分离CO_2/CH_4固定载体复合膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2等酸性气体的膜分离技术研究已成为最受世界瞩目的关于能源和环境问题的重大课题之一。固定载体膜是一类很有发展前景的新型分离膜,而分离CO_2的固定载体膜尚属一崭新的研究领域,无论是膜材料的开发还是传递机理的探索都是亟待解决的问题。本文正是以此为背景,在高透过选择性CO_2固定载体膜材料的开发以及CO_2在膜内的传递机理等方面进行了一些新的探索和尝试。
    通过分析待分离气体、高分子基材、活性载体以及水的相互作用,本文从促进传递体系的选择、高分子基材的选择以及载体的选择等几个方面提出了一些原则以指导CO_2固定载体膜的研制。基于这些原则,本文研制成功三种CO_2固定载体膜材料,聚N-乙烯基-γ-氨基丁酸钠(PVSA),N-乙烯基-γ-氨基丁酸钠-丙烯酸钠的共聚物(VSA-SA)以及羧甲基壳聚糖(CM-CS)。分别以上述三种材料为表层,以聚砜(PS)、聚醚砜(PES)、聚丙烯腈(PAN)超滤膜为支撑体制成复合膜。利用红外光谱(FTIR)、X射线衍射(XRD)、X-射线光电子能谱(XPS)、核磁共振(1H NMR)、元素分析、环境扫描电子显微镜(ESEM)以及化学滴定法等对三种材料以及制成的复合膜的物理化学结构和形态结构进行了分析,结果证明三种材料均含有仲胺或伯胺和羧基,复合膜表层致密光滑,与支撑层紧密结合。以CO_2/CH4体系为研究对象,考察了各种复合膜的透过选择性能,系统研究了各种因素如耦合效应、支撑膜材料及其平均截留分子量、铸膜液中杂质、不同的交联剂、交联时间、载体含量等对膜结构和性能的影响。结果表明,所研制的膜极具开发前景。
    PVSA/PS,VSA-SA/PS,CM-CS/PES三种复合膜表现出优异的CO_2透过选择性,其综合性能指标远高于国外报道的其它同类固定载体膜。如CO_2压力为5.1cmHg时,PVSA/PS复合膜的CO_2渗透速率和理想分离因子分别为1.47(10-4 cm3 (STP)cm-2 s-1 cmHg-1和155.9;CO_2压力为5cmHg时,VSA-SA/PS复合膜的CO_2渗透速率和理想分离因子分别为8.0(10-5 cm3 (STP)cm-2 s-1 cmHg-1和406.2;CO_2压力为5.3cmHg时,CM-CS/PES复合膜的CO_2渗透速率和理想分离因子分别为5.79(10-5 cm3 (STP)cm-2 s-1 cmHg-1和84.6。其原因在于膜内引入了可与CO_2进行可逆反应的载体—胺基和羧基,从而促进了CO_2在膜中的传递。以PVSA/PS膜为考察对象,对膜内传递机理进行了探索,提出CO_2在干膜的情况下,膜内同时发生两个过程,即一部分CO_2通过自由扩散,另一部分以溶质-载体反应物(RNH(CH2)3COO-·CO_2)的方式扩散,在加湿膜的情况下,一部分复合物转变成了易于移动的HCO3-。红外光谱和拉曼光谱的测试结果证实了上述机理。
    三种复合膜的性能稳定性良好。在进料气压力约57cmHg下,连续运行一周,仍能维持较好的分离因子和渗透速率。
Separation and removal of CO_2 using membrane technology is one of the most important subjects about energy and environment. Fixed carrier membrane is a kind of promising separation membrane. However, CO_2 fixed carrier membrane is a new research field in which both the development of membrane material and the exploration of transport mechanism are urgent. This study made attempts to develop fixed carrier membranes with high performance for CO_2 removal and explore transport mechanism of CO_2 in the membranes.
    In view of the interactions of gases, polymeric membrane, carrier and water, the principles of selecting facilitated transport system, polymeric material and carrier were proposed. On the basis of these principles, three kinds of CO_2 fixed carrier membrane materials were prepared successfully, they are poly(N-vinyl-γ-sodium aminobutyrate), poly(N-vinyl-γ-sodium aminobutyrate-co-sodium acrylate) and carboxymethyl chitosan. The composite membranes were developed respectively with the above three kinds of materials as active layers and polysulfone, polyethersulfone, polyacrylonitrile ultra-filtration membranes as the supports. FTIR(Fourier Transform Infrared Spectroscopy), XRD(X-ray diffractions), XPS(X-ray Photoelectron Spectroscopy), 1H NMR(Nuclear Magnetic Resonance), elemental analysis, ESEM (Environmental Scanning Electron Microscope) and titration were employed to characterize the physical and chemical structure of the polymer and the morphology of the composite membrane. The results show that all of the materials contain secondary amine or primary amine and carboxyl groups and the active layers of the composite membranes are dense and smooth. The permselectivities of different composite membranes were measured with pure CO_2 and CH4 gas as well as binary mixture of CO_2 and CH4. The effects of many kinds of factors such as "coupling effects", material and molecule weight cut-off of the support membranes, the impurities in the dope solution, cross-linker, cross-linking time and carrier content were discussed in detail. The encouraging results were achieved.
