阻滞与非阻滞品系小鼠次级卵母细胞基因表达水平的比较及FGF7对小鼠植入前胚发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     检测阻滞品系(昆明)小鼠与非阻滞品系(B6C3F1)小鼠次级卵母细胞基因表达水平的差异;观察成纤维细胞生长因子7(fibroblast growth factor 7,FGF7)对KM小鼠植入前胚发育和克服2-细胞阻滞的作用。
     方法:
     1.Affymetrix表达谱芯片检测比较KM与B6C3F1小鼠次级卵母细胞基因表达差异,并运用Real time PCR对部分差异基因进行验证;
     2.RT-PCR和免疫荧光细胞化学显色方法检测成纤维细胞生长因子受体(fibroblast growth factor receptor,FGFR)-1、2和3在KM小鼠卵母细胞和植入前胚中的表达与分布;
     3.收集KM小鼠1-细胞胚,采用微滴培养法连续培养,观察在M16培养液中添加FGF7蛋白对植入前胚发育的影响,观察其是否能克服2-细胞阻滞。
     结果:
     1.基因芯片检测显示KM与B6C3F1小鼠卵母细胞内许多与基因转录、转录调节、蛋白质合成等功能相关的基因表达存在差异;Real time PCR验证结果与芯片检测结果较为相符,证明本次芯片检测结果较为可靠。
     2.RT-PCR检测显示,FGFR1、FGFR2和FGFR3 mRNA在KM小鼠卵母细胞和植入前胚均有表达;免疫荧光细胞化学结合共聚焦扫描显微镜观察显示FGFR1、FGFR3免疫阳性反应见于卵母细胞和植入前胚胞质周边,靠近细胞膜;FGFR2阳性反应较均匀分布于卵母细胞和植入前胚的胞质。
     3.KM小鼠1-细胞胚在添加FGF7蛋白的M16培养液中培养,其4-细胞胚发育率明显高于空白M16培养液(对照组),差异有显著性意义。
     结论:
     B6C3F1小鼠卵母细胞表达上调基因主要与基因转录调节、抗氧化应激、蛋白质合成与转运、氨基酸磷酸化修饰、细胞周期、发育等功能相关,提示B6C3F1小鼠卵母细胞内与自身基因转录、蛋白质合成与转运、抗氧化等功能相关的调节更为完善,阻滞与非阻滞品系小鼠卵母细胞内这些母源基因表达差异可能影响小鼠植入前胚体外发育能力;KM小鼠卵母细胞和植入前胚内有成纤维细胞生长因子受体1、2和3的表达;FGF7可促进KM小鼠植入前胚体外发育,显著提高2-细胞至4-细胞的发育比率。
Objective:
     To comparis the gene profiles in the MII eggs from blocking and non-blocking strain mice,and investigate the effects of FGF7 on the in vitro development of mouse preimplantation embryo.
     Methods:
     1. Mouse cDNA microarray (Affymetric GeneChip Mouse Genome 430 2.0) was applied to analyse the gene expression profiles of KM and B6C3F1 mouse eggs, and then Real-time PCR was used to validate some different genes.
     2. Reverse transcription polymerase (RT-PCR), Immunofluorescence staining and confocal lascer scanning microscope were used to detect the expression and distribution of FGFR1, FGFR2 and FGFR3.
     3. KM 1-cell embryos were cultured in M16 media which were added different concentrations of FGF7 protein. The effects of FGF7 on the development of preimplantation embryo in vitro were observed, and the percentage of mouse embryos developing from 2- to 4-cell stage was used as evaluation criteria.
     Results:
     1. Of 45037 genes in the mouse cDNA microarray, 3144 genes were differentially expressed between KM and B6C3F1 mouse MII oocytes, including 1818 up-regulated genes and 1326 down-regulated genes for B6C3F1 mice. We retain the gene which signal intensity exceed 200, containing 793 up-regulated genes and 202 down-regulated genes for B6C3F1 mice MII oocytes. These genes involved in regulation of gene transcription, oxidation reduction, protein biosynthesis, protein transport, protein amino acid phosphorylation, development processes were up-regulated in B6C3F1 mouse MII oocytes .
     2. FGFR1, FGFR2 and FGFR3 mRNA were detectable in both the oocytes and the preimplantation embryos of KM mice by using RT-PCR. Immunofluorescence staining analysis showed that FGFR1 and FGFR3 were mainly distrubuted in the peripheral cytoplasm of the oocytes and preimplantation embryos. However, FGFR2 were located uniformly in the cytoplasm of the oocytes and preimplantation embryos.
     3. KM 1-cell embryos were cultured in M16 media which were added by different concentrations of FGF7 protein. The percentages of mouse embryos developing from 2- to 4-cell stage had significant differences comparing to the control. In vitro, most of KM 1-cell embryos were arrested in 2-cell stages when cultured in M16 media, while most of KM 1-cell embryos could develop beyond 2-cell stage and to 4-cell in experimental group.
