掺杂纳米Fe_3O_4标记~(99)Tc~m生物显像及负载丝裂霉素C的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe304因生物相容性、化学稳定性好,无毒副作用等特性,在生物医学领域的应用越来越广泛,常用于细胞磁分离及标记、临床诊断MRI造影剂、药物纳米导向剂和肿瘤磁热疗等方面。但是如何提高磁性能和载药率,如何实现靶向给药以及高效标记放射性核素示踪仍是目前科研工作者们所遇到的难题。本论文以FeCl3-6H2O和FeCl2-4H2O为铁源,分别采用溶剂热法、共沉淀法和回流法合成了磁性能优良的纳米Fe304及掺杂纳米Fe304,并将合成的纳米磁粒应用于丝裂霉素C (Mitomycin, MMC)负载、放射性元素99Tcrm标记、生物体内SPECT显像及磁靶向应用。论文主要包含以下工作:
     (一)采用溶剂热法制备了具有分散性良好、核壳结构明显的氨基化Fe3O4@SiO2。并进行了Eu3+和Sm3+掺杂纳米Fe304粒子的研究。发现Eu以+2和+3价掺杂于Fe3O4晶胞中,掺杂改变了纳米Fe304晶体的形貌和磁性质,随着掺杂量的增加,纳米Fe3O4先呈现空心球结构,再转化为球形,最后形成粒径为13nm均一的立方颗粒。形貌的变化影响了晶格的各向异性,导致了纳米颗粒的矫顽力和饱和磁化强度的不同。Sm3+的掺杂引起了磁偶极跃迁,而Eun+掺杂对磁偶极跃迁影响较小;两者的饱和磁化强度随掺杂量增加而出现不同的变化。
     (二)以四甲基氢氧化铵(TMAH)为沉淀剂和分散剂制备粒径均一,尺寸为20nm的纳米Fe3O4,首次分别与摩尔掺杂量为2%~10%的两种非磁性金属离子Mg2+和Al3+的含肼甲酸盐进行固固掺杂反应,制备了非磁性离子掺杂的强磁性纳米Fe3O4;用VSM磁强计测定了其饱和磁化强度(Ms),研究了Ms随掺杂量的变化,并通过穆斯堡尔谱图分析,研究了不同价态Fe在反尖晶石Fe304晶体A、B位置上的占位比例,结合磁性能测试和指标化计算晶胞参数的变化,研究了掺杂Mg2+和Al3+后纳米粒子磁性能的变化原因。并以毛细管模拟血管、球形玻璃球模拟血管周围肿瘤组织,研究了纳米Fe304在磁靶区干预部位的靶向性能。
     (三)用改进的StOber法制备了a-Fe203@Si02复合颗粒;并利用长链烷基三甲氧基硅烷极易水解缩合形成聚硅氧烷的特性,通过调节其链长、醇/水比,在复合颗粒表面包覆不同结构的介孔mSiO2,进一步采用选择性蚀刻技术气蚀Fe3O4@SiO2@mSiO2,制备了具有不同孔径和不同空腔体积的磁性纳米空心球(HMNPs-Cn, n=16,18)本文分别以HMNPs-C18和HMNPs-C16,对丝裂霉素C (MMC)进行了负载量和缓释动力学的研究,发现,HMNPs-C18的载药量高于HMNPs-C16,两者由于孔径和空腔体积不同,对MMC的缓释动力学模型也不同。此外,本文还以HMNPs-C18对放射性元素99Tcm标记进行了研究。
     (四)本文分别以溶剂热法、TMAH共沉淀法和回流法制备MNPs,并依次通过Sol-Gel过程,表面氨基化,DTPAA双酐等摩尔偶联,制备了带有DTPAA单酐的MNPs@SiO2-NH-DTPAA待标记化合物。筛选出以TMAH共沉淀法,并经A13+固固掺杂制备的待标记化合物,具有最高的饱和磁化强度(65.7emu/g),标记率最高为93.2%。分别以新西兰兔和腿部荷VX2肿瘤的新西兰兔为动物模型,采取耳后缘静脉注射,分别通过平面静态图像获得SPECT图像,首次研究了MNPs-DTPA-99Tcm在体内的自然分布和磁靶向分布。按感兴趣区技术(ROI)进行半定量分析,计算磁靶向干预的病变部位和未干预的病变部位的放射性计数比,评价MNPs在新西兰兔体内的靶向效果,为磁靶向载药系统提供重要参考。
     (五)本文通过戊二酸酐与丝裂霉素上活泼的亚胺基反应,制备了MMC-戊二酸衍生物,然后再与N-羟基琥珀酰亚胺(NHS)反应,经葡聚糖凝胶层析柱分离提纯,制备了MMC活化酯。另依次通过非磁性离子固固掺杂、Sol-Gel过程和表面氨基化,制备了具有高饱和磁化强度的Ald-Fe304@Si02-NH2复合颗粒。本文首次将MMC活化酯和表面带有氨基的复合颗粒在乙二醇二甲醚中偶联,进一步制备了负载MMC的纳米功能磁粒。通过核磁共振谱图、元素分析、紫外和红外光谱,证明了目标化合物的生成。
Due to the good biocompatibility and the satisfactory chemical stability, the nano-particles have been widely used in the field of biomedicine. Especially, they are often used in cellular labeling and magnetic separation, MRI contrast agent, drug delivery agents, tumor thermotherapy and so on. However how to increase the magnetic performance and drug-loading capacity, and how to achieve MNPs-based targeted drug delivery and effective imaging with99Tcm-labelled are the main problem that researches facing.
     In this thesis, magnetic nano particles (MNPs) and dopped MNPs with excellent magnetic performance were synthesized by solvothermal method, coprecipitation method and reflux method, with FeCl3·6H2O and FeCl2·4H2O used as iron sources, anhydrous rare earth chloride and non-magnetic ion formate containing hydrazine as doping source respectively. The MNPs can be used for Mitomycin C drug loading, radioactive elements (99Tcm) labeling and In-vivo SPECT imaging, as well as application of magnetic targeting in humans. This thesis contains the following works:
     First, the amino-functionalized MNPs@SiO2core/shell nanoparticles with high dispersibility were synthesized by solvothermal method, and the doping of Eu+and Sm3+into nano Fe3O4was studied. The results show that Eu ions had doped in the Fe3O4cell in mixed-valence of Eu3+/Eu2+, the doping could change morphologies and magnetic properties of the Fe3O4cell. When the Eu and Sm doping amount were increased, the doped Fe3O4nanoparticles changed from hollow nanospheres into spherical particles, and finally changed into uniform cube-shaped particles with13nm in diameter, resulting in change of shape anisotropy, which may affect their coercivity and saturation magnetization. It was found that higher Sm3+-doping amount led to stronger magnetic dipole transitions, while the Eun+-doping amount had little effect on the magnetic dipole transitions, thus resulting in different changes in their saturation magnetization with doping amount.