    PVSA/PS,VSA-SA/PS and CM-CS/PES composite membranes present excellent comprehensive performances which are better than that of other fixed carrier membranes reported in literatures. For example, at 5.1cmHg of CO_2 pressure,PVSA/PS composite membrane displays a CO_2 permeation rate of 1.47(10-4 cm3 (STP)cm-2 s-1 cmHg-1 and CO_2/CH4 ideal separation factor of 155.9, at 5cmHg of pressure, VSA-SA/PS composite membrane displays a permeation rate of
    
    8.0(10-5cm3 (STP)cm-2 s-1 cmHg-1 and ideal separation factor of 406.2, at 5.3cmHg of pressure, CM-CS/PES composite membrane displays a permeation rate of 5.79(10-5cm3 (STP)cm-2 s-1 cmHg-1 and ideal separation factor of 84.6. The main reason is the introduction of the carrier, amine group and carboxyl group which can react reversibly with carbon dioxide in the membranes. The transport mechanism of CO_2 in PVSA/PS composite membrane was explored. In dry membrane CO_2 was transported in two ways, dissolved CO_2 and the complex (RNH(CH2)3COO-·CO_2)of CO_2 and carriers. While in humidified membranes, part of complex was transformed into small and easy to move ion HCO3-. The above mechanism was further characterized by FTIR using attenuated total reflectance techniques and FT-Roman spectrum.
    The stability of three kinds of membranes performance is good. The membranes can keep good separation factor and CO_2 permeation rate for one week at the feed gas pressure 57cmHg.
引文
[1] 时钧,袁权,高从楷,膜技术手册,北京,化学工业出版社,2001,2~3
    [2] 周家贤,CO_2—21世纪的新碳源,化工进展,2001,1:1~3
    [3] Puri P S, Membrane gas separation opportunities in the control of Greenhouse Effect, Euro membrane'97, 370~372
    [4] 张阿玲,温室气体CO_2的控制和回收利用,北京:中国环境出版社,1996
    [5] Fritzche A K,用膜法分离气体,石油化工译丛,1998,4:52~58
    [6] 加藤顺(日),碳化学工业生产技术,北京:化学工业出版社,1990
    [7] 夏明珠,严莲荷,雷武等,二氧化碳的分离回收技术与综合利用,现代化工,1991,19(5):46~48
    [8] 刘振东,最新实用节能手册,北京:地震出版社,1994
    [9] T.A.谢苗诺娃,列伊捷斯主编,南京化学工业公司研究院译,工业气体的净化,北京:化学工业出版社,1977
    [10] 李秀清,CO_2对环境的破坏及其治理,河北化工,1994,3:52~54
    [11] Cecille L, Toussaint J C, Future industrial prospects of membrane process Elsevier, NewYork, NY, 1989
    [12] Marcel Mulder, Towards closed systems: From water to Carbon dioxide, Euro membrane' 97, 367~369
    [13] 黄仲涛等编著,无机膜技术及应用,北京:中国石化出版社, 1999
    [14] 秦向东,温铁军,金美芳,脱除与浓缩二氧化碳的膜分离技术,膜科学与技术,1998,12(6):7~12
    [15] 李传峰,钟顺和,无机膜气体传递机理和模型,膜科学与技术,1999,20(3):34~36
    [16] 王金渠,无机膜分离,化工进展,1993,(3):4~10
    [17] Namba Takemi, Euro pat Appl Ep 674.939
    [18] Jones C W, Koros W J, Carbon molecular sieve gas separation membranes. I. Preparation and characterization based on polyimide precursors, Carbon, 1994, 32: 1419~1425
    [19] Ismail A F, David L I B, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci, 2001, 193: 1~18
    [20] Bauer J M, Elyassini J, Moncorge G, et al., New developments and application of carbon membranes, Key Eng. Mater, 1991, 61/62: 207~212
    [21] Koresh J E, Soffer A, The carbon molecular sieve membranes, General properties and the permeability of CH4/H2 mixture, Sep. Sci. Tech, 1987, 22: 973~982
    
    
    [22] Centeno T A, Fuertes A B, Supported carbon molecular sieve membranes based on phenolic resin, J. Membr. Sci, 1999, 160: 201~211
    [23] Liang G H, Sha G Y, Guo S C, Carbon membranes for gas separation devied from coal tar pitch, Carbon, 1999, 37: 1391~1397
    [24] 刘茉娥等编著,膜分离技术, 北京:化学工业出版社,1998
    [25] Koros W J, Mahajan R, Pushing the limits on possibilties for large scale gas separation: which strategies? J. Membr. Sci, 2000, 175: 181~196
    [26] 吕丽春,李琳,陶瓷膜气体在分离中的应用,膜科学与技术,1995,15(2):12~20
    [27] Graham T, On the law of the diffusion of gases, Philos. Mag, 1866, 32: 401~420
    [28] Pratibha Pandey, R.S.Chauhan, Membrane for gas sepatation, Prog. Poly. Sci, 2001, 26: 853—893
    [29] Stern S A, Gas permeation process, in "industrial processing with membranes" Eds. by Lacey K.E. Loeb S. Wliey Interscience, New York, 1972
    [30] Koros W J, Chern R T, Separation of gasous mixtures using polymer membranes in "Handbook of separation process Technology", Eds. By Rousseau R R, Wiley Interscience, New York, 1987