     Conclusion:
     These maternal genes involved in regulation of gene transcription, protein biosynthesis and transport, oxidation reduction, protein amino acid phosphorylation, development processes were up-regulated in B6C3F1 mouse MII oocytes, which might have an effect on the in vitro development of mouse preimplantation embryo. The expression of FGFR1, FGFR2, FGFR3 in oocytes and preimplantation embryo and the promotive effects of FGF7 on the in vitro development of KM mouse preimplantation embryo confirmed the effects of maternal genes on the development of mouse preimplantation embryo further.
引文
1. Schultz R M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo[J]. Hum Reprod Update,2002, 8(4): 323-331.
    2. Wang S, Lin C, Shi H, et al. Correlation of the mitochondrial activity of Two-cell mbryos produced in vitro and the Two-cell block in Kunming and B6C3F1 Mice[J]. Anat Rec (Hoboken), 2009, 292(5):661-669.
    3. Bettegowda A, Smith G W. Mechanisms of maternal mRNA regulation: implications for mammalian early embryonic development[J]. Front Biosci, 2007, 12:3713-3726.
    4. Marteil G, Richard-Parpaillon L, Kubiak J Z. Role of oocyte quality in meiotic maturation and embryonic development[J]. Reprod Biol, 2009, 9(3):203-224.
    5. Rodriguez K F, Farin C E. Genne transcription and regulation of oocyte maturation[J]. Reprod Fertil Dev, 2004,16(1-2):55-67.
    6.高绍荣,孙青原,黄振勇,陈大元.蛋白质合成对小鼠卵母细胞体外成熟影响的研究[J].发育与生殖生物学学报(英文版),1997,6(1):1-6.
    7. Ma M, Guo X, Wang F, et al. Protein expression profile of the mouse metaphase-II oocyte[J]. J Proteome Res, 2008, 7(11):4821-4830.
    8. Aoki F, Hara K T, Schultz R M. Acquisition of transcriptional competence in the
    1-cell mouse embryo: requirement for recruitment of maternal mRNAs[J]. Mol Reprod Dev, 2003 ,64(3):270-274.
    9. Massicotte L, Coenen K, Mourot M, et al. Maternal housekeeping proteins translated during bovine oocyte maturation and early embryo development[J]. Proteomics, 2006 ,6(13):3811-3820.
    10. Farley B M, Ryder S P. Regulation of Maternal mRNAs in Early Development[J]. Crit Rev Biochem Mol Biol, 2008,43(2):135-162.
    11. Zuccotti M, Merico V, Sacchi L,et al. Maternal Oct-4 is a potential key regulator of the developmental competence of mouse oocytes[J]. BMC Dev Biol, 2008 , 8(1):97-110.
    12. Wu X, Viveiros M M, Eppig J J, et al. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition[J]. Nat Genet, 2003, 33(2):187-191.
    13. Bultman S J, Gebuhr T C, Pan H, et al. Maternal BRG1 regulates zygotic genome activation in the mouse[J]. Genes Dev, 2006, 20(13):1744-1754.
    14. Wan L B, Pan H, Hannenhalli S, et al. Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development[J]. Development, 2008, 135(16):2729-2738.
    15. Liang H L, Nien C Y, Liu H Y, et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila[J]. Nature, 2008 , 456(7220): 400-403.
    16. Vandaele L, Thys M, Bijttebier J, et al. Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development[J]. Reproduction, 2010 ,139(3):505-511.
    17. Legge M, Sellens M H. Free radical scavengers ameliorate the 2-cell block in mouse embryo culture[J]. Hum Reprod, 1991, 6(6): 867-871.
    18. Nasr-Esfahani M H, Johnson M H. Quantitative analysis of cellular glutathione in early early mouse embryos developing in vivo and in vitro[J]. Hum Reprod, 1992, 7(9): 1281-1290.
    19.史河秀,林翠英,谢美容,张卫玉,吕俊杰,王世鄂. M16添加硫氧还蛋白过氧化物酶II无法克服昆明小鼠早胚体外发育2-细胞阻滞[J].中国组织化学与细胞化学杂志,2009, 18(1): 77-83.
    20. Richter K S. The importance of growth factors for preimplantation embryo development and in-vitro culture[J]. Curr Opin Obstet Gynecol, 2008 ,20(3):292-304.
    21. Zhang X, Ibrahimi O A, Olsen S K, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family[J]. J Biol Chem, 2006 ,281(23):15694-15700.
    22. Stauber D J, DiGabriele A D, Hendrickson W A. Structural interactions of fibroblast growth factor receptor with its ligands[J]. Proc Natl Acad Sci U S A, 2000, 97(1):49-54.
