紫花苜蓿铝胁迫消减杂交文库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性土壤分布范围广,整治改造困难,且土壤中所含的高浓度铝离子会严重抑制作物根系的生长,导致减产甚至死亡。本研究通过抑制消减杂交(SSH)技术构建了紫花苜蓿铝胁迫正反向文库,并分离克隆与紫花苜蓿铝诱导表达相关基因,初步揭示与紫花苜蓿耐铝相关的基因,为分离和鉴定耐铝关键基因打下了基础。主要研究结果如下:
     试验一选取前期已筛选出来的紫花苜蓿耐铝品种小冠,采用单因子试验设计,设置不同梯度的铝离子胁迫浓度(0、20、30、40、50、60μM)采用水培法对紫花苜蓿幼苗进行24h胁迫试验,通过测定相对根伸长量(RRE)发现40μM铝离子溶液能完全抑制根的伸长。
     试验二采用抑制消减杂交(SSH)技术,以铝胁迫的苜蓿为Tester,未胁迫的为Driver,经过总RNA抽提,mRNA纯化,逆转录成cDNA,四碱基酶切和接头连接后,经过两次消减杂交和两次PCR特异性扩增后,经过T-A克隆,蓝白斑筛选等步骤构建一个铝胁迫正向消减文库。以铝胁迫的cDNA为Driver,未胁迫的cDNA为Tester,构建了反向消减文库文库,具体结果如下:
     1、紫花苜蓿经CaCl2溶液(pH 4.5)培养3d后,试验组用40μM铝离子胁迫处理24h,对照组无铝处理继续培养24h。用Trizol法分别提取幼苗根部总RNA,试验组和对照组的浓度分别达到1801 ng/μl和1812 ng/μl,且纯度较高。
     2、采用抑制性消减杂交法(SSH)分别构建了一个964个克隆的正向消减文库和一个768个克隆的反向消减文库。菌落PCR显示插入片段在250bp到1200bp之间,文库质量良好。
     3、从正向消减文库中随机挑选40个克隆进行测序,共获待34个有效序列,其中包括9个新的EST序列(登陆号EH643286-EH643294)和25个与已知基因相关的EST序列,并登录到dbEST数据库。经BLASTX分析表明这些EST序列编码果胶甲脂酶、过氧化物酶、钙依赖蛋白激酶、蔗糖转化酶、蛋白磷酸脂酶调节因子、几丁质酶、核酸结合蛋白、变位酶、甘油磷酸二酯酶、橡胶延伸因子、糖转运蛋白、细胞色素P450、乙酰氨基己糖苷酶等。本试验克隆到一个与耐铝性密切相关的基因,编码果胶甲酯酶。该酶能促进根细胞壁果胶的去甲基化作用,产生游离羧基,从而增加细胞壁上的铝结合位点,减少铝对植物的毒害作用。同时,该酶也是植物根细胞的伸长受到铝毒抑制进而影响根系伸长的可能原因。如何具体评价果胶甲酯酶的上调对紫花苜蓿在抵御铝毒中的作用,以及果胶甲酯酶的表达量与紫花苜蓿耐铝能力的关系,还有待进一步的研究。其他EST所编码的蛋白涉及到抗氧化作用、信号的传导、发育和能量代谢等多种生理过程,与其他生物性和非生物性胁迫诱导相关,广泛参与植物的其它应激反应,属于植物的非特异性应答反应。
Acid siol distribute abroad in the world and is difficult to be meliorated. The high concentration of aluminum will greatly inhibit root elongation, reduce the plant production, and probably lead to death. The aim of the current research was using suppression subtractive hybridization(SSH) to construct a forward and reverse cDNA library in order to isolate and clone the aluminum tolerance related genes to look into molecular events associated with aluminum resistance and establish fundamental materials and techniques for further study and genetic selection. The main results abtained are listed bellow:
     In experiment 1, The most aluminum tolerance alfalfa cultivar xiao guan(Rcent results of laboratory alfalfa tolerance screening experiment) was adopted to evaluate the most suitable aluminum concentration by using single factor test with solution culture method under a gradient aluminum concentration stress (0、20、30、40、50、60uM) for 24h. The result show that 40μM aluminum can completely inhibit the root elongation.