    [31] Marcel Mulder著,李琳译, Basic principles of membrane technology second edition 膜技术基本原理,北京:清华大学出版社,1999
    [32] 张健,后晓淮,高分子气体分子膜材料的化学结构与气体透过性能之间的关系,高分子通报,1999,1:14~19
    [33] Paymond P C, Paul D R, Sorption and transport of pure gases in random styrene/methyl methacrylate copolymers. J. Polym. Sci. Part B: Polym. Phys, 1990, 28: 2079~2102
    [34] Chern R T, Koros W J, Hopfenberg H B, et al., in: Material science of synthetic membranes, ACS symp. Ser, Lloyd.D.R., (eds.) 1985, 269: 25
    [35] Fujita H, Diffusion in Polymer-diluent systems, Fortschr. Hochpolym. Forsch, 1964, 3(3): 1~47
    [36] Frisch H L, Stern S A, Diffusion of small molecules in polymers, CRC Crit. Rev. Solid State Mater. Sci, 1983, 11: 123~187.
    [37] Ganesh K, Nagrajan R, Duda J L. Rate of gas transport in glassy polymers: A free volume based predictive model, Ind Eng Chem Res, 1992, 31: 746~755
    [38] Odani H, Uchikura M, Kurata M, Permeation of gas mixtures through polymer membranes, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem, 1983, 24: 81~82.
    Alentiev A Y, Yampolskii Y P, Free volume model and tradeoff relations of gas permeability and selectivity in glassy polymers, J. Membr. Sci, 2000, 165:
    
    [39] 201~216
    [40] Stern S A, Fang S M, Frisch H L, Effect of pressure on gas permeability coefficients. A new application of "free volume" theory, J. Polym. Sci, Part A-2, 1992, 10: 201~219
    [41] Paul D R, Koros W J, Effect of partially immobilizing sorption on permeability and the diffusion time-lag, J. Polym. Sci, Polym. Phys. Ed, 1976, 14: 675~685
    [42] Koros W J, Paul D R, Huvard G S, Energetics of gas sorption in glassy polymers, Polymer, 1979, 20: 956~960
    [43] Petropoulos J H, Quantitative analysis of gaseous diffusion in glassy polymers, J. Polym. Sci, Part A2, 1970, 8: 1979~1801
    [44] Chern R T, Koros W J, Yui B, Hopfenberg H B, Stannett V T, J, Selective permeation of CO_2 and CH4 through Kapton polyimide: Effects of penetrant competition and gas-phase nonideality, J. Polym. Sci, Polym Phys Ed, 1984, 22: 1061~1084
    [45] Brandt W W, Model calculation of the temperature dependence of small molecule diffusion in high polymer, J. Phys. Chem, 1959, 63: 1080~1084
    [46] Di Benedetto A T, Molecular properties of amorphous high polymers, I: A cell theory for amorphous high polymers, J. Polym. Sci, 1963, A1: 3459~3476
    [47] Pace R J, Datyner A, Statistical mechanical model for diffusion of simple penetrants in polymers. I. Theory, J. Polym. Sci, Polym Phys Ed, 1979, 17: 437~451
    [48] Robeson L M, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci, 1991, 62: 165~185
    [49] Moaddeb M, Koros W J, Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles, J. Membr. Sci, 1997, 125: 143~163
    [50] Koros W J, Simplified analysis of gas/polymer selective solubility behavior, J. Polym. Sci, Part B Polym. Phys. Ed, 1985, 23: 1611~1628
    [51] Bhide B D, Stern S A, A new evaluation of membrane processes for the oxygen enrichment of air, I Identifications of optimum operating conditions and process configuration, J. Membr. Sci, 1991, 62: 13~35
    [52] Pilato L, Litz L, Hargitay B, Osborne R, FarnhamA. Kanakami J, Fritze P. McGrath S, Polym Prepr, 1975, 16(2): 41
    [53] Kammermeyer K, Silicon rubbers as a selective barrier, Ind. Eng. Chem, 1957, 49: 1685~1686
    [54] Stern S A, Shah V M, Hardy B J, Structure/permeability relationships in silicone polymers, J. Polym. Sci, Part B: Polym. Phys, 1987, 25: 1263~1298
    [55] Koros W J, Fleming G K, Membrane based-gas separation, J.Membr. Sci, 1993, 83(1): 1~80
    
    
    [56] Liu Y, Wang R, Chung T S, Chemical Cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci, 2001, 189: 231~239
    [57] Lin W H, Chung T S, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes, J.Membr. Sci. 2001, 186: 183~193
    [58] Masri M Al, Kricheldorf H R, Fritsh D, New polyimides for gas sepatation, I polyimides derived from substituted terphenylenes and 4,4'-(hexafluoroisopropylidene) diphthalicanhydride, Maromolecules, 1999, 32: 1853~1858
