE3),以异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达。结果表明成功构建了重组表达质粒pET30a-TsSerPIN1,插入片段为1122 bp,编码373个氨基酸,与GenBank数据库中旋毛虫丝氨酸蛋白酶抑制因子基因的相似性为99%。含有pET30a-TsSerPIN1重组表达质粒的大肠杆菌BL21(DE3)诱导后得到了高效表达,SDS-PAGE分析显示表达产物分子量约为48.5 kDa,主要以包涵体形式存在。Western-blot结果表明TsSerPIN1重组蛋白可以被旋毛虫感染猪阳性血清特异性识别,具有良好的抗原性。进一步分段克隆表达了TsSerPIN基因的不同片段,结果均成功表达,对TsSerPIN1、TsSerPIN2、TsSerPIN3、TsSerPIN4和TsSerPIN5的重组蛋白进行Western-blot分析,只有TsSerPIN1和TsSerPIN5重组蛋白能被感染旋毛虫的猪血清特异性识别。TsSerPIN1和TsSerPIN5重组蛋白间接ELISA检测结果表明两种重组重组蛋白的反应原性相似,说明TsSerPIN5具有此蛋白C末端的主要抗原表位。以TsSerPIN5重组蛋白为包被抗原对实验感染旋毛虫猪血清、猪田间血清样品和健康人血清进行间接ELISA检测,表明TsSerPIN5重组蛋白具有良好的反应原性。分别应用TsSerPIN1重组蛋白和TsSerPIN5重组蛋白作为免疫原免疫小鼠后,均可诱导小鼠产生一定的免疫保护性,肌幼虫减虫率分别为40.7%和54.5%,而且可以诱导产生特异性抗体应答反应。通过研究表明,TsSerPIN5有望作为旋毛虫病免疫诊断和疫苗研制的候选抗原。
Trichinellosis caused by Trichinella spp. is a serious foodborne parasitic zoonosis and wide spread among more than 150 species of animals including human. Human can obtain this infection through ingestion of raw meat infected by Trichinella spp. and serious infection can be fatal. Trichinellosis is an important public health issue which not only threatens human health but also causes great economic losses to livestock production.
     In this study the specific primers derived from T. spiralis serine proteinase inhibitor gene in GenBank database was designed and used to amplify the TsSerPIN gene from total RNA isolated from T. spiralis muscle larvae. The RT-PCR product was purified, digested and ligated into the expression vector pET30a. After transformation to E. coli DH5αand identification by PCR, restriction digestion and sequencing, pET30a-TsSerPIN1 plasmid was transformed to E. coli BL21 (DE3) and induced by IPTG for expression. The results that pET30a-TsSerPIN1 recombinant expression plasmid was successfully constructed and contained a insert of 1122 bp encoding 373 amino acids which showed 99% identity to Trichinella spp.serine proteinase inhibitor gene in GenBank database. The TsSerPIN1 recombinant protein was highly expressed in the form of inclusion body with the molecular weight of about 48.5 kDa. In Western-blot analysis the purified TsSerPIN1 recombinant protein could be specifically recognized by T. spiralis infected swine serum. Different fragments of the TsSerPIN gene were further cloned and all of the four fragments were expressed. Western-blots indicated that only TsSerPIN1 and TsSerPIN5 recombinat proteins could be recognized by T. spiralis infected swine serum. Indirect ELISA showed that TsSerPIN1 and TsSerPIN5 recombinant proteins were similar in reactivity, indicating that TsSerPIN5 had the main epitopes in the C terminal of this protein. ELISA on experimentally infected swine serum, field swine serum and human serum revealed good reactivity of TsSerPIN5 recombinant protein. After immunization of mice with TsSerPIN1 and TsSerPIN5 recombinant proteins and challenge with T. spiralis larvae, the immunized mice could get parties protection with muscle larvae reduction of 40.7% and 54.5%, respectively. and produced specific antibody response. TsSerPIN5 could be a candidate for immunodignosis and vaccines of Trichinellosis.