     In experiment 2, Using the suppression subtractive hybridization(SSH) techology, the alfalfa with aluminum stressed served as tester and without aluminum stre ssed as Driver. By total RNA extraction, mRNA purification, cDNA synthesis, RsaⅠdigestion, adaptor ligation, twice hybridization and twice PCR amplification ect, a forward subtractive library was constructed. Vice versa, when the alfalfa with aluminum stressed served as Driver.and without aluminum stressed as tester, It was a reverse subtractive library. The detail results were below.
     1) After germination, seeds were cultivated in CaCl2 solution(pH 4.5) 3d and then divide into two group, one group(Driver) is keep on cultivating in CaCl2 solution and another(Tester) is stressed by 40μM aluminum solution. Collect the root after 24h and extract total RNA by Trizol reagent. The total RNA concentration of Tester and Driver were 1801 ng/μl and 1812 ng/μl separately with a good purity.
     2) Forward and reverse subtraction were conducted with the method of suppression subtractive hybridization(SSH) by PCR-SelestTM cDNA Subtration Kit(Clontech). A 964 clone forward subtration library and a 768 clone reverse subtration library were constructed. Colony PCR suggested that the iniserts were between 250bp-1200bp and the library was suitable for the following work.
     3) 40 clones were randomly picked, secquenced and obtained 34 unique ESTs. BLASTX show that 25 ESTs found the homology which were all submitted to genbank. These ESTs code for Pectinesterase, peroxidase, calcium-dependent protein kinase, neutral/alkaline invertas, protein phosphatase regulator, chitinase, nucleic acid binding, Chorismate mutase, glycerophosphoryl diester phosphodiesterase, Rubber elongation factor, cytochrome P450, acetylhexosaminidase ect. One EST coding for Pectinesterase which can catalyse pectin and results in more Al binding sites in root cell wall may play the role in alfalfa aluminum detixitifcation. Meanwhile, this mechanism also is one of the reasons why plant root growth affected by aluminum. The role of Pectinesterase played in alfalfa aluminum detoxification and the relationship of alfalfa aluminum tolerance and expression level need to be future studied. The other ESTs were involed in plant antioxidative stress, signal transduction, development and energy metaboly, and these physiological responses were also abserved to be similar to those occuring under other stresses. Nine ESTs had no homology from NCBI(access number EH643286-EH643294).
引文
Alfano F, Russell A, Gambardella R, Duckett J G. The actin cytoskeleton of the iverwort Riccia fluitans:effects of cytochalasin B and aluminum ions on rhizoid tip growth[J]. J Plant Physiol,1993,142:569-574.
    Anoop V M, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ. Moudulation of citrate metabolism alter aluminum tolerance in yeast and transgenic canola of OVerexpressing a mitochondrial citrate synthase[J]. Plant Physiol,2003, 132:2205-221.
    Bahn S C, Bae M S, Park Y B, Oh S I, Jeung J U, Bae J M, Chung Y S, Shin J S. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.)[J].Biochim Biophys Acta,2001, 1522(2):134-7.
    Blancaflor E B, Jones D L, Gilroy S. Alterations in the cytoskeleton acompany aluminum-induced growth inhibition and morphological changes in primary roots of maize[J]. Plant Physiol,1998,118:159-172.
    Boller T, Gehri A, Mauch and Vogeli U. Chitinase in bean leaves:Induction by ethylene, purification, properties, and possilble function [J]. Planta,1983,157 (1):22-27.
    Bookin J. Possible Solutions to Remedy the Detrimental Effects of Soil Acidity on Tropical Agriculture [J]. Geology of Soils,1996,11:36-38.
    Burke T J, Callis J and Vierstra R D. Characterization of a polyubiquitin gene from Arabidopsis thaliana[J]. Molecular and General Genetics,1988,213:435-443.
    Camoni L, Fullone M R, Marra M and Aducci P. The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase[J]. Physiologia Plantarum,1998,104: 549-555.
    Chang Y C, Yamamoto, Matsumoto H. Accumulation of aluminum in the cell wall pectin in cultured tobacco (Nicotiana tabacum L) cells treated with a combination of aluminum and iron [J]. Plant Cell Environ,1999,22: 1009-1017.