     Second, Fe3O4magnetic nanoparticles with uniform particle size about20nm were prepared by co-precipitation method with tetramethyl ammonium hydroxide (TMAH) as precipitant and dispersing agent. Then the as-synthesized Fe3O4particles were first taken to react with non-magnetic ion (magnesium or aluminum ion) formate containing hydrazine at2%~10%molar doping ratio to prepare strong magnetic non-magnetic ion dopped MNPs by solid-solid reaction. Their saturation magnetization (Ms) was determined by vibrating sample magnetometer (VSM), the changes of Ms with Mg2+and Al3+doping amount was also studied. By analysis of the magnetic Mossbauer spectra of non-magnetic ion dopped MNPs, the ratio of the relative population of A-site Fe atoms to B-site Fe atoms in the inverse spinel structure of Fe3O4was studied. The reason why Ms changed after doping Mg2+and Al3+can be explained by considering the VSM determination results and changes of unit-cell parameters obtained from the indexing of the experimental XRD pattern. Moreover, the targeting performance of MNPs at magnetic targeting interfered sites was studied by capillary simulating vein, and spherical glass balls simulating perivascular tumor tissue also.
     Third, based on the fact that long alkyl chain trimethoxysilane has the characteristic of being easily hydrolysized and condensed into polysiloxane, the α-Fe2O3@SiO2composite particles were synthesized by a modified StOber method, and further covered by mesoporous mSiO2on their surface with different structure through adjusting alcohol/water ratio and chain-length of long alkyl chain trimethoxysilane. Finally, the magnetic hollow spheres (HMNPs-Cn, n=16,18) with different pore diameter and cavity volume were obtained by using selective etching technique to treat Fe3O4@SiO2@mSiO2. In this thesis, the loading and release kinetics of mitomycin C (MMC) on HMNPs-C18and HMNPs-C16were studied, the results showed, HMNPs-C18has a higher drug loading than HMNPs-C16, both of them have different drug release kinetics model for MMC, due to their different pore diameter and cavity volume. Besides, the labeling of radioactive element99Tcm by HMNPs-C18was also studied.
     Fourth, the solvothermal method, TMAH coprecipitation method and reflux method were employed to prepare MNPs respectively. After that, the MNPs@SiO2-NH-DTPAA (un-labeled compound) with DTPAA monoanhydride was prepared successively with the following procedures on the MNPs surface:(a) Sol-Gel process,(b) surface amination process and (c) equimolar coupling of c-DTPAA bis-anhydride on the surface of amino-functionalized nano magnetic particles. Among these un-labeled compounds, the Al3'ion dopped MNPs@SiO2-NH-DTPAA prepared by TMAH coprecipitation and following Al3+doping, solid-solid reaction was screened out to have the highest saturation magnetization (65.7emu/g), and labeling efficiency (93.2%).
     In this thesis, Tumor-Free New Zealand white rabbit and Leg-VX2Tumor-Bearing New Zealand white rabbit were selected as experimental animal model, which are all treated by the injection of labeled compound in one ear vein, after that, the SPECT images were obtained from two-dimensional static images respectively. Based on the information from the images, the natural distribution and magnetic targeting distribution were first studied. Semiquantitative analysis can be achieved by calculation of region of interest ratios (ROI) using liver or lung for comparison, and according to the semiquantitative analysis, in vivo radioactivity count ratio of magnetic targeting interfered lesion's site to non-interfered lesion's site was calculated to evaluate in vivo targeting effects of labeled compound in Tumor-Bearing New Zealand white rabbit. The results will offer important references for magnetic targeting drug-loaded system.
     Fifth, by reaction of glutaric anhydride with an active imino group in mitomycin C (MMC), the MMC-glutaric acid derivatives can be prepared. Then the obtained products underwent esterification with N-hydroxysuccinimide (NHS) followed by passing them through a column of dextran gel to isolate and purify the activated ester of glutaric MMC.On the other hand, Ald-Fe3O4@SiO2-NH2composite particles with high saturation magnetization were prepared successively with the procedures:(a) non-magnetic ion doping, solid-solid reaction,(b) Sol-Gel process and (c) surface amination process.
     In this thesis, by first coupling the activated ester of glutaric MMC with the amino-functionalized Ald-Fe3O4@SiO2-NH2composite particles in the1,2-dimethoxyethane, the MMC grafted Ald-Fe3O4@SiO2-NH2composite particles were further prepared, which provides reference of the route for preparing this targeted drugs. The targeting compounds were demonstrated by nuclear magnetic resonance (NMR) spectra, elemental analysis, UV and FT-IR spectra.
引文
[1]Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer [J]. Nature,1994,370(6488): 354-357.
    [2]Shi J, Xiao Z, Kamaly N, et al. Self-assembled Targeted Nanoparticles:Evolution of Technologies and Bench to Bedside Translation [J]. Accounts of Chemical Research, 2011,44(10):1123-1134.
    [3]Cornell R M, Schwertmann U. The Iron Oxides. New York, Cambridge Press,1996, 1-572.
    [4]Gaumet M, Vargas A, Gurny R, et al. Nanoparticles for Drug Delivery:the Need for Precision in Reporting Particle Size Parameters[J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,69(1):1-9.
    [5]Deng J, He C L, Peng Y, et al. Magnetic and Conductive Fe3O4-polyaniline Nanoparticles with Core-shell Structure[J]. Synthetic Metals,2003,139(2):295-301.
    [6]Berkowitz A E, Kneller E. Magnetism and metallurgy[M]. Academic Press Inc,1969: 365-369.
    [7]Guz I A, Rodger A A, Guz A N, et al. Developing the Mechanical Models for Nanomaterials[J]. Composites Part A:Applied Science and Manufacturing,2007,38(4): 1234-1250.
    [8]Beydoun D, Amal R, Low G K C, et al. Novel Photocatalyst:Titania-coated Magnetite. Activity and Photodissolution[J]. The Journal of Physical Chemistry B,2000,104(18): 4387-4396.
    [9]Hilger A, Cuppers N, Tenfelde M, et al. Surface and Interface Effects in the Optical Properties of Silver Nanoparticles[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics,2000,10(1):115-118.
    [10]Richard A L. Interface and Surface Effects on the Glass-transition Temperature in Thin Polymer Films[J]. Faraday Discussions,1994,98:219-230.
    [11]Barbara B, Chudnovsky E M. Macroscopic Quantum Tunneling in Antiferromagnets [J]. Physics Letters A,1990,145(4):205-208.
    [12]Wang X, McHale R. Metal-Containing Polymers:Building Blocks for Functional (Nano) Materials[J]. Macromolecular Rapid Communications,2010,31(4):331-350.
    [13]Dastjerdi R, Montazer M. A Review on the Application of Inorganic Nano-structured Materials in the Modification of Textiles:Focus on Anti-microbial Properties[J]. Colloids and Surfaces B:Biointerfaces,2010,79(1):5-18.
    [14]Wasilewski P J. Magnetic Hysteresis in Natural Materials[J]. Earth and Planetary Science Letters,1973,20(1):67-72.
    [15]Kim Y S, Kim Y H. Application of Ferro-cobalt Magnetic Fluid for Oil Sealing[J]. Journal of Magnetism and Magnetic Materials,2003,267(1):105-110.
    [16]Owens F J. Giant Magneto Radio Frequency Absorption in Magneto-resistive Materials [J]. Journal of Applied Physics,1997,82(6):3054-3057.
    [17]朱屯,王福明等.国外纳米材料技术进展与应用[M].化学工业出版社,2002.