    [59] Fang J H, Kita H, Okamoto K, Hyperbranched polyimide for gas separation application. I. Synthesis and characterization, Macromolecules, 2000, 33: 4639-4646
    [60] 李保安,聚乙烯胺-聚砜复合功能膜及其CO_2分离性能研究:[博士学位论文],天津:天津大学,1998
    [61] Brien K Co, Koros W J, Polyimide materials based on pyromellitic dianhydride for the separation of carbon dioxide and methane gas mixtures, J Membr. Sci, 1988, 35: 217~230
    [62] Stern S A, Mi Y, Yamamoto H, et al., Structure/Permeability relationships of polyimide membranes. I. Applications to the separation of gas mixtures, J. Polym. Sci., Polym. Phys. Ed, 1989, 27: 1887~1909
    [63] Matsumoto Kenji, Xu Ping , Nishikimi T, Gas permeation of aromatic polyimides. I . Relationship between gas permeabilities and dielectric constants, J. Membr. Sci, 1993, 81: 15~22
    [64] 祁喜旺,陈翠仙,蒋维钧,聚酰亚胺气体分离膜,膜科学与技术,1996, 16(2):1~7
    [65] 赵文元,王亦军,功能高分子材料化学,北京:化学工业出版社,1996
    [66] R.Rautenbach 著,王乐夫译,膜工艺,组件和装置设计基础,北京:化学工业出版社,
    [67] Claudia Staudt-Bickel, Koros W J, Improvement of CO_2/CH4 separation characteristics of polyimides by chemical crosslinking, J. Membr. Sci, 1999, 155: 145—154
    [68] Bos A, Punt I G M, Wessling M, Strathmann H, CO_2-induced plasticization phenomena in glassy polymer, J. Membr. Sci, 1999, 155: 67~78
    [69] Sander E S, Penetrant-induced plasticization and gas permeation in glassy polymers, J. Membr. Sci, 1988, 37: 63~80
    [70] Fleming G K, Koros W J, Dilation of polymers by sorption of carbon dioxide at elevated pressures. I Silicon rubber and unconditioned polycarbonate, Macromolecule, 1986, 19: 2285~2291
    Wessling M, Huisman I, Boomgoard Th Van den, et al., Dilate kinetics of
    
    [71] glassy aromatic polyimides induced by carbon dioxide sorption, J. Polym. Sci. Phys. Ed, 1995, 33: 1371~1384
    [72] Auvil S R, Srinivasan R, Burban P M, Int symposium on membranes for gas and vapour separation, Suadal USSR, Febr.1989
    [73] Koros W J, Fleming G K, Jordan S M, et al., Polymeric membrane materials for solution-diffusion based permeation separations, Prog Polym. Sci, 1988, 13: 339~401
    [74] Koros W J, Coleman M R, Walker DRB, Controlled permeability polymer membranes, Ann Rev Mater Sci, 1992, 22: 47~89
    [75] Hirose T, Kamiya Y, Mizoguchi K, Gas transport in poly[bis(trifluoroethoxy)phosphazene], J. Appl. Polym. Sci, 1989, 38: 809~820
    [76] Hirose T, Mizoguchi K, Gas transport in poly(alkoxyphosphazenes), J. Appl. Polym. Sci, 1991, 43: 891~900
    [77] Takada K, Matsuya H, Masuda T, et al., Gas permeability of polyacetylenes carrying substituents, J. Appl. Polym. Sci, 1985, 30: 1605~1616
    [78] Stern S A, Polymers for gas separation: the next decade, J. Membr. Sci, 1994, 94: 1~65
    [79] Robeson L M, Burgoyne W F, Langsam M, Savoca A C, Tien C F, High performance polymers for membrane separation, Polymer, 1994, 35: 4970~4978
    [80] Benny D. Freeman, Basis of permeability/selectivity trade off relations in polymeric gas separation membranes, Macromolelules, 1999, 132: 375~380
    [81] Noble R D, Kinetic efficiency factor for facilitated transport membranes, Sep. Sci. Tech, 1985, 20: 577~585
    [82] Matson S L , Lopez J, Quinn J A, Separation of gases with synthetic membranes, Chem. Eng. Sci, 1983, 38: 503~504
    [83] Meldon J H, Stroeve P, Gregoire C E, Facilitated transport of carbon dioxide, a review, Chem. Eng. Commun, 1982, 16: 263~300
    [84] Kimura S G, Maton S L, Ward W J, Industrial applications of facilitated transport in recent developments in separation science, N,N.Li(Ed)CRC. Boca Raton FL.1979, 11~25
    [85] Way J D, Noble R D, Facilitated transport in W.S.W.Ho and K.K.Sirkar (Eds) Membrane Handbook .Van Nostrand Reinhold. NY. 1992, 833~866
    [86] Ward W J, Robb W L, Carbon dioxide -oxygen separation: facilitated transport of carbon dioxide across a liquid film, Science, 1967, 156: 1481~1484
    [87] Ward W. J, Robb W L, Liquid Membranes for use in the separation of gases. US. Patent 3.396.510, 1968
    Brown G, Selegny E, Minh C Tran and Thomas D, Membranes enzymatiques.