引文
1.崔晶,王中全,王会智等.旋毛虫成囊前期幼虫抗原结构基因TspE1的克隆与表达[J].中国寄生虫学与寄生虫病杂,2002,20(5):278~280.
    2.丁利,褚新平,杨静等.旋毛虫Ts87重组蛋白诱发的小鼠保护性免疫的研究[J].寄生虫与医学昆虫学报,2003,10(4):207~210.
    3.付宝权,原丽红,张亚兰等.旋毛虫肌幼虫cDNA文库的免疫筛选及初步分析[J].中国畜牧兽医学会家畜寄生虫分会第五次代表大会暨第八次学术研讨会论文集线虫部分:281~284.
    4.付宝权,原丽红,张亚兰等.旋毛虫肌幼虫cDNA文库的免疫筛选及初步分析[J].吉林农业大学学报,2004,26(3):323~325.
    5.何希君,董梅,许应天等.我国旋毛虫病检测技术的进展[J].延边大学农学学报,1999,21(4):317~319.
    6.李航.细粒棘球绦虫硫氧还蛋白过氧化物酶基因的克隆、表达及抗原性分析[D].兰州大学. 2008
    7.牛廷献,刘明远,付宝权等.旋毛虫新生幼虫T668重组抗原对小鼠的免疫保护性研究[J].免疫学杂志,2005,21(1):20~22.
    8.涂涛,安桂珍,杨树森等.旋毛虫成虫、新生幼虫和肌幼虫的保护性免疫研究[J].中国人兽共患病杂志,2001,17(2):66~69.
    9.王路.长角血蜱丝氨酸蛋白酶抑制剂基因的原核、真核表达及结构的预测[D].甘肃农业大学. 2008.
    10.吴秀萍,付宝权,刘明远等.旋毛虫新生幼虫cDNA文库的免疫筛选[J].中国寄生虫学和寄生虫病杂志,2004,22:235~239.
    11.吴秀萍,郝荣华,邹洪斌等.旋毛虫肌幼虫强反应原性抗原基因的筛选及生物学特性分析[J].吉林农业大学学报,2008,30(2):213~218.
    12.吴秀萍,于申业,刘相叶等.旋毛虫Serpin基因的体外表达及其特征性鉴定[J].中国生物制品学杂志,2009,22(2):105~110.
    13.许隆祺,陈颖丹,孙凤华等.全国人体重要寄生虫病现状调查报告[J].中国寄生虫学与寄生虫病杂志,2005,23(5):332~340.
    14.闫玉河.旋毛虫肌幼虫ES抗原特异性蛋白成分的分离与鉴定[J].生物技术学报,1995,5(4):202~211.
    15.杨毅梅,何作顺.我国食源性寄生虫病的流行和致病现状[J].中国自然医学杂志,2004,6(3):206~208.
    16.原丽红,付宝权,刘明远等.旋毛虫编码新生幼虫p46kDa抗原基因重组融合蛋白对小鼠的免疫保护性研究[J].中国人兽共患病杂志,2005,21(3):221~224.
    17.袁慧君,闫玉河.旋毛虫病检测技术及ES抗原的研究进展[J].河南职技师院学报,1999,27(2):36~39.
    18.詹希美.人体寄生虫学[M].第5版.北京:人民卫生出版社,2002,126~129,217~219,229~236.
    19.张亚兰,付宝权,刘明远等.旋毛虫3日龄成虫cDNA文库的免疫筛选[J].中国兽医学报,2004,24(4):355~357.
    20.朱兴全,龚广学,薛富汉等.旋毛虫病[M].河南科学技术出版社,1993.
    21. Azzolini SS, Sasaki SD, Campos IT, et al. The role of HiTI, a serine protease inhibitor from Haematobia irritans (Diptera: Muscidae) in the control of fly and bacterial proteases[J]. Exp Parasitol, 2005, 111(1): 30~36.