    Christensen A H, Sharrock R A and Quail P H. Maize polyubiquitin genes:structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation[J]. Plant Molecular Biology,1992,18:675-689.
    Comis D. New Alfalfa May be Ideal for Poor Soils [EB/OL]. http:/www. ars.usda.gov/is/pr/2002/020125. htm,2002-01-04.
    Diatchenko L, Lau Y F, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E D, Siebert P D. Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc Natl Acad Sci USA,1996,93:6025-6030.
    Delhaize E, Ryan P R. Aluminum Toxicity and Tolerance in Plants[J]. Plant Physiol,1995,107:315-321.
    Delhaize E, Craig S, Beaton R J, Bennet V C, Jagadish and Randall P J. Aluminum tolerance in wheat (Trit icum aestiv um L.) I. Uptake and distribution of aluminum in root apices [J]. Plant Physiol,1993a,103:685-693.
    Delhaize E, Ryan P R. Update on environmental stress:aluminum toxicity and tolerance in plants[J]. Plant Physiol,1995,107:315-321.
    Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.):Ⅱ. Aluminum-stimulated excretion of malic acid from root apices[J]. Plant Physiol.,1993b,103:695-702.
    Drummond R D, Guimaraes C T, Felix J, Ninamango-Cardenas F E, Carneiro N P, Paiva E and Menossi M.. Prospecting sugarcane genes involved in aluminum toleranco[J]. Genet. Mol. Biol,2001,24:221-230.
    de la Fuente J M, Ramirez-Rodriguez V, Cabrera-Ponce J L, HerreraEstrella L. Aluminum tolerance in transgenic plants by alteration of citrate synthesis[J]. Science,1997,2761566-1568.
    Devine T E, Foy C D, Fleming A L Hanson C H, Campbell T A, McCurtrey III J E
    and Schwartz J W. Development of alfalfa strains with differential tolerance to aluminum toxicity[J]. Plant and Soil,1976,44(l):73-79.
    Delhaize E, Ryan PR, Hebb DM, Yoke Y, Sasaki T and Matsumoto H. Engineering high level aluminum tolerance in barley with the ALMTI gene[J].Plant Biol, 2004,101:15249-15254.
    Ezaki B, Tsugita S, Matsumoto H. Expression of a moderately anionic peroxidases is induced by aluminum treatment in tobacco cells:Possible involvement of peroxidase isoenzymes in aluminum ion stress[J]. Physiol. Plant,1996, 96:21-28.
    Ezaki B, Katsuhara M, Kawamura M, Matsumoto H. Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in arabidopsis[J]. Plant
    Physiol,2001,127:918-927.
    Ezaki B, Yamamoto Y, Matsumoto H. Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in tobacco cultured cells[J]. Physiol Plant,1995,93:11-18.
    Ferguson D L, Guikema J A and Paulsen G M. Ubiquitin pool modulation and protein degradation in wheat roots during high-umperature stress[J]. plant physiology,1990,92:740-746.
    Finkelstein D, Ewing R, Gollub J, Sterky F, Cherry JM and Somerville S. Microarray data quality analysis:Lessons from the AFGC project. arabisopsis functional genomics consortium[J]. Plant Mol. Biol,2002,48:119-131.
    Fry S C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals[J]. Biochem J,1998,332:507-515.
    Gao P, Wang G Y, Zhao H J, Fan L and Tao Y Z. Isolation and Identif ication of Submergence-induced Genes in Maize (Zea mays) Seedlings by Suppression Subtractive Hybridization[J]. Acta Botanica Sinica,2003,45(4):479-483.
    Gallego F J and Benito C. Genetic control of aluminium tolerance in rye (Secale cereale L.)[J]. Theor. Appl. Genet,1997,95:393-399.
    Gallego F J, Calles B and Benito C. Molecular markers linked to the aluminium tolerance gene altl in rye (Secale cereale L.)[J]. Theor.Appl. Genet,1998, 97:1104-1109.
    Garvin D F and Carver B F. Role of the genotype in tolerance to acidity and aluminum toxicity[A]. Rengel Z (Ed.). Handbook of soil acidity[M]. New York:Marcel Dekker,2003.387-406.