    23. Glabowski W, Kurzawa R, Wiszniewska B, et al. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha[J]. Reprod Biol, 2005, 5(1):83-99.
    24. Powers C J, McLeskey S W, Wellstein A. Fibroblast growth factors, their receptors and signaling[J]. Endocr Relat Cancer, 2000 ,7(3):165-197.
    25. Davidson D, Blanc A, Filion D, et al. Fibroblast Growth Factor (FGF) 18 Signals through FGF Receptor 3 to Promote Chondrogenesis[J]. J Biol Chem, 2005,280(21):20509–20515.
    26. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development [J]. Dev Biol, 2005, 287(2):390-402.
    27. Berisha B, Steffl M, Amselgruber W, et al. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation[J]. Reproduction, 2006, 131(2):319-329.
    28. Castilho A C, Giometti I C, Berisha B, et al. Expression of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in the bovine corpus luteum[J]. Mol Reprod Dev, 2008, 75(5):940-945.
    29. Berisha B, Sinowatz F, Schams D. Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles[J]. Mol Reprod Dev, 2004, 67(2):162-171.
    30. Buratini J Jr, Pinto M G, Castilho A C, et al. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles[J]. Biol Reprod, 2007, 77(4):743-750.
    31. Haffner-Krausz R, Gorivodsky M, Chen Y, et al. Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development[J]. Mech Dev, 1999, 85(1-2):167-172.
    32. Rappolee D A, Patel Y, Jacobson K. Expression of fibroblast growth factor receptors in peri-implantation mouse embryos[J]. Mol Reprod Dev, 1998, 51(3):254-264.
    33. Kurzawa R, Glabowski W, Baczkowski T, et al. Growth factors protect in vitro cultured embryos from the consequences of oxidative stress[J]. Zygote, 2004 ,12(3): 231-240.
    34. Kawamura K, Fukuda J, Shimizu Y, et al. Survivin contributes to the anti-apoptotic activities of transforming growth factor alpha in mouse blastocysts through phosphatidylinositol 3'-kinase pathway[J]. Biol Reprod, 2005 ,73(6):1094-1101.
    35. Kawamura K, Kawamura N, Kumagai J, et al. Tumor necrosis factor regulation of apoptosis in mouse preimplantation embryos and its antagonism by transforming growth factor alpha/phosphatidylionsitol 3-kinase signaling system[J]. Biol Reprod, 2007, 76(4):611-618.
    36. Emoto H, Tagashira S, Mattei M G, et al. Structure and expression of human fibroblast growth factor-10[J]. J Biol Chem, 1997 , 272(37):23191-23194.
    37. Beer H D, Florence C, Dammeier J, et al. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression[J]. Oncogene, 1997 , 15(18):2211-2218.
    38. Cho J H, Itoh T, Sendai Y, et al. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles[J]. Mol Reprod Dev, 2008 , 75(12):1736-1743.
    39. Sonvilla G, Allerstorfer S, Stattner S, et al. FGF18 in colorectal tumour cells: autocrine and paracrine effects[J]. Carcinogenesis, 2008, 29(1): 15-24.
    40. Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis[J]. Genes Dev, 2002 ,16(7): 870-879.
    41. Zhou P, Liu D J, Cang M, et al. TGFalpha and EGFR in ovine preimplantation embryos and effects on development[J]. Anim Reprod Sci, 2008 ,104(2-4): 370-381.
    42. Rappolee D A, Basilico C, Patel Y, et al. Expression and function of FGF-4 in peri-implantation development in mouse embryos[J]. Development, 1994 ,120(8): 2259-2269.
    1. Rad F H, Le Buanec H, Paturance S, et al. VEGF kinoid vaccine, a therapeutic approach against tumor angiogenesis and metastases [J]. Proc Natl Acad Sci, 2007, 104(8): 2837-2842.
    2. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression [J]. Crit Rev Oncol Hematol, 2007,62(3):179-213.
    3. Katoh M, Katoh M. FGF signaling network in the gastrointestinal tract (review)[J]. Int J Oncol, 2006, 29(1):163-168.
    4.伊海英,孙晓艳,付小兵,任明姬,张广田.碱性成纤维细胞生长因子的研究进展[J].解放军医学杂志,2008, 33(6):776-778.
    5.余瑛,蔡绍皙,夏玉先,WeririchHG.酸性成纤维细胞因子研究进展[J].中国药理学通报,2002,18(2):125-128.
    6. Cho J H, Itoh T, Sendai Y, et al. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles[J]. Mol Reprod Dev,2008 ,75(12):1736-1743.
    7. Castilho A C, Giometti I C, Berisha B, et al. Expression of Fibroblast Growth Factor 10 and Its Receptor, Fibroblast Growth Factor Receptor 2B, in the Bovine Corpus Luteum[J]. Mol Reprod Dev, 2008 ,75(5):940-945.