    22. Armstrong PB. The contribution of proteinase inhibitors to immune defense[J]. Trends Immunol, 2001, 22(1): 47~52.
    23. Bania J, Stachowiak D, Polanowski A, et al. Primary structure and properties of the cathepsin G/chymotrypsin inhibitor from the larval hemolymph of Apis mellifera[J]. Eur J Biochem, 1999, 262(3): 680~687.
    24. Beer RJ, Lean IJ. Clinical trichuriasis produced experimentally in growing pigs. I. Pathophysiology of infection[J]. The Vet Rec, 1973, 93(7): 189~195.
    25. Blanton RE, Licate LS, Aman RA. Characterization of a native and recombinant Schistosoma haematobium serine protease inhibitor gene product[J]. Mol Biochem Parasitol, 1994, 63(1): 1~11.
    26. Bundy DA, Cooper ES. Trichuris and trichuriasis in humans[J]. Adv Parasitol, 1989, 28: 107~173.
    27. Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases[J]. Eur J Biochem, 1992, 204(2): 433~451.
    28. Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins[J]. Ann Rev Biochem, 1981, 50: 349~383.
    29. Bruno S, Duschak VG, Ledesma B, et al. Identification and characterization of serine proteinase inhibitors from Neospora caninum[J]. Mol Biochem Parasitol, 2004, 136(1): 101~107.
    30. Campbell WC. Trichinella and Trichinellosis[M]. Plenum Press, Pubs, New York, 1983.
    31. Chu D, Bungiro RD. Molecular Characterization of Ancylostoma ceylanicum Kunitz-Type Serine Protease Inhibitor: Evidence for a Role in Hookworm-Associated Growth Delay[J]. Infect Immun, 2004, 72(4): 2214~2221.
    32. Cupparia AF, Sancheza V, Ledesmab B, et al. Toxoplasma gondii protease inhibitor-1(TgPI-1) is a novel vaccine candidate against toxoplasmosis[J]. Vaccine, 2008, 26(39): 5040~5045.
    33. Dupouy-Camet J. Trichinellosis: a worldwide zoonosis[J]. Vet Parasitol, 2000, 93(3-4): 191~200.
    34. Empie MW, Laskowski M Jr. Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases[J]. Biochemistry, 1982, 21(10): 2274~2284.
    35. Fetterer RH, Miska KB, Jenkins MC, et al. Identification and characterization of a serpin from Eimeria acervulina[J]. J Parasitol, 2008, 94(6): 1269~1274.
    36. Fogaca AC, Almeida IC, Eberlin MN, et al. Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases[J]. Peptides, 2006, 27(4): 667~674.
    37. Ford L, Guiliano DB, Oksov Y, et al. Characterization of a novel filarial serine protease inhibitor, Ov-SPI-1, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite[J]. J Biol Chem, 2005, 280(49): 40845~40856.
    38. Gettins PG. Serpin structure, mechanism, and function[J]. Chem Rev, 2002, 102(12): 4751~4804.
    39. Gettings P, Patston PA, Schapira M. The role of conformational change in serpin structure and function[J]. Bioessays, 1993, 15(7): 461~467.
    40. Ghendler Y, Arnon R, Fishelson Z. Schistosoma mansoni: isolation and characterization of Smpi56, a novel serine protease inhibitor[J]. Exp Parasitol, 1994, 78(2): 121~131.
    41. Grasberger BL, Clore GM, Gronenborn AM. High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site[J]. Structure, 1994, 2(7): 669~678.
    42. Grigoryev SA, Bednar J, Woodcock CL. MENT, a heterochromatin protein that mediates higher order chromatin folding, is a new serpin family member[J]. J Biol Chem, 1999, 274(9): 5626~5636.
    43. Hill RE, Hastie ND. Accelerated evolution in the reactive centre regions of serine protease inhibitors[J]. Nature, 1987, 326: 96~99.