    
    [88] III Facilitated transport of carbon dioxide through a membrane bearing carbonic anhydrase, FEBS Lett, 1970, 7: 223
    [89] Samit Saha, Amit Chakma, Selective CO_2 separation from CO_2/C2H6 mixtures by immobilized diethanolamine/PEG membranes, J. Membr. Sci, 1995, 98: 157~171
    [90] Chen H, Obuskovic G, Majumdar S, Sirkar K K, Immobilized glycerol-based liquid membranes in hollow fibers for selective CO_2 separation from CO_2-N2 mixtures, J. Membr. Sci, 2001, 183: 75~88
    [91] Davis R A, Sandall O C, CO_2/CH4 separ ation by facilitated transport in amine-polyethylene glycol mixtures, AIChE J, 1993, 39: 1135~1145
    [92] Meldon J H, Stroeve P Gregoire C E, Facilitated transport of carbon dioxide: a review, Chem. Eng. Commun, 1982, 19: 263~300
    [93] Masaaki Teramoto, Nao Takeuchi, Taisuke Maki, Hideto Matsuyama, Facilitated transport of CO_2 through liquid membrane accompanied by permeance of carrier solution, Sep & Puri Tech, 2002, 27: 25~31
    [94] Teramoto M, Recent development in liquid membrane technology In:ICOM'93, Abstracts/oral presentations Heidelberg: Germany, 1993
    [95] Neplebroek A M, Bargaman D, Smolders C A, Supported liquid membrane: stabilization by gelation, J. Membr. Sci, 1992, 67: 149~165
    [96] Sirkar K K, Hollow fiber contained liquid membrane-based permeation-separation and separation-reaction-separation: An overview In: ICOM'96, Yokohama: The Membrane Society of Japan 1996, 578~579
    [97] Guha A K, Majumdar S, Sirkar K K, A large-scale study of gas separation by hollow-fiber contained liquid membrane permeation, J. Membr. Sci, 1992, 62: 293~307
    [98] Pez G P, Carlin R. T, Laciak D V, et al., Method for gas separation US Patent 4,761,161, 1988
    [99] Quinn R, Appleby J B, Pez G P, Salt hydrates: new reversible absorbents for carbon dioxide, J. Am. Chem. Soc, 1995, 117: 329~335
    [100] Quinn R, Pez G P, Use of salt hydrates as reversible absorbents of acid gases, US Patent, 4,973,456,1990
    [101] Quinn R, Appleby J B, Pez G P, New facilitated transport membranes for the separation of carbon dioxide from hydrogen and Methane, J. Membr. Sci, 1995, 104: 139~146
    [102] Quinn R, Pez G P, and Appleby J B, Molten salt hydrate membranes for the separation of acid gases. US, Patent 4,780,114, 1988
    Laciak D V, Quinn R, Pez G P, Appleby J B, Puri P S, Selective permeation of ammonia and carbon dioxide by novel membranes, Sep. Sci. Tech, 1990, 25:
    
    [103] 1295~1305
    [104] Dutta N N, Baruah S, and Patil G S, Gas separation using liquid membrane: technology perspectives, Chem. Eng, World XXVII(5),1992,73~81
    [105] 中垣正幸著,许景文,严忠译,膜学入门,上海:上海科技文献出版社, 1983
    [106] Leblanc O H, Ward W J, Matson S L, et al., Facilitated transport in ion-exchange membranes, J. Membr. Sci, 1980, 6: 339~343
    [107] Way J D, Noble R. D, Reed D L, et al., Facilitated transport of CO_2 in inon-exchange membranes AIChE J, 1987, 33: 480~487
    [108] Way J D, Noble R D, Hydrogen sulfide facilitated transport in perfluorosulfonic acid membranes in liquid membranes: Theory and Applications, ACS, Symp, Series NO.347 American Chemical Society Washington DC.1987, Chap 9, 113~137