    8. Shams I, Rohmann E, Eswarakumar VP, et al. Lacrimo-Auriculo-Dento-Digital Syndrome Is Caused by Reduced Activity of the Fibroblast Growth Factor 10 (FGF10)-FGF Receptor 2 Signaling Pathway[J]. Mol Cell Biol, 2007, 27(19):6903-6912.
    9. Berisha B, Steffl M, Amselgruber W, et al. Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation[J]. Reproduction, 2006, 131(2):319-329.
    10. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development [J]. Dev Biol, 2005,287(2):390-402.
    11. Berisha B, Sinowatz F, Schams D. Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles[J]. Mol Reprod Dev, 2004, 67(2): 162-171.
    12. Buratini J Jr, Pinto M G, Castilho A C, et al. Expression and Function of Fibroblast Growth Factor 10 and Its Receptor, Fibroblast Growth Factor Receptor
    2B, in Bovine Follicles[J]. Biol Reprod, 2007 ,77(4):743-750.
    13. Buratini J Jr, Glapinski V F, Giometti I C, et al. Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles[J]. Mol Reprod Dev, 2005, 70(3) :255-261.
    14. Matos M H, Lima-Verde I B, Bruno J B, et al. Follicle stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro[J]. Reprod Fertil Dev, 2007, 19(5) :677-684.
    15. Drummond A E, Tellbach M, Dyson M, et al. Fibroblast Growth Factor-9, a Local Regulator of Ovarian Function[J]. Endocrinology, 2007,148(8):3711-3721.
    16. Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis[J]. Genes Dev, 2002,16(7):870-879.
    17.姜永,杨帆,肖明振,何文喜,范晓敏. FGF18对成牙本质细胞样细胞增殖和碱性磷酸酶活性的影响[J].临床口腔医学杂志, 2006, 22(5):209-210.
    18.杨帆,肖明振,赵守亮,张敬雷. FGF18对人牙乳头间充质细胞增殖和矿化能力的影响[J].临床口腔医学杂志, 2008, 24(6):323-325.
    19. Cancilla B, Ford-Perriss M D, Bertram J F. Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney [J]. Kidney Int, 1999, 56(6):2025-2039.
    20. Davidson D, Blanc A, Filion D, et al. Fibroblast Growth Factor (FGF) 18 Signals through FGF Receptor 3 to Promote Chondrogenesis[J]. J Biol Chem, 2005, 280(21):20509-20515.
    21. Kurzawa R, Glabowski W, Baczkowski T, et al. Growth factors protect in vitro cultured embryos from the consequences of oxidative stress[J]. Zygote, 2004,12(3):231–240.
    22. Zhou P, Liu D J, Cang M, et al. TGFαand EGFR in ovine preimplantation embryos and effects on development[J]. Anim Reprod Sci, 2008,104(2-4):370-381.
    23. Ergin K, Gürsoy E, Ba?imo?lu Koca Y, et al. Immunohistochemical detection of insulin-like growth factor-I, transforming growth factor-beta2, basic fibroblast growth factor and epidermal growth factor-receptor expression in developing rat ovary[J]. Cytokine, 2008, 43(2): 209-214.
    24.姜笃银,付小兵. FGFs及其受体对胚胎器官发生的调控作用[J].国外医学·生理、病理科学与临床分册, 2003, 23(3):283-285.
    25. Richter KS. The importance of growth factors for preimplantation embryo development and in-vitro culture[J]. Curr Opin Obstet Gynecol, 2008, 20(3): 292–304.
    26. Zhong W, Wang Q T, Sun T, et al. FGF Ligand Family mRNA Expression Profile for Mouse Preimplantation Embryos, Early Gestation Human Placenta, and Mouse Trophoblast Stem Cells[J]. Mol Reprod Dev, 2006, 73(5):540-550.
    27. Haffner-Krausz R, Gorivodsky M, Chen Y, et al. Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development[J]. Mech Dev, 1999, 85(1-2):167-172.
    28. Rappolee D A, Patel Y, Jacobson K. Expression of fibroblast growth factor receptors in peri-implantation mouse embryos[J]. Mol Reprod Dev, 1998 , 51(3):254-264.
    29. Rappolee D A, Basilico C, Patel Y, et al. Expression and function of FGF-4 in peri-implantation development in mouse embryos[J]. Development, 1994 ,120(8):2259-2269.
    30. G?abowski W, Kurzawa R, Wiszniewska B, et al. Growth factors effects on preimplantation development of mouse embryos exposed to tumor necrosis factor alpha[J]. Reprod Biol, 2005, 5(1):83-99.
    31. Borello U, Cobos I, Long J E, et al. FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development[J]. Neural Dev, 2008, 3:17-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700