    44. Huang W, Haas TA, Biesterfeldt J. Purification and crystallization of a novel membrane-anchored protein: the Schistosoma haematobium serpin[J]. Acta Crystallogr D Biol Crystallogr, 1999, 55(1): 350~352.
    45. Huber R, Carrell RW. Implications of the three-dimensional structure of a1-antitrypsin for structure and function of serpins[J]. Biochemistry, 1989, 28: 8951~8966.
    46. Huntington JA, Read RJ, Carrell RW. Structure of a serpin–protease complex shows inhibition by deformation[J]. Nature, 2000, 407: 923~926.
    47. Holak TA, Bode W, Huber R, et al. Nuclear magnetic resonance solution and X-ray structures of squash trypsin inhibitor exhibit the same conformation of the proteinase binding loop[J]. J Mol Biol, 1989, 210: 649~654.
    48. Imamura S, Ohashi K, Sugino M, et al. A serine protease inhibito(rserpin)from Haemaphysalis longicornis as an anti-tick vaccine[J]. Vaccine, 2005, 23(10): 1301~1311.
    49. Irving JA, Steenbakkers PJ, Lesk AM, et al. Serpins in prokaryotes[J]. Mol Biol Evol, 2002, 19(11): 1881~1890.
    50. Irving JA, Pike RN, Lesk AM, et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function[J]. Genome Res, 2000, 10(12):1845~1864.
    51. Gamble HR. Comparison of immune effects in mice immunized with Trichinella spiralis adult and larval antigens[J]. J Parasitol, 1985, 71(5): 680~682.
    52. Gamble HR, Graham CE. Monoclonal antibody-purified antigen for the immunodiagnosis of trichinosis[J]. Am J Vet Res, 1984, 45(1): 67~68.
    53. Kato I, Kohr WJ, Laskowski M Jr, et al. Positive darwinian selection in evolution of protein inhibitors of serine proteinases[J]. Cold Spring Hard Symp Quant Biol, 1987, 52: 545~553.
    54. Knox DP. Proteinase inhibitors and helminth parasite infection[J]. Parasite Immunol, 2007, 29(2): 57~71.
    55. Laskowski M Jr, Kato I. Protein inhibitors of proteinases[J]. Annu Rev Biochem, 1980, 49: 593~626.
    56. Levashina EA, Langley E, Green C, et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila[J]. Science, 1999, 285(5435): 1917~1919.
    57. Lindh JG, Botero-Kleiven S, Arboleda JI, et al. A protease inhibitor associated with the surface of Toxoplasma gondii[J]. Mol Biochem Parasitol, 2001, 116(2): 137~145.
    58. Louie K, Conrad PA. Characterization of a cDNA encoding a subtilisin-like serine protease (NC-p65) of Neospora caninum[J]. Mol Biochem Parasitol, 1999, 103(2): 211~223.
    59. Lu CC, Nguyen T, Morris S, et al. Anisakis simplex: Mutational bursts in the reactive site centers of serine protease inhibitors from an Ascarid nematode[J]. Exp Parasitol, 1998, 89(2): 257~261.
    60. MacLennan K, McLean K, Knox DP. Serpin expression in the parasitic stages of Trichostronglus vitrinus, an ovine intestinal nematode[J]. Parasitology, 2005, 130(Pt3): 347~357.
    61. Maizels RM, Gomez-Escobar N, Gregory WF, et al. Immune evasion genes from filarial nematodes[J]. Int J Parasitol, 2001, 31(9): 889~898.
    62. Marshall CJ. Evolutionary relationships among the serpins[J]. Philos Trans R Soc Lond B Biol Sci, 1993, 342(1300), 101~119.
    63. Marti HP, Murrell KD, Gamble HR. Trichinella spiralis: immunization of pigs with newborn larval antigens[J]. Exp Parasitol, 1987, 63(1): 68~73.