    [18]田民波.磁性材料/新材料及在高技术中的应用丛书[M].清华大学出版社,2001,1:54-157.
    [19]Hu G, Choi J H, Eom C B, et al. Structural Tuning of the Magnetic Behavior in Spinel-structure Ferrite Thin Films[J]. Physical Review B,2000,62(2):R779-R782.
    [20]Peng J, ZF, Liu L, et al. Preparation and Characterization of PEG-PEI/Fe3O4 Nano-magneticfluid by Coprecipitation Method. Transactions of Nonferrous Metals Society of China,2008,18(2):393-398.
    [21]Khollam Y B, Dhage S R, PotdarH S, et al.Microwave Hydrothermal Prepatation of Submicron-sized Spherical Magnetite (Fe3O4) Powers[J]. Materials Letters,2002,56(4): 571-577.
    [22]Rakhecha V C, Murthy N S. Spin-transfer Due to Covalency for the Tetrahedral-site Fe3+ Ions in Fe3O4[J]. Journal of Physics C:Solid State Physics,1978,11(21):4389.
    [23]Li X Y, Si Z J, Lei Y Q, et al. Hierarchically Structured Fe3O4 Microspheres:Morphology Control and Their Application in Wastewater Treatment[J]. CrystEngComm,2011,13(2): 642-648.
    [24]Xie J, Chen K, Lee H Y, et al. Ultrasmall c (RGDyK)-coated Fe3O4 Nanoparticles and Their Specific Targeting to Integrin αvβ3-rich Tumor Cells[J]. Journal of the American Chemical Society,2008,130(24):7542-7543.
    [25]Izumi M, Koetzle T F, Shirane G, et al. Structure of Magnetite (Fe3O4) Below the Verwey Transition Temperature[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry,1982,38(8):2121-2133.
    [26]Sakai N, Sekizawa H. Magnetic-electron Compton Profiles of Ferromagnetic Fe and Ferrimagnetic Mn Ferrite[J]. Physical Review B,1987,36(4):2164-2169.
    [27]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and Characterization of Nanometer-size Fe3O4 and y-Fe2O3 Particles[J]. Chemistry of Materials,1996,8(9):2209-2211.
    [28]Weiss W, Zscherpel D, Schlogl R. On the Nature of the Active Site for the Ethylbenzene Dehydrogenation Over Iron Oxide Catalysts[J]. Catalysis Letters,1998,52(3-4): 215-220.
    [29]Schalow T, Brandt B, Starr D E, et al. Oxygen-induced Restructuring of a Pd/Fe3O4 Model Catalyst[J]. Catalysis Letters,2006,107(3-4):189-196.
    [30]Zhang L Y, Zhang Y F. Fabrication and Magnetic Properties of Fe3O4 Nanowire arrays in Different Diameters. Journal of Magnetism and Magnetic Materials,2009,321(5): L15-L20.
    [31]Betzig E, Trautman J K, Wolfe R, et al. Near-field Magneto-optics and High Density Data Storage[J]. Applied Physics Letters,1992,61(2):142-144.
    [32]周一平,刘归,周克省等,纳米Fe3O4/PANI复合体系的微波电磁特性研究[J],湖南大学学报,2006,33(6):81-84.
    [33]Hu F Q, Wei L, Zhou Z, et al. Preparation of Biocompatible Magnetite Nanocrystals for in Vivo Magnetic Resonance Detection of Cancer[J]. Advanced Materials,2006,18(19): 2553-2556.
    [34]Edelman R R, Warach S. Magnetic Resonance Imaging[J]. New England Journal of Medicine,1993,328(11):785-791.
    [35]Haacke E M, Cheng N Y C, House M J, et al. Imaging Iron Stores in the Brain Using Magnetic Resonance Imaging [J]. Magnetic Resonance Imaging,2005,23(1):1-25.
    [36]Lai C W, Wang Y H, Lai C H, et al. Iridium-Complex-Functionalized Fe3O4/SiO2 Core/Shell Nanoparticles:A Facile Three-in-One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy[J]. Small,2008,4(2): 218-224.
    [37]Bulte J. W. M. Magnetic Nanoparticles as Markers for Cellular MR Imaging [J]. Journal ofMagnetism and Magnetic Materials,2005,289:423-427.
    [38]Veiseh O, Gunn J W, Zhang M. Design and Fabrication of Magnetic Nanoparticles for Targeted Drug Delivery and Imaging[J]. Advanced Drug Delivery Reviews,2010,62(3): 284-304.
    [39]张勤慧,姜启玉,陆蓉,等.超顺磁性氧化铁与Gd-DTPA对磁共振诊断肝癌比较研究[J].交通医学,2010,24(6):626-632.
    [40]Yang F, Li Y, Chen Z, et al. Superparamagnetic Iron Oxide Nanoparticle-embedded Encapsulated Microbubbles as Dual Contrast Agents of Magnetic Resonance and Ultrasound imaging[J]. Biomaterials,2009,30(23-24):3882-3890.
    [41]Fukumori Y, Ichikawa H. Nanoparticles for Cancer Therapy and Diagnosis[J]. Advanced Powder Technology,2006,17(1):1-28.
    [42]Bulte J W M, Ma L D, Magin R L, et al. Selective MR Imaging of Labeled Human Peripheral Blood Mononuclear Cells by Liposome Mediated Incorporation of Dextran-magnetite Particles[J]. Magnetic Resonance in Medicine,1993,29(1):32-37.
    [43]Norman A B, Thomas S R, Pratt R G, et al. Magnetic Resonance Imaging of Neural Transplants in Rat Brain Using a Superparamagnetic Contrast Agent[J]. Brain Research, 1992,594(2):279-283.
    [44]Neuberger T, Schopf B, Hofmann H, et al. Superparamagnetic Nanoparticles for Biomedical Applications:Possibilities and Limitations of a New Drug Delivery System[J]. Journal of Magnetism and Magnetic Materials,2005,293(1):483-496.
    [45]Arruebo M, Fernandez-Pacheco R, Ibarra M R, et al. Magnetic Nanoparticles for Drug Delivery[J]. Nano Today,2007,2(3):22-32.
    [46]El-Gendy A A, Ibrahim E M M, Khavrus V O, et al. The Synthesis of Carbon Coated Fe, Co and Ni Nanoparticles and an Examination of Their Magnetic Properties [J]. Carbon, 2009,47(12):2821-2828.
    [47]Sun Y, Duan L, Guo Z, et al. An Improved Way to Prepare Superparamagnetic Magnetite-silica Core-shell Nanoparticles for Possible Biological Application[J]. Journal of Magnetism and Magnetic Materials,2005,285(1):65-70.
    [48]Arias J L. Novel Strategies to Improve the Anticancer Action of 5-fluorouracil by Using Drug Delivery Systems[J]. Molecules,2008,13(10):2340-2369.
    [49]Gupta P K, Hung C T. Magnetically Controlled Targeted Chemotherapy[J]. Microspheres and Regional Cancer Therapy,1994:71-116.
    [50]Alexiou C, Jurgons R, Schmid R, et al. In Vitro and in Vivo Investigations of Targeted Chemotherapy with Magnetic Nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2005,293(1):389-393.
    [51]Lubbe A S, Alexiou C, Bergemann C. Clinical Applications of Magnetic Drug Targeting[J]. Journal of Surgical Research,2001,95(2):200-206.