    [109] Way J D, Noble R D, Competitive facilitated transport of acid gases in perfluorosulfonic acid membranes, J. Membr. Sci, 1989, 46: 309~324
    [110] Pellegrino J, Wang P Y, Rabago R, Gas transport properties of solution -cast perfluorosulfonic acid films containing ionic surfactants, J. Membr. Sci, 1993, 84: 161~169
    [111] Langevin D, Metayer M, Labbe M, Pollet B, et al., Transport Reaction Through Ion-Exchange Membranes: Modelling of Ligand Transport by a complexing counter-ion and Experiments with Ammine and Polyborate Ions, Desalination, 1988, 68: 131~148
    [112] Noble R D, Pellegrino J, Grosgogeat E, et al., CO_2 separation using facilitated transport ion-exchange membranes, Sep. Sci. Tech, 1988, 23: 1595~1609
    [113] Langevin D, Pihoche M, Selebny E, et al., CO_2 facilitated transport through functionalized cation-exchange membranes, J. Membr. Sci, 1993, 82: 51~63
    [114] Pellegrino J, Kand Y S, CO_2/CH4 transport polyper-fluorosulfonate ionomers: effects of polar solvents on permeation and solubility, J. Membr. Sci, 1995, 99: 163~174
    [115] Kimura S , Ward W J, Matson S L, Facilitated separation of a select gas through an ion exchange membrane, US Patent 4,318,714, 1982
    [116] Hideto Matsuyama, Masaaki, Teramoto, Kiyoshi Iwai, Development of a new functional cation -exchange membrane and its application to facilitated transport of CO_2, J. Membr. Sci, 1994, 93: 237~244
    [117] Quinn R, Laciak D V, Appleby J B, et al., Polyelectrolyte membranes for the separation of acid gases, US Patent, 5.336,298 , 1994
    [118] Quinn R, Laciak D V, Polyelectrolyte membranes for acid gas separations J. Membr. Sci, 1997, 131: 49~60
    Quinn R, Laciak D V, Pez G P, Polyelectrolyte-salt blend membranes for acid
    
    [119] gas separation, J. Membr. Sci, 1997, 131: 61~69
    [120] Quinn R, A repair technique for acid gas selective polyelectrolyte membranes, J. Membr. Sci, 1998, 139: 97~102
    [121] Matsuyama H, Hirai K, Teramoto M, Selective permeation of Carbon dioxide through plasma polymerized membrane from diisopropylamine, J. Membr. Sci, 1994, 92: 257~265
    [122] Matsuyama H, Terada A, Nakagawara, T, et al., Facilitated transport of CO_2 through polyethylenimine/poly(vinylalcohol) blend membrane, J. Membr. Sci, 1999, 163: 221~227
    [123] Matsuyama H, Teramoto M, Sakakura H, Selectivie permeation of CO_2 through Poly{2-(N, N-dimethyl) aminoethyl methacrylate} membrane prepared by plasma-graft polymerization technique, J. Membr. Sci, 1996, 114: 193~200
    [124] Yoshikawa M, Fujimoto K, Kinugawa H, et al., Selective permeation of carbon dioxide through synthetic polymeric membranes having amine moiety, Chem. Letter, 1994, 243~247
    [125] Yoshikawa M, Ezaki T, Sanui K, et al., Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier, J. Appl. Polym. Sci, 1988, 35: 145~154
    [126] Cussler E L, Aris R, Bhown A, On the limits of facilitated diffusion, J. Membr. Sci, 1989, 43: 149~164