    64. Merckelbach A, Ruppel A. Biochemical properties of an intracelluar serpin from Echinococcus multilocular[J]. Mol Biochem Parasitol, 2007, 156(1): 84~88.
    65. Morris TM, Cheng WC, Zhou XW, et al. Neospora caninum expresses an unusual single-domain Kazal protease inhibitor that is discharged into the parasitophorous vacuole[J]. Int J Parasitol, 2004, 34(6): 693~701.
    66. Milstone AM, Harrison LM, Bungiro RD, et al. A broad spectrum Kunitz type serine protease inhibitor secreted by the hookworm Ancylostoma ceylanicum[J]. J Biol Chem, 2000, 275(38): 29391~29399.
    67. Miura Y, Kawabata S, Wakamiya Y, et al. A Limulus intracellular coagulation inhibitor type 2.Purification, characterization, cDNA cloning, and tissue localization[J]. J Biol Chem, 1995, 270(2): 558~565.
    68. Morris MT, Coppin A, Tomavo S, et al. Functional analysis of Toxoplasma gondii protease inhibitor 1[J]. J Biol Chem, 2002, 277(47): 45259~45266.
    69. Morris MT, Carruthers VB. Identification and partial characterization of a second Kazal inhibitor in Toxoplasma gondii[J]. Mol Biochem Parasitol, 2003, 128(1): 119~122.
    70. Muhlhahn P, Czisch M, Morenweiser R, et al. Structure of leech derived tryptase inhibitor (LDTI-C) in solution[J]. FEBS Lett, 1994, 355(3): 290~296.
    71. Nagano I, Wu Z, Nakada T, et al. Molecular cloning and characterization of a serine proteinase inhibitor from Trichinella sprialis[J]. Parasitology, 2001, 123(Pt1): 77~83.
    72. Ozawa K, Laskowski M Jr. The reactive site of trypsin inhibitors[J]. J Biol Chem, 1966, 241(17): 3955~3961.
    73. Peanasky RJ, Martzen MR, Hawley JH. Proteinase inhibitors in Ascarida[J]. Parasitol Today, 1994, 10(8): 349~366.
    74. Potempa J, Korzus E, Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation[J]. J Biol Chem, 1994, 269(23): 15957~15600.
    75. Pozio E. World distribution of Trichinella spp. Infection in animals and humans[J]. Vet Parasitol, 2007, 149(1-2): 3~21.
    76. Pszenny V, Ledesma BE, Matrajt M, et al. Subcellular localization and post-secretory targeting of TgPI, a serine proteinase inhibitor from Toxoplasma gondii[J]. Mol Biochem Parasitol, 2002, 121(2): 283~286.
    77. Pszenny V, Angel SO, Duschak VG, et al. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii[J]. Mol Biochem Parasitol, 2000, 107(2): 241~249.
    78. Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors[J]. Biochem J, 2004, 378(Pt3): 705~716.
    79. Rhoads ML, Fetterer RH, Hill DE. Trichuris suis: a secretory serine protease inhibitor[J]. Exp Parasitol, 2000, 94(1): 1~7.
    80. Rhoads ML, Fetterer RH, Hill DE, et al. Trichuris suis: a secretory chymotrypsin/elastase inhibitor with potential as an immunomodulator[J]. Exp Parasitol, 2000, 95(1): 36~44.
    81. Riahi Y, Siman-Tov R, Ankri S. Molecular cloning, expression and characterization of a serine proteinase inhibitor gene from Entamoeba histolytica[J]. Mol Biochem Parasitol, 2004, 133(2): 153~162.
    82. Sasaki SD, Azzolini SS, Hirata IY et al. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors[J]. Biochimie, 2004, 86(9-10): 643~649.
    83. Stanssens P, Bergum PW, Gansemans Y, et al. Anticoagulant repertoire of the hookworm Ancylostoma caninum[J]. Proc Natl Acad Sci USA, 1996, 93(5): 2149~2154.