    Grabski S and Schindler M. Aluminum induces rigor within the actin network of soybean cells[J]. Plant Physiol,1995,108:897-901.
    Hall J I. Cellular mechanisms for heavy metal detoxification and tolerance[J]. J Exp Bot,2002,53:1-11.
    Hamel F, Breton C and Houde M. Isolation and characterization of wheat aluminum-regulated genes:Possible involvement of aluminum as a pathogenesis response elicitor [J]. Planta,1998,205:531-538.
    Hamilton C A, Good A G and Taylor G J. Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat[J]. Plant Physiol,2001,125:2068-2077.
    Hammond-Kosack K E and Jones J D. Resistance Gene-Dependent Plant Defense Responses[J]. Plant Cell,1996,8:1773-1791.
    Horst W J. The role of the apoplast in aluminum toxicity and resistance of higher plants:a review[J]. Z Pflanzenern ehr Bodenkd.1995,158:419-428.
    Huang J W, Shaff J E, Grunes D L and Kochian L V. Al effects on calcium fluxes at the root apex of Al-tolerant and Al-snsitive wheat cultivars[J]. Plant Physiol, 1992,98:230-237.
    In O, Berberich T, Romdhane S and Feierabend J. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation[J]. Planta,2005,220(6):941-50.
    Jiang X C, Guo X H, Pan X L and Song S Q. Construction and Differential Screening of a cDNA Library Specific to Osmotic Stress of Haloxylon ammodendron Seedlings [J]. Journal of Biochemistry and Molecular Biology, 2004,37(5):527-532.
    Johnson K D and Chrispeels M J. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein[J]. Plant Physiology,1992,100:1787-1795.
    Jones D L and Kochian L V. Aluminum inhibition of the 1,4,5-trisphosphate signal transduction pathway in wheat roots:a role in aluminum toxicity?[J] Plant Cell, 1995,7:1913-1922.
    Katsuhara M and Kawasaki T. Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots[J]. Plant Cell Physiol,1996,37:169-173.
    Kigosne T,Yamagachi-Shinozaki K and Shinozaki K. Cloning of cDNAs for genes that are early responsive to dehydration stress (ERDs) in Arabidopsis thaliana L identification of three ERDs as HSP cognate genes[J]. Plant Molecular Biology, 1990,25:791-798.
    Kim K Y, Park S W, Chung Y S,Chung C H, Kim J I and Lee J H. Molecular cloning of low-temperature-inducible ribosomal proteins from soybean[J]. Journal of Experimental Botany,2004,55(399):1153-1155.
    Kobayashi Y, Koyama H. QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana [J]. Plant Cell Physiol.,2002,43:1526-1533.
    Kochian I V. Cellular mechanisms of aluminum toxicity and resistance in plants[J]. Annu Rev Plant Physiol Mol Biol,1995,46:237-260.
    Kuang W W, Thompson D A, Hoch RV and Weigel R J. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen recept positive brest carcinoma cell line[J]. Nudeic Acids Research,1998,26(4):1116-1123.
    Larsen P B, Degenhardt J, Tai C Y, Stenzler L M, Howell S H and Kochian L V. Arabodopsis mutants with increased aluminum resistance exhibit altered paterns of aluminum accumulation and organic acid release from roots[J]. Plant Physiol,1998,117:9-17.
    Le Van H, Kuraishi S and Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of sqaush seedlings[J].Plant Physiol,1994, 106:971-976.
    Liao H, Wong F L, Phang T H, Cheung M Y, Li W Y, Shao G, Yan X, Lam H M. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency [J]. Gene,2003,318:103-11.
    Li L, Tutone A F, Drummond R S, Gardner R C and Luan S. A novel family of magnesium transport genes in Arabidopsis[J]. Plant Cell,2001,13:2761-2775.
    Li X F, Ma J F and Matsumoto H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat[J]. Plant Physiol,2000,123:1537-1544.
    Luo M and Dvorak J. Molecular mapping of an aluminum tolerance locus on chromosome 4D of chinese spring wheat[J]. Euphytica,1996,91:31-35.
    MacDiarmid C W and Gardner R C. Al toxicity in yeast:A role for Mg[J]. Plant Physiol,1996,112:1101-1109.