    [52]Widder K J, Senyei A E, Scarpelli D G. Magnetic Microspheres:A Model System for Site Specific Drug Delivery in Vivo[J] Experimental Biology and Medicine,1978, 158(2):141-146.
    [53]Barrier B B. Blood-brain Barrier [J]. Cancer Symptom Science:Measurement, Mechanisms, and Management,2010:9-18.
    [54]Cordon-Cardo C, O'Brien J P, Casals D, et al. Multidrug-resistance Gene (P-glycoprotein) is Expressed by Endothelial Cells at Blood-brain Barrier Sites[J]. Proceedings of the National Academy of Sciences,1989,86(2):695-698.
    [55]Rubin L L, Staddon J M. The Cell Biology of the Blood-brain Barrier[J]. Annual Review of Neuroscience,1999,22(1):11-28.
    [56]Neumann E, Sowers A E, Jordan C A. Electroporation and Electrofusion in Cell Biology[M]. Plenum Publishing Corporation,1989.
    [57]Marszalek P, Liu D S, Tsong T Y. Schwan Equation and Transmembrane Potential Induced by Alternating Electric Field[J]. Biophysical Journal,1990,58(4):1053-1058.
    [58]Shinkai M, Yanase M, Honda H, et al. Intracellular Hyperthermia for Cancer Using Magnetite Cationic Liposomes:in Vitro Study[J]. Cancer Science,1996,87(11): 1179-1183.
    [59]Creixell M, Bohorquez A C, Torres-Lugo M, et al. EGFR-targeted Magnetic Nanoparticle Heaters Kill Cancer Cells Without a Perceptible Temperature Rise[J]. ACS nano,2011,5(9):7124-7129.
    [60]Herman T S, Sweets C C, White D M, et al. Effect of Heating on Lethality Due to Hyperthermia and Selected Chemotherapeutic Drugs [J]. Journal of the National Cancer Institute,1982,68(3):487-491.
    [61]Gonzales M, Krishnan K M. Synthesis of Magnetoliposomes with Monodisperse Iron Oxide Nanocrystal Cores for Hyperthermia[J]. Journal of Magnetism and Magnetic Materials,2005,293(1):265-270.
    [62]Zhao D L, Zhang H L, Zeng X W, et al. Inductive Heat Property of Fe3O4/polymer Composite Nanoparticles in an ac Magnetic Field for Localized Hyperthermia[J]. Biomedical Materials,2006,1(4):198.
    [63]Brusentsov N A, Nikitin L V, Brusentsova T N, et al. Magnetic Fluid Hyperthermia of the Mouse Experimental Tumor[J]. Journal of Magnetism and Magnetic Materials,2002, 252:378-380.
    [64]Jordan A, Scholz R, Maier-Hauff K, et al. Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia[J]. Journal of Magnetism and Magnetic Materials,2001,225(1):118-126.
    [65]Ding Y, Hu Y, Jiang X, et al. Polymer-monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe3O4-polymer Hybrid Hollow Nanospheres[J]. Angewandte Chemie International Edition,2004,43(46):6369-6372.
    [66]Berry C C, Curtis A S G. Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine[J]. Journal of physics D:Applied physics,2003,36(13):R198.
    [67]Bouzier-Sore A K, Ribot E, Bouchaud V, et al. Nanoparticle Phagocytosis and Cellular Stress:Involvement in Cellular Imaging and in Gene Therapy Against Glioma[J]. NMR in Biomedicine,2010,23(1):88-96.
    [68]Huan W, Yang Y X, Wu B, et al. Degradation of 2,4-DCP by the Immobilized Laccase on the Carrier of Fe3O4@SiO2-NH2[J]. Chinese Journal of Chemistry,2012,30(12): 2849-2860.
    [69]Huang J, Xiao H, Li B, et al. Immobilization of Pycnoporus Sanguineus Laccase on Copper Tetra-aminophthalocyanine-Fe3O4 Nanoparticle Composite[J]. Biotechnology and Applied Biochemistry,2006,44(2):93-100.
    [70]Zhu Y, Kaskel S, Shi J, et al. Immobilization of Trametes Versicolor Laccase on Magnetically Separable Mesoporous Silica Spheres[J]. Chemistry of Materials,2007, 19(26):6408-6413.
    [71]Hayashi K, Tanaka Y, Morii H. Black iron-based Composite Particles, Process for Producing the Same, Paint and Rubber or Resin Composition Containing the Same: European Patent EP 0913431 [P].2002-7-17.
    [72]Hardee K L, Bard A J. Semiconductor Electrodes V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis[J]. Journal of the Electrochemical Society,1976,123(7):1024-1026.
    [73]Huang Y H, Zhang T C, Shea P J, et al. Effects of Oxide Coating and Selected Cations on Nitrate Reduction by Iron Metal [J]. Journal of Environmental Quality,2003,32(4): 1306-1315.
    [74]Liang X, Ji G, Zhang L, et al. Synthesis and Properties of Fe3O4 Nanoparticles by Sol-vothermal Method Using Iron (III) Acetylacetonate[J]. Glass Physics and Chemistry, 2011,37(4):459-465.
    [75]Yang C, Wu J, Hou Y. Fe3O4 Nanostructures:Synthesis, Growth Mechanism, Properties and Applications[J]. Chemical Communications,2011,47(18):5130-5141.
    [76]Liu X M, Fu S Y, Xiao H M. Fabrication of Octahedral Magnetite Microcrystals[J]. Materials Letters,2006,60(24):2979-2983.
    [77]Zhang D E, Zhang X J, Ni X M, et al. Synthesis and Characterization of CoFe2O4 Octahedrons Via an EDTA-assisted Route[J]. Journal of Magnetism ang Magnetic Materials,2006,305(1):68-70.
    [78]Hu C, Gao Z, Yang X. Fabrication and Magnetic Properties of Fe3O4 Octahedra[J]. Chemical Physics Letters,2006,429(4):513-517.
    [79]Chueh Y L, Lai M W, Liang J Q, Chou L J, Wang Z L. Systematic Study of the Growth of Aligned Arrays of Alpha-Fe2O3 and Fe3O4 Nanowires by a Vapor-solid Process[J]. Adv Funct Mater,2006,16(17):2243-2251.
    [80]Wang H W, Lin H C, Yeh Y C. Synthesis of Fe3O4 Nanowire Arrays Via Precipitation in Templates and Microwave Hydrothermal Process [J]. International Journal of Applied Ceramic Technology,2010,7(s1):E33-E38.
    [81]Zhang LY, Zhang YF. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters [J]. Journal of Magnetism and Magnetic Materials,2009,321(5): L15-L20.
    [82]Seon O H, Chang H K, Yoon M, et al. Synthesis of Vertically Aligned Manganese-Doped Fe3O4 Nanowire Arrays and Their Excellent Room-Temperature Gas Sensing Ability[J]. J. Phys. Chem. C,2008,112 (36):13911-13916.
    [83]Sun J, Zhou S B, Hou P, et al. Synthesis and characterization of biocompatible nanoparticles[J]. Journal of Biomedical Materials Research A,2007,80(2):333-341.
    [84]Peng S, Sun SH. Synthesis and characterization of monodisperse hollow nanoparticles[J]. Angewandte Chemie,2007,119(22):4233-4236.