    84. Schechter I, Berger A. On the size of the active site in proteases[J]. Biochem Biophys ResCommun, 1967, 27(2): 157~162.
    85. Shepherd JC, Aitken A, McManus DP. A protein secreted in vivo by Echinococcus granulosus inhibits elastase activity and neutrophil chemotaxis[J]. Mol Biochem Parasitol, 1991, 44(1): 81~90.
    86. Silberstein DS, Despommier DD. Antigen from Trichinella Spiralis that Induce a Protective Response in the Morse[J]. J Immunol, 1984, 132(2): 898~904.
    87. Silverman GA, Whisstock JC, Askew DJ, et al. Human clade B serpins (ov-serpins) belong to a cohort of evolutionarily dispersed intracellular proteinase inhibitor clades that protect cells from promiscuous proteolysis[J]. Cell Mol Life Sci, 2004, 61(3): 301~325.
    88. Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrinαVβ3 binding to vitronectin[J]. Nature, 1996, 383(6599): 441~443.
    89. Stein P, Chothia C. Serpin tertiary structure transformation[J]. J Mol Biol, 1991, 221(2): 615~621.
    90. Su X, Prestwood AK, Mcgraw RA, et al. Cloning and expression of complementary DNA encoding on antigen of Trichinella spiralis[J]. Mol Biochem Parasitol, 1991, 45(2): 331~336.
    91. Sugane K, Matsuura T. Molecular analysis of the gene encoding an antigenic polypeptide of Trichinella spiralis infective larvae[J]. J Helminthol, 1990, 64(1): 1~8.
    92. Sun S, Xu W, He N, et al. An antigenic recombinant fusion protein from Trichinella spiralis induces a protective response in BALB/ c mice[J]. J Helminthol, 1994, 68(1): 89~91.
    93. Tanaka AS, Andreotti R, Gomes A. A double headed serine proteinase inhibitor--human plasma kallikrein and elastase inhibitor from Boophilus microplus larvae[J]. Immunopharmacology, 1999, 45(1-3): 171~177.
    94. Van Gent D, Sharp P, Morgan K, et al. Serpins: structure, function and molecular evolution[J]. Int J Biochem Cell Biol, 2003, 35(11): 1536~1547.
    95. Von Heijne G. A new method for predicting signal sequence cleavage sites[J]. Nucleic Acids Res, 1986, 14(11): 4683~4690.
    96. Whisstock J, Skinner R, Lesk AM. An atlas of serpin conformations[J]. Trends Biochem Sci, 1998, 23(2): 63~67.
    97. Wilihoeft U, Campos-Gongora E, Touzni S, et al. Introns of Entamoeba histolytica and Entamoeba dispar[J]. Protist, 2001, 152(2): 149~156.
    98. Wu XP, Fu BQ, Wang XL, et al. Identification of antigenic genes in Trichinella spiralis by immunoscreening of cDNA libraries[J]. Vet Parasitol, 2009, 159(3-4): 272~275.
    99. Yenbutr P, Scott AL. Molecular cloning of a serine proteinase inhibitor from Brugia malayi[J]. Infect Immun, 1995, 63(5): 1745~1753.
    100. Zang X, Maizels RM. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen[J]. Trends Biochem Sci, 2001, 26(3): 191~197.
    101. Zang X, Yazdanbakhsh M, Jiang H, et al. A novel serpin expressed by the blood-borne microfilariae of the parasitic nematode Brugia malayi inhibits human neutrophil serineproteinases[J]. Blood, 1999, 94(4): 1418~1428.
    102. Zarlega DS, Gamble HR. Molecular cloning and expression of an immunodominant 53-KDa excretory-secrotory antigen from Trinhinella spiralis muscle larvae[J]. Mol Biochem Parasitol, 1990, 42(2): 165~174.
    103. Zhu Y, Wang Y, Gorman MJ, et al. Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidase-activating proteinases[J]. J Biol Chem, 2003, 278(47): 46556~46564..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700