    [127] Ciardelli F, Tsuchida E, Wohrle D,张志奇,张举贤译,高分子金属络合物,北京:北京大学出版社,1999
    [128] 何天白,胡汉杰,海外高分子科学的新近展,北京:化学工业出版社,1997
    [129] 潘祖仁,高分子化学,北京:化学工业出版社,1996,26~27
    [130] 严瑞煊,水溶性高分子,北京:化学工业出版社,1998,602~608
    [131] Mathakiya I, Rakshit A K. Synthesis and characterization studies of homopolymers of N-vinylpyrrolidone, vinyl acetate and their copolymers, J. Appl. Polym. Sci, 1998, 68: 91~102
    [132] 崔英德,易国斌,廖列文等,N—乙烯基吡咯烷酮的自由基溶液聚合,化工学报,2002, 51(3): 367~371
    [133] 黎四芳,石称华,林海青,聚乙烯基吡咯烷酮的制备研究,化学世界,1999, 4: 201~204
    [134] 田中诚之编著,姚海文译,有机化合物的结构测定方法-利用13C-NMR、1H-NMR、 IR和MS图谱的综合解析,北京:化学工业出版社,1986,68~69
    [135] 董炎明,高分子材料实用剖析技术,北京:中国石化出版社,1997,189~191
    [136] 钟海庆,红外光谱法入门,北京:化学工业出版社,1984
    谢晶曦,红外光谱在有机化学和药物化学中的应用,北京:科学出版
    
    [137] 社,1987,pp302
    [138] 董慧茹,仪器分析,北京:化学工业出版社,2000,182~186
    [139] 高家武,高分子材料近代测试技术,北京:北京航空航天大学出版社,1994,245~268
    [140] 唐恢同,有机化合物的光谱鉴定,北京:北京大学出版社,1992,240~394
    [141] 陈洁,宋启泽,有机波谱分析,北京:北京理工大学出版社,1996
    [142] 常铁军,祁欣,材料近代分析测试方法,哈尔滨:哈尔滨工业大学出版社,1999
    [143] 复旦大学化学系高分子教研组,高分子实验技术,上海:复旦大学出版社,1983
    [144] Levy G B, Frank H P. Determination of molecular weight of polyvinylpyrrolidone II, J. Poly. Sci, 1955, 17: 247~254
    [145] 裴玉新,沈新元,血液净化用高分子膜的现状及发展,膜科学与技术, 1998,18(1):10~13
    [146] Streicher E, Schmeider H, The development of a polysulfone membrane, A new perspective in dialysis? Contrib Nephrol, 1985, 46 (Highly permeable membr.): 1~13
    [147] 邢卫红,钟景,聚砜制膜液的相平衡膜及其与制膜的关系,水处理技术,1995,21(1): 15~20
    [148] 张婉南,张钧,卢建军等,聚醚砜超率膜的研制,水处理技术,1989, 15(3): 170~173
    [149] 陈忠祥,周美娟,肖通虎等,非溶剂草酸对形成聚醚砜微孔膜的影响研究,膜科学与技术,2001,21(6):21~26
    [150] 凌绳,王秀芬,吴友平,聚合物材料,北京:中国轻工业出版社,2000, pp67,p122
    [151] 王保国,蒋维钧,聚丙烯腈中空纤维超滤膜,水处理技术,1995,21(1), 11-14
    [152] 赵之平,王志,王世昌,现代分析测试技术在膜结构与性能研究中的应用,膜科学与技术,2001,12(6):34~39
    [153] 王典芬,X-射线光电子能谱在非金属材料研究中的应用,武汉:武汉大学出版社,1994
    [154] 王建琪,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992
    [155] Beamson G., Briggs D., High resolution XPS of organic polymers the scienta ESCA 300 Database, John Willey&Sons, England, 1992
    [156] Moulder J F, Stickle W F. Sobol P E, Bomben K D, C.Jill, Ed., Handbook of x-ray Photoelectron spectroscopy, Perkin-Elmer Co, USA, 1992.
    
    
    [157] 柯以侃,董慧茹,分析化学手册,第三分册,光谱分析,北京:化学工业出版社, 1998
    [158] David A Ucko, 刘世伟,孙冠文译,生命化学基础, 北京:科学出版社, 1982,561~562
    [159] 宁永成,有机化合物结构鉴定与有机波谱学,北京:科学出版社,2000
    [160] 张叔良,易大年,吴天明,红外光谱分析与新技术,北京:中国医药科技出版社,1993
    [161] 永泽满,(日)渑泽章,朱简文译,高分子膜,北京:化学工业出版社,1985
    [162] 付晓泰,王振平,卢双舫,气体在水中的溶解机理及溶解度方程,中国科学. B辑,1996, 26(2): 124~129
    [163] 王纪孝,功能性聚合物膜的制备及其性能研究,[博士后出站报告],天津:天津大学,2000
    [164] Yeom C K, Lee S H, Lee J M. Study of transport of pure and mixed CO_2/N2 gases through polymeric membranes, J. Appl. Poly. Sci, 2000, 78: 179~189
    [165] Barrer R M., Diffusivities in glassy polymers for the dual mode sorption model, J. Membr. Sci, 1984,18: 25~35
    [166] Barbari T A., Polymeric membranes based on bisphenol-A for gas separations, J. Membr. Sci, 1989, 42: 69~86
    [167] 钱庭宝,离子交换剂应用技术,天津:天津科学技术出版社,1984
    [168] 王方,离子交换应用技术,北京:北京科学技术出版社,1990