    [85]Cheng K, Peng S, Xu CJ, Sun Shouheng. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin[J]. J. Am. Chem. Soc.,2009,131 (30): 10637-10644.
    [86]Yu DB, Sun XQ, Zou JW, et al. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres[J]. The Journal of Physical Chemistry B,2006,110(43):21667-21671.
    [87]Chin KC, Chong GL, Poh CK, Van LH, Sow CH, Lin JY, Wee ATS. Large-Scale Synthesis of Fe3O4 Nanosheets at Low Temperature. [J]. The Journal of Physical Chemistry C,2007,111(26):9136-9141.
    [88]Chen LQ, Liu WP, Chen JL, et al. Facile shape and size-controlled growth of uniform magnetite and hematite nanocrystals with tunable properties [J]. Science China Chemistry,2011,54(6):923-929.
    [89]Zhou HF, Yi R, Li JH, et al. Microwave-assisted synthesis and characterization of hexagonal Fe3O4 nanoplates [J]. Solid State Sciences,2010,12(1):99-104.
    [90]Aono H, Hirazawa H, Naohara T, et al. Synthesis of fine magnetite powder using reverse coprecipitation method and its heating properties by applying AC magnetic field[J]. Materials research bulletin,2005,40(7):1126-1135.
    [91]Vayssieres L, Chan6ac C, Tronc E, et al. Size tailoring of magnetite particles formed by aqueous precipitation:An example of thermodynamic stability of nanometric oxide particles[J]. Journal of colloid and interface science,1998,205(2):205-212.
    [92]王恒志,吴东辉,李建华.Fe304超细粉体的制备[J].江苏化工,2001,29(5):28-30.
    [93]于文广,张同来,乔小晶,等.不同形貌Fe304纳米粒子的氧化沉淀法制备与表征[J].无机化学学报,2006,22(7):1263-1268.
    [94]Wang H, Xu H, Di YP, Zhang H. Preparation of Nanosized Magnetic Fe3O4 Powders by Reduction Co-precipitation Method[J]. Nanoscience Nanotechnology,2007,4(6):33-39.
    [95]Liang J, Li L, Luo M, et al. Synthesis of monodisperse magnetite nanocrystals via partially reduced precipitation method[J]. Materials and Manufacturing Processes,2010, 25(9):915-918.
    [96]Sun X, Zheng C, Zhang F, et al. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe (Ⅲ) precursor by a sucrose bifunctional hydrothermal method[J]. The Journal of Physical Chemistry C, 2009,113(36):16002-16008.
    [97]Li Z, Sun Q, Gao M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:mechanism leading to Fe3O4[J]. Angewandte Chemie International Edition,2005,44(1):123-126.
    [98]Takahashi H, Liu L H, Yashiro Y, et al. CO2 reduction using hydrothermal method for the selective formation of organic compounds[J]. Journal of materials science,2006, 41(5):1585-1589.
    [99]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society,2008,130(1):28-29.
    [100]Tian Y, Yu B, Li X, et al. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents[J]. Journal of Materials Chemistry,2011,21(8):2476-2481.
    [101]Qin D D, Tao C L, In S, et al. Facile Solvothermal Method for Fabricating Arrays of Vertically Oriented α-Fe2O3 Nanowires and Their Application in Photoelectrochemical Water Oxidation[J]. Energy & Fuels,2011,25(11):5257-5263.
    [102]Si S, Li C, Wang X, et al. Magnetic monodisperse Fe3O4 nanoparticles [J]. Crystal growth & design,2005,5(2):391-393.
    [103]Wang J, Chong PF, Ng SC, Gan LM. Microemulsion processing of manganese zinc ferrites[J]. Mater. Lett,1997,30:217-221.
    [104]T. Koutzarova, S. Kolev, Ch. Ghelev, D. Paneva, I. Nedkov. Microstructural study and size control of iron oxide nanoparticles produced by microemulsion technique[J]. Physica status solidi(c),2006,3(5):1302-1307.
    [105]Salazar-Alvarez G, Muhammed M, Zagorodni A A. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution[J]. Chemical engineering science, 2006,61(14):4625-4633.
    [106]Tago T, Hatsuta T, Miyajima K, et al. Novel Synthesis of Silica-Coated Ferrite Nanoparticles Prepared Using Water-in-Oil Microemulsion[J]. Journal of the American Ceramic Society,2002,85(9):2188-2194.
    [107]Yang Y X, Liu X N, Zhu H, et al. Synthesis of β-FeOOH with microemulsion [J]. Materials science and technology[J],2007,23(6):641-645.
    [108]Lee Y, Lee J, Bae C J, et al. Large- scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions[J]. Advanced Functional Materials,2005,15(3):503-509.
    [109]Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-Pyrrolidone:Mechanism leading to Fe3O4[J]. Angew Chem Im Ed.2005,44:123-126.
    [110]Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles[J]. Journal of the American Chemical Society,2002,124(28):8204-8205.
    [111]Ma M, Wu Y, Zhou J, et al. Sized ependence of specific power absorption of Fe3O4 particles in AC magnetic field[J]. Journal of Magnetism and Magnetic Materials,2004, 268:33-39.
    [112]Goya G F. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling[J]. Solid state communications,2004,130(12):783-787.
    [113]郑兰香,彭国新.超细四氧化三铁微粒的制备[J].精细化工,1995,12(6):11-14.
    [114]余加祜.Fe3O4超细粒子催化剂的制备[J].大连轻工业学院学报,2000,19(1):17-20.
    [115]华国飞,刘引烽.Fe3O4磁流体及其制备方法[P].2004-11-03.
    [116]窦永华,张玲,古宏晨.单分散Fe3O4纳米粒子的合成、表征及其自组装明[J].功能材料,2007,38(1):119-122.
    [117]Mpourmpakis G, Velegrakis M, Mihesan C, et al. Symmetry-Switching Molecular Fe (O2) n+Clusters[J]. The Journal of Physical Chemistry A,2011,115(26):7456-7460.
    [118]Cui S, Shen XD, Lin BL, et al. Surface organic modification of Fe3O4 magnetic nanoparticles[J]. Journal of Wuhan University of Technology Materials Science Edition, 2008,23(4):436-439.
    [119]Zheng YH, Cheng Y, Bao F, et al. Synthesis and magnetic properties of Fe3O4 nanoparticles[J]. Mater Res Bull,2006,41:525.
    [120]Ludtke-Buzug K, Biederer S, Sattel T, et al. Preparation and Characterization of Dextran-Covered Fe3O4 Nanoparticles for Magnetic Particle Imaging [C]. IFMBE Proceedings,2009,22(19):2343-2346.
    [121]王红英,常凯等.磁性壳聚糖微球的制备及其性能[J].大连工业大学学报ISTIC, 2011,30(2):105-108.
    [122]Niu D, Li Y, Qiao X, et al. A facile approach to fabricate functionalized superparamagnetic copolymer-silica nanocomposite spheres[J]. Chem. Commun.,2008 (37):4463-4465.
    [123]Yan F, Li J, Fu R, et al. Facile preparation of superparamagnetic Fe3O4/Poly (St-co-MPS)/SiO2 composite particles with high magnetization by introduction of silanol groups[J]. Journal of Nanoscience and Nanotechnology,2009,9(10):5874-5879.