    Macdonald T L, Humphreys W G and Martin R B. Promotion of tubulin assembly by aluminum ion in vitro[J].Science,1987,236:183-86.
    Magalhaes J V, Garvin D F, Wang Y, Sorrells M E, Klein P E, Schaffert R E, Li L, and Kochian L V. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae[J]. Genetics,2004,167:1905-1914.
    Magalhaes J V. Molecular genetic and physiological investigations of aluminum tolerance in sorghum (Sorghum bicolor L. Moench)[J]. Ph D thesis, Cornell Univ,2002,192-192.
    Mahler R L. Impacts and Management of Soil Acidity under Direct Seed Systems Status and Effects on Crop Production[R]. Direct seed conference, CA, January,2002,16-18.
    Ma J F and Hiradate S. Form of aluminium for uptake and translocation in buckwheat (Fygopyrum esculentum Moench) [J]. Planta,2000,211:355-360.
    Ma J F. Role of organic acids in detoxificatinn of Al in higher plants[J]. Plant Cell Physiol,2000,44:383-390.
    Ma J F, Shen R F, Nagao S and Tanimoto E. Aluminum Targets Elongating Cells by Reducing Cell Wall Extensibility in Wheat Roots[J]. Plant Cell Physiol,2004, 45 (5):583-589.
    Ma J F, Zheng S J, Masumoto H and Hiradate S. Detoxifying aluminum with buckwheat[J]. Nature,1997,390:569-570.
    Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F and Wu P. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components [J]. J Exp Bot,2004,55(394):137-143.
    Martinoia E, Vogt E, Rentsch D and Amrhein N. Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes[J]. Biochim. Biophys. Acta,1991,1062:271-278.
    Milla M A, Butler E, Huete A R, Wilson C F, Anderson O and Gustafson L P. Expressed sequence tag based gene expression analysis under aluminum stress in rye [J]. Plant Physiol,2002,130:1706-1716.
    Miller S S, Driscoll B T, Gregerson R G, Gantt J S and Vance C P. Alfalfa malate dehydrogenase (MDH):molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH[J]. Plant J,1998,15:173-184.
    Nguyen B D, Brar D S, Bui B C, Nguyen T V, Pham L N and Nguyen H T. Identification and mapping of the QTL for aluminum tolerance introgressed from the new source,Oryza rufipogon Griff., into indica rice (Oryza sativa L.) [J]. Theor. Appl. Genet.,2003,106:583-593.
    Nguyen V T, Burow M D, Nguyen H T, Le B T, Le T D and Paterson A H. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.) [J].Theor. Appl. Genet.,2001,102:1002-1010.
    Nguyen V T, Nguyen B D, Sarkarung S, artinez C, Paterson A H and Nguyen H T. Mapping of genes controlling aluminum tolerance in rice:comparison of different genetic backgrounds [J]. Mol. Genet. Genomics,2002,267:772-780.
    Ninamango-Cardenas F E, Guimaraes C T, Martins P R, Parentoni S N, Carneiro N P, Lopes M A, Moro J R and Paiva E. Mapping QTLs for aluminum tolerance in maize[J]. Euphytica,2003,130:223-232.
    Olivertti G P, Cumming J R and Etherton B. Membrane potential depolarization of root cap cells preceds aluminum tolerance in snapbean[J]. Plant Physiol,1995, 109:123-129.
    Papernik L A, Bethea A S, Singleton T E, Magalhaes J V, Garvin D F and Kochian L V. Physiological basis of reduced Al tolerance in ditelosomic lines of chinese spring wheat[J]. Planta,2001,212:29-834.
    Pearson G, Serrao E A and Cancela M L. Suppression subtractive hybridization for studying gene expression during aerial exposure and desiccation in fucoid algae[J]. European Journal of Phycology.2001,36(4):359-366.
    Pellet D M,Papernik L A and Kochian L V. Multiple aluminum resistance mechanisms in wheat(Roles of root apical phosphate and malate exudation) [J]. Plant Physiol,1996,112:591-597.