    [169] Beuscher U, Gooding C H. The influence of the porous support layer of composite membranes on the separation of binary gas mixtures, J. Membr. Sci, 1999, 152: 99~116
    [170] 夏炎,高分子科学简明教程,北京:科学出版社,2000
    [171] Osman M B S, Dakroury A Z, and Mokhtar S M, Study on acrylamide-vinyl pyrrolidone copolymer, Polymer Bulletin, 1992,28: 181~188
    [172] B.沃尔默特,黄永贤等译,高分子化学基础,联邦德国,北京,化学工业出版社,1986
    [173] 王淇,何凌云,章永坤,聚丙烯腈的水解及水解产物与聚乙烯醇分子间氢键复合的研究,功能高分子学报,1996,9(1): 78~83
    [174] Kim T H, Koros K J, Husk G R, Advanced gas separation membrane materials: rigid aromatic polyimides, Sep Sci & Tech, 1988, 23: 1611~1626
    [175] 大淹仁志,田中元治,舟桥重信,俞开钰译,溶液反应的化学,北京:高等教育出版社,1985
    [176] 张祥麟,康衡,配位化学,长沙:中南工业大学出版社出版,1986
    [177] 严俊,甲壳素的化学和应用,化学通报,1984,11:26~31
    [178] 蒋挺大,壳聚糖,北京:化学工业出版社,2001
    
    
    [179] Feng X, Huang R Y M, Pervaporation with Chitosan membranes.Ⅰ. Separation of water from ethylene glycol by a Chitosan/polysulfone composite membrane, J. Membr. Sci, 1996, 116: 67
    [180] Shieh J J, Huang R Y M. Pervaporation with Chitosan membrane. Ⅱ. Blend membranes of Chitosan and poly(acrylic acid) and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of Chitosan and poly(acrylic acid) for the separation of ethanol-water mixtures. J. Membr. Sci, 1997, 127: 185
    [181] Musale D A, Kumar A, Pleizier G. Formation and characterization of poly(acrylonitrile)/chitosan composite ultrafiltration membranes. J. Membr. Sci, 1999, 154: 163~173
    [182] Wang X, Spencer, H G. Formation and characterization of Chitosan formed-in place ultrafiltration membranes. J. Appl. Polym. Sci, 1998, 67: 513.
    [183] 曾宪放,李吉高,新型天然膜材料-甲壳质及其衍生物. 膜科学与技术,1993,13(3):19-24
    [184] Akira I, Makoto S. Tomotoshi A. Permeabiliry of CO_2 through chitosan membrane swollen by water vapor in feed gas, Angew. Makromol. Chem, 1997, 248, 85~94
    [185] 李继珩,虞有文,于燕玲等,羧甲基壳聚糖的制备研究,中国生化药物杂志,2000,21(4):175~177
    [186] 唐小琪,张秋华,骆赞椿等,高分子材料科学与工程,1995,11(1):55~58
    [187] Muzzarelli R A A. Carboxymethylated Chitins and Chitosan. Carbohydr Polym, 1988, (8): 1~12.
    [188] 李文俊,潘文森,唐颖,壳聚糖膜结构与乙醇/水混合液的渗透汽化性能,高等学校化学学报,1992,13(3): 415~417
    [189] Carolan C A, Blair H S, Allen S J, Mckay G. N,O-carboxymethyl chitosan, a water soluble derivative and potential 'green' food preservative. Chem. Eng. Res. and Des, 1991, 69(3): 195~196
    [190] 陈炳捻,汤又文,陈文森,羧甲基甲壳素水溶液等电点的测定,化学通报,1997,11:45~47
    [191] 张胜义,林宏义,恒pH滴定法测定壳聚糖中胺基含量, 安徽大学学报,1992,(1):84~86
    [192] Xie W M, Xu P X, Liu Q. Antioxidant activity of water-soluble chitosan derivatives, Bioorganic & Medicinal Chemisty Letters, 2001, (11): 1699~1701.
    [193] 陈凌云,杜予民,肖玲等,羧甲基壳聚糖的取代度及保湿性,应用化学,2001, 1(18):5~8
    [194] 赵之平,羧甲基壳聚糖复合微孔膜及其荷电特性与过滤性能的研究,[博士学位论文],天津: 天津大学,2002
    
    
    [195] 郑化,杜予民,余家会等,交联壳聚糖膜的制备及其性能的研究,高等学校化学学报,2000,21(5):809~812
    [196] 张秋华,骆赞椿,曾本忠,水溶性甲壳素衍生物的制备及应用,江苏化工,1994,22(1):6
    [197] 汪锡安,胡宁先,王庆生,医用高分子,上海:上海科学技术文献出版社,1980
    [198] 功能高分子材料,马建标,北京:化学工业出版社精细化工出版中心,2000
    [199] 刘茉娥,膜分离技术应用手册,北京:化学工业出版社,2001
    [200] 斯特赖厄尔 L,唐有祺,张惠珠,吴相钰译,生物化学,北京:北京大学出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700