    [124]Zhu Y F, Ikoma Toshiyuki, Hanagata Nobutaka, et al. Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery[J]. Small,2010,6(3):471-478.
    [125]Gao MZ, Li W, Dong JW, et al. Synthesis and Characterization of Superparamagnetic Fe3O4@SiO2 Core-Shell Composite Nanoparticles[J]. World Journal of Condensed Matter Physics,2011,1:49-54.
    [126]Hui C, Shen CM, Tian JF, et al. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds[J]. Nanoscale,2011,3:701-705.
    [127]Xu ZC, Hou YL, Sun SH. Magnetic Core/Shell Fe3O?4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties[J]. J. Am. Chem. Soc.,2007,129 (28): 8698-8699.
    [128]Li XM, Si HL, Niu JZ, et al. Size-controlled syntheses and hydrophilic surface modification of Fe3O4, Ag, and Fe3O4/Ag heterodimer nanocrystals[J]. Dalton Transactions,2010,39:10984-10989.
    [129]黄孟琼,王秀玲,刘勇健.双官能Fe3O4/CdSe/CdS荧光磁性复合物的制备和表征.化学学报[J],2010,68(16):1623-1628.
    [130]Malmstrom P U, WIJKSTROM H, LUNDHOLM C, et al.5-year followup of a randomized prospective study comparing mitomycin C and bacillus Calmette-Guerin in patients with superficial bladder carcinoma[J]. The Journal of urology,1999,161(4): 1124-1127.
    [131]Belizario J E, Dinarello C A. Interleukin 1, interleukin 6, tumor necrosis factor, and transforming growth factor β increase cell resistance to tumor necrosis factor cytotoxicity by growth arrest in the G1 phase of the cell cycle[J]. Cancer research,1991, 51(9):2379-2385.
    [132]Djordjevic B, Kim J H. Different lethal effects of mitomycin C and actinomycin D during the division cycle of HeLa cells[J]. The Journal of cell biology,1968,38(3): 477-482.
    [133]Mladenov E, Tsaneva I, Anachkova B. Activation of the S phase DNA damage checkpoint by mitomycin C[J]. Journal of cellular physiology,2007,211(2):468-476.
    [134]Beijnen J H, Underberg W J M. Degradation of mitomycin C in acidic solution[J]. International journal of pharmaceutics,1985,24(2):219-229.
    [135]Szybalski W, Iyer V N. The mitomycins and porfiromycins[M]. Mechanism of Action. Springer Berlin Heidelberg,1967:211-245.
    [136]Shields M B, Scroggs M W, Sloop C M, et al. Clinical and histopathologic observations concerning hypotony after trabeculectomy with adjunctive mitomycin C[J]. American journal of ophthalmology,1993,116(6):673.
    [137]Vashist S K, Zheng D, Pastorin G, et al. Delivery of drugs and biomolecules using carbon nanotubes[J]. Carbon,2011,49(13):4077-4097.
    [138]Malmstrom P U, Sylvester R J, Crawford D E, et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer[J]. European urology,2009,56(2):247.
    [139]Hueman E M C, Simpson C B. Airway complications from topical mitomycin C[J]. Otolaryngology-Head and Neck Surgery,2005,133(6):831-835.
    [140]Bilensoy E, Sarisozen C, Esendagh G, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors[J]. International journal of pharmaceutics,2009,371(1):170-176.
    [141]Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis[J]. Advanced drug delivery reviews,2002,54(5):631-651.
    [142]Karadeniz H, Alparslan L, Erdem A, et al. Electrochemical investigation of interaction between mitomycin C and DNA in a novel drug-delivery system[J]. Journal of pharmaceutical and biomedical analysis,2007,45(2):322-326.
    [143]任宁,吴志全,樊嘉,等.植入式丝裂霉素控释剂的抑瘤作用[J].中华实验外科杂志,2003,20(4):367-368.
    [144]易平贵,商志才,俞庆森.丝裂霉素C与牛血清白蛋白结合作用的研究[J].化学学报,2000,58(12):1649-1653.
    [145]韩德艳,谢长生.碳包铁对丝裂霉素C的吸附与缓释性能研究[J].化学与生物工程,2006,23(4):32-34.
    [146]Hagiwara A, Takahashi T, Ueda T, et al. Intraoperative chemotherapy with carbon particles adsorbing mitomycin C for gastric cancer with peritoneal dissemination in rabbits[J]. Surgery,1988,104(5):874.
    [147]Goodwin S, Peterson C, Hoh C, et al. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy[J]. Journal of Magnetism and Magnetic Materials,1999,194(1):132-139.
    [148]Agasti S S, Chompoosor A, You C C, et al. Photoregulated release of caged anticancer drugs from gold nanoparticles [J]. Journal of the American Chemical Society,2009, 131(16):5728-5729.
    [149]Sihorkar V, Vyas S P. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization[J]. J Pharm Pharm Sci,2001,4(2):138-158.
    [150]Zhang X, Jiang L, Zhang C, et al. A Silicon Dioxide Modified Magnetic NanoparticlesLabeled Lateral Flow Strips for HBs Antigen[J]. Journal of biomedical nanotechnology,2011,7(6):776-781.
    [151]Vyas S P, Sihorkar V. Endogenous carriers and ligands in non-immunogenic site-specific drug delivery[J]. Advanced drug delivery reviews,2000,43(2):101-164.
    [152]Wu Y, Zhang W, Wang Y, et al. Establishment of a method to determine the magnetic particles in mouse tissues[J]. Nanoscale research letters,2012,7(1):1-8.
    [153]C. R. De Silva, S. Smith, I. Shim, J. Pyun, T. Gutu, J. Jiao and Z. P. Zheng, J. Am. Chem. Soc[J].2009,131,6336.
    [154]Luo F, Batten S R. Metal-organic framework (MOF):lanthanide (Ⅲ)-doped approach for luminescence modulation and luminescent sensing[J]. Dalton Transactions,2010, 39(19):4485-4488.
    [155]Zhang D E, Zhang X J, Ni X M, et al. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route[J]. Crystal Growth & Design,2007,7(10): 2117-2119.
    [156]Wuang S C, Neoh K G, Kang E T, et al. Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine[J]. Journal of Materials Chemistry,2007,17(31):3354-3362.
    [157]Zhang D H, Li G D, Li J X, et al. One-pot synthesis of Ag-Fe3O4 nanocomposite:a magnetically recyclable and efficient catalyst for epoxidation of styrene[J]. Chemical Communications,2008 (29):3414-3416.
    [158]Ghosh R, Pradhan L, Devi Y P, et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia[J]. Journal of Materials Chemistry,2011,21(35):13388-13398.
    [159]Nair S, Sasidharan A, Rani V V D, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells[J]. Journal of Materials Science:Materials in Medicine,2009,20(1):235-241.
    [160]James B. Veliotti. New Research on Solid State Chemistry, New York:Nova Science Publishers, Inc.,2007:241-267.
    [161]Wang Y, Xu L. H., Di Y P., et al. Preparation of Nanosized Magnetism Fe3O4 Powders by Reduction Coprecipitation Method[J]. Nanoscience and Nanotechnology,2007, 12(6):42-49.
    [162]Gong J, Li S, Zhang D, et al. High quality self-assembly magnetite (Fe3O4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process[J]. Chem. Commun,2010,46(20):3514-3516.
    [163]Vercaemst R, Poelman D, Fiermans L, et al. A detailed XPS study of the rare earth compounds EuS and Eu Fe3O4 [J]. Journal of electron spectroscopy and related phenomena,1995,74(1):45-56.
    [164]X. H. He, X. B. Yu, C. L. Zhou, and Y F. Ding, Journal of Shanghai Normal University,2003,32,52.
    [165]L. P. Guo, X. Q. Shen, X. F. Meng, and Y H. Feng[J]. J. Alloy. Compd.2010,490:301.
    [166]M. Al-Haj, J. Magn. Magn. Mater.2006,299:435.
    [167]L. D. Zhang and J. M. Mou. Nanomaterials and Nanostructure, Science Press,Beijing.2001.
    [168]游效曾.结构分析导论.科学出版社.1980:175-176.
    [169]L. M. Zhang, G. H. Guo, and N. M. Han. The Chinese Journal of Nonferrous Metals[J]. 2006,16:1400.
    [170]J. G. Shao, W. J. Deng, Y. X. Yang, X. N. Liu, and Y. R. Chen[J]. Adsorption Science and Technology.2009,27:147.
    [171]Setoyama N, Suzuki T, Kaneko K. Simulation study on the relationship between a high resolution as-plot and the pore size distribution for activated carbon[J]. Carbon,1998, 36(10):1459-1467.
    [172]R. R. Xu, W. Q. Pang, and J. H. Yu. Chemistry-Zeolites and Porous Materials. Beijing: Science Press.2004.
    [173]Santra S.,Tapec R., Theodrpoulou N., et al. Synthesis and characterization of silica coated iron oxide nanoparticles in microemulsion:the effect of nonionic surfactants. Langmuir,2001,17(10):2900-2906.
    [174]Harrison R J, Redfern S A T, O'Neill H S C. The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron structure refinements[J]. American Mineralogist,1998,83:1092-1099.
    [175]Chen M, Wang X, Yu Y H, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films[J]. Applied Surface Science,2000,158(1): 134-140.
    [176]Suzuki A, Matsushita T, Wada N, et al. Transparent conducting Al-doped ZnO thin films prepared by pulsed laser deposition[J]. Japanese Journal of applied physice part 2 Letters,1996,35:L56-L59.
    [177]Tashlykova-Bushkevich I I, Shepelevich V G. Dope depth distribution in rapidly solidified Al-Ge and Al-Me (Me=Fe, Cu, Sb) alloys[J]. Journal of alloys and compounds,2000,299(1):205-207.
    [178]Lie C T, Kuo P C, Sun A C, et al. Effects of Mg doping and sintering temperature on the magnetoresistance of sintered Fe3O4. Magnetics, IEEE Transactions on,2003, 39(5):2800-2802.
    [179]Zhou Z-G The Ferrite, Science Pres, Beijing,1981 (Chinese).
    [180]Lehlooh A F, Mahmood S H. Mossbauer Spectroscopy of Fe3O4 Ultrafine Particles[J]. Journal of Magnetism and Magnetic Materials,1995,151(1):163-166.
    [181]Johnsona C E, Costaa L, Grayb S, et al. Mossbauer Measurements on Spinel-structure Iron Oxide Nanoparticles[J].
    [182]Polikarpov M, Cherepanov V, Chuev M, et al. Mossbauer Spectra of Hematite and Magnetite Nanoparticles in Polymer Composites[C]//Journal of Physics:Conference Series. IOP Publishing,2010,217(1):012114.
    [183]Graham N B, McNeill M E. Hydrogels for Controlled Drug Delivery[J]. Biomaterials, 1984,5(1):27-36.
    [184]Longer M A, Ch'Ng H S, Robinson J R. Bioadhesive Polymers as Platforms for Oral Controlled Drug Delivery III:Oral Delivery of Chlorothiazide Using a Bioadhesive Polymer[J]. Journal of Pharmaceutical Sciences,1985,74(4):406-411.
    [185]Loo J C K, Riegelman S. New Method for Calculating the Intrinsic Absorption Rate of Drugs[J]. Journal of Pharmaceutical Sciences,1968,57(6):918-928.
    [186]Kojima T, Hashida M, Muranishi S, et al. Mitomycin C-dextran Conjugate:A Novel High Molecular Weight Pro-drug of Mitomycin C[J] Journal of Pharmacy and Pharmacology,1980,32(1):30-34.
    [187]Koch C J. Unusual Oxygen Concentration Dependence of Toxicity of SR-4233, A Hypoxic cell Toxin[J]. Cancer Research,1993,53(17):3992-3997.
    [188]Washington C. Drug Release from Microdisperse Systems:A Critical Review[J]. International Journal of Pharmaceutics,1990,58(1):1-12.
    [189]陈跃,黄占文,何菱等,99Tcm-DTPA-DG标记物的制备[J],核化学与放射化学,2006,28(2):125-128.
    [190]Hoelen C G A, De Mul F F M, Pongers R, et al. Three-dimensional Photoacoustic Imaging of Blood Vessels in Tissue[J]. Optics letters,1998,23(8):648-650.
    [191]Chen Y, Shi J L, et al, Core/Shell Structured Hollow Mesoporous Nanocapsules:A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery [J], ACS Nano,2010,4 (10),6001-6013.
    [192]Zhao W, Gu J, Zhang L, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/mesoporous Silica Shell Structure[J]. Journal of the American Chemical Society,2005,127(25):8916-8917.
    [193]Zhao W, Zhang H, He Q, et al. A Glucose-responsive Controlled Release of Insulin System Based on Enzyme Multilayers-coated Mesoporous Silica Particles[J]. Chemical Communications,2011,47(33):9459-9461.
    [194]Xu L, Dai J, Pan J, et al. Performance of Rattle-type Magnetic Mesoporous Silica Spheres in the Adsorption of Single and Binary Antibiotics [J]. Chemical Engineering Journal,2011,174(1):221-230.
    [195]Ni L, Chemtob A, Croutxe-Barghorn C, et al. Photoinduced Synthesis and Ordering of Lamellar N-alkylsiloxane Films[J]. Journal of Materials Chemistry,2012,22(2): 643-652.
    [196]Zhao W, Lang M, Li Y, et al. Fabrication of Uniform Hollow Mesoporous Silica Spheres and Ellipsoids of Tunable Size Through a Facile Hard-templating Route[J]. J. Mater. Chem,2009,19(18):2778-2783.
    [197]Yu M, Wang H, Lin C K, et al. Sol-gel Synthesis and Photoluminescence Properties of Spherical SiO2@LaPO4:Ce3+/Tb3+ Particles with a Core-shell Structure[J]. Nanotechnology,2006,17(13):3245.
    [198]Borse P H, Jun H, Choi S H, et al. Phase and Photoelectrochemical Behavior of Solution-processed Fe2O3 Nanocrystals for Oxidation of Water Under Solar Light[J]. Applied Physics Letters,2008,93(17):173103.
    [199]Yang Y X, Ying H P, Shao J G, et al. A study on the Effect of Template Chain Length on the Synthesis of Mesoporous Silica in an Acidic Condition[J]. Journal of the American Ceramic Society,2007,90(11):3460-3467.
    [200]张静夏,李群,黄爱东,等.应用99Tcm标记法测定半乳糖-聚羟乙谷氨酰胺在小鼠体内的生物分布[J].分析测试学报,2003,22(3):69-71.
    [201]Passos M C F, Ramos C F, Bernardo-Filho M, et al. The Effect of Protein or Energy Restriction on the Biodistribution of Na99TcmO4 in Wistar Rats[J]. Nuclear Medicine Communications,2000,21(11):1059-1062.
    [202]Xiujiang X, Shaojie D. Comparative study on observing vascular crisis of rabbits with replanted limb by Na99TcmO4 trace imaging[J]. Nuclear Techniques,2005,11:011.
    [203]Krogh T E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations[J]. Geochimica et cosmochimica acta,1973,37(3):485-494.
    [204]Hamadi, N.K.; Chen, X.D., Farid, M.M., Lu, M.Q, Adsorption Kinetics for the Removal of Chromium(Ⅵ) from Aqueous Solution by Adsorbents Derived from Used Tyres and Sawdust. Chemical[J] Environmental Engineering,2001,84(2):95-105.
    [205]Zhang J B, Yang Y X, Wang Z L, et al. Adsorption Properties of Zhejiang Diatomite Modified by Supramolecule[J]. Journal of Dispersion Science and Technology,2009, 30(1):83-91.
    [206]Liu B, Zhang W, Yang F, et al. Facile Method for Synthesis of Fe3O4@Polymer Microspheres and Their Application As Magnetic Support for Loading Metal Nanoparticles[J]. The Journal of Physical Chemistry C,2011,115(32):15875-15884.
    [207]Pankhurst Q A, Connolly J, Jones S K, et al. Applications of Magnetic Nanoparticles in Biomedicine[J]. Journal of Physics D:Applied Physics,2003,36(13):R167.
    [208]Ross B, Michaelis T. Clinical Applications of Magnetic Resonance Spectroscopy[J]. Magnetic Resonance Quarterly,1994,10(4):191-247.
    [209]Fridrich L, Messa C, Landoni C, et al. Whole-body Scintigraphy with y'Tcm-MIBI, 18F-FDG and 131 I in Patients with Metastatic Thyroid Carcinoma[J]. Nuclear Medicine Communications,1997,18(1):3-9.
    [210]Buscombe J R, Cwikla J B, Thakrar D S, et al. Scintigraphic Imaging of Breast Cancer: a Review[J]. Nuclear Medicine Communications,1997,18(8):698.
    [211]Manning D. Equipment for Diagnostic Radiography[M]. Springer Netherlands,1985: 189-198.
    [212]Blake A J, Champness N R, Hubberstey P, et al. Inorganic Crystal Engineering Using Self-assembly of Tailored Building-blocks[J]. Coordination Chemistry Reviews,1999, 183(1):117-138.
    [213]Tang H A, Yang S, Yang R D. A mild and Efficient Method of Synthesis of a Series of New Multi-dentate Ligands[J]. Synthetic Communications,2003,33(16):2811-2815.
    [214]Yang Y X, Zhang L P, et al. Synthesis of Chain-Like and CoreShell Spherical Fe3O4@SiO2 Complex[J]. Advanced Science Letters,2011,4(1):96-103.
    [215]陈水平,汪玉庭,吴国忠.氨苄青霉素钠-乙基纤维素纳米微球的制备与表征[J].生物医学工程学杂志,2005,22(1):60-65.
    [216]Ri-Hao Y, Zhao-Ming J, Chemistry (The Chinese Chem. Soc, TAIPEI).2002,60(3): 463-482.
    [217]Yasuzawa T, Tomer K. B. Structural Determination of the Conjugate of Human Serum Albumin with a Mitomycin C Derivative, KW-2149, by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry[J]. Bioconjugate Chemistry,1997,8(3): 391-399.
    [218]Miller A B, Hoogstraten B, Staquet M, et al. Reporting Results of Cancer Treatment J]. Cancer,1981,47(1):207-214.
    [219]张尚权,王雄彪,潘惠忠,等.抗肝癌单克隆抗体Hepama I丝裂霉素C结合物制备及其细胞毒特性[J].第二军医大学学报,1997,1:048.
    [220]陈志南,边惠洁,蒋建利.肝癌单抗研究应用现状与展望[J].实验生物学报,1985,18(2):263-265.
    [221]Zhang J, Lan C Q, Post M, et al. Design of Nanoparticles as Drug Carriers for Cancer Therapy[J]. Cancer Genomics-Proteomics,2006,3(3-4):147-157.
    [222]Deng C X, Huang X. Improved Outcome of Targeted Delivery of Chemotherapy Drugs to the Brain Using a Combined Strategy of Ultrasound, Magnetic Targeting and Drug-loaded Nanoparticles[J]. Therapeutic Delivery,2011,2(2):137-141.
    [223]Haik Y, al-Ramadi B, Issa B, et al. Multifunctional Nanoparticles for Imaging Guided Interventions[J].2008.
    [224]Dhankhar R, Vyas S P, Jain A K, et al. Advances in Novel Drug Delivery Strategies for Breast Cancer Therapy[J]. Artificial Cells, Blood Substitutes and Biotechnology,2010, 38(5):230-249.
    [225]Xu Y, Heberlein W E, Mahmood M, et al. Progress in Materials for Thermal Ablation of Cancer Cells[J]. Journal of Materials Chemistry,2012,22(38):20128-20142.
    [226]Cheng T F, Sun Y D, Si D Y, et al. Attention on Research of Pharmacology and Toxicology of Nanomedicines[J]. Asian J Pharmacodyn Pharmacokinet,2009,9(1): 25-27.
    [227]Kato Y, Tsukada Y, Hara T, et al. Enhanced Antitumor Activity of Mitomycin C conjugated with Anti-alpha-fetoprotein Antibody by a Novel Method of Conjugation[J]. Journal of Applied Biochemistry,1983,5(4-5):313.
    [228]Zhao S, Lee D K, Kim C W, et al. Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption[J]. Bulletin-Korean Chemical Society,2006,27(2):237.
    [229]Song H M, Wei Q, Ong Q K, et al. Plasmon-resonant Nanoparticles and Nanostars with Magnetic Cores:Synthesis and Magnetomotive Imaging[J]. ACS nano,2010,4(9): 5163-5173.
    [230]Keller M, Pop N, Hutzler C, et al. Guanidine-Acylguanidine Bioisosteric Approach in the Design of Radioligands:Synthesis of a Tritium-Labeled N G-Propionylargininamide ([3H]-UR-MK114) as a Highly Potent and Selective Neuropeptide Y Y1 Receptor Antagonist[J]. Journal of medicinal chemistry,2008, 51(24):8168-8172.
    [231]章昌华,涂伟萍.新型聚酰胺胺-苯甲醛树状大分子的合成及性能研究[J].材料导报,2008,2(22):408-411.
    [232]马斐,陈洁,王颖.改性胶粉对聚苯乙烯结构及力学性能的影响[J].武汉科技大学学报(自然科学版),2010,33(005):553-556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700