    Qi Y, Yamauchi Y, Ling J, Kawano N, Li D and Tanaka K. Cloning of a putative monogalactosyldiacylglycerol synthase gene from rice (Oryza sativaL.) plants and its expression in response to submergence and other stresses[J]. Planta, 2004,219:450-458.
    Qi Y, Yamauchi Y, Ling J, Kawano N, Li D and Tanaka K. The submergence-induced gene OsCTP in rice (Oryza sativa L.) is similar to Escherichia coli cation transport protein ChaC[J]. Plant Science,2005a, 168:15-22.
    Qi Y, Kawano N, Yamauchi Y, Ling J, Li D, Tanaka K. Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativaL.) by suppression subtractive hybridization[J]. Planta,2005b,221:437-445.
    Rengel Z and Reid R J. Uptake of Al across the plasma membrane of plant cells [J]. Plant Soil,1997,192:31-35.
    Rincon M and Gonzales R. Aluminum partitioning in intact root s of aluminum tolerant and aluminum sensitive wheat (T riticum aest ivwn L.) cultivars [J]. Plant Physiol,1992,99:1021-1028.
    Richards K D, Schott E J, Sharma Y K, Davis K R and Gardner R C. Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiol 1998, 116:409-418.
    Riede C R and Anderson J A. Linkage of RFLP markers to an aluminum tolerance gene in wheat[J]. Crop Sci.,1996,36:905-909.
    Rodriguez Milla M A, Butler E, Huete A R, Wilson C F and Anderson O & Gustafson J P. Expressed sequenced tag-based gene expression analysis under aluminum stress in rye[J]. Plant Physiol,2002,130:1706-1716.
    Rosellini D, Barone P, Bouton J, LaFayette P, Sledge M, Veronesi F and Parrott W. Aluminum tolerance in alfalfa with the citrate synthase gene[R]. The 38 thReport of the North American Alfalfa Improvement,2002.
    Ryan P R, DiTomaso J M and Kochian L V. Aluminum toxicity in roots:an investigation of spatial sensitivity and the role of the root cap[J].J Exp Bot, 1993,44:437-446.
    Ryan P R, Reid R J and Smith F A. Direct evaluation of the Ca2+displacement hypothesis for Al toxicity[J]. Plant Physiol,1997,113:1351-1357.
    Samac D A, Foster-Hartnett D, Chandran D Ivashuta S, Sharopova N and VandenBosch K A.. Transcript Profiling In Medicago truncatula To Identify Genes Involved In Abiotic And Biotic Stress Responses[R]. Plant & Animal Genomes XIV Conference, CA, January,2006.
    Samac D A, Gebeyaw M T, Allan D L and Vance C P. GeneticManipulation ofAlfalfa forOrganic Acid Synthesis and Aluminum Tolerance [R]. North American Alfalfa Improvement Conference, CA. July 29,2002.
    Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, Zacarias L, Granell A, Lafuente M T.A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit[J].Planta,2003,218(1):65-70.
    Sandhu H, Dehnen W, Roller M, Abel J and Unfried K. mRNA Expression Patterns in Different Stages of Asbestos-induced Carcinogenesis in rats[J]. Carcinogenesis.2000,21(1):123-129.
    Sasaki T, Ezaki B and Matsumoto H. A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat.Plant Cell Physiol,2002,43(2):177-85.
    Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn S J, Ryan P R, Delhaize E and Matsumoto H. A wheat gene encoding an aluminum-activated malate transporter [J]. The Plant J,2004,37:645-653.
    Sasaki M, Yamamoto J M and Matsumoto H. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots[J]. Soil Sci Plant Nutr,1996, 43:469-472.
    Sasaki M, Yamamoto J M and Matsumoto H. Aluminum inhibition its growth and stability of cortical microtubules in wheat (Triticum aestivum) roots[J]. Soil Sci Plant Nutr,1997,43:469-472.
    Schaller G E and Sussman M R. Phosphorylation of the plasma-membrane H+-ATPase of oat roots by a calcium-stimulated protein kinase[J]. Planta,1988, 173:509-518.
    Schena M and Davis R W. Genes, Genomes and Chips[M]. In DNA Microarrays:A Practical Approach (ed. M. Schena), Oxford University Press, Oxford, UK, 1999.
    Schmohl N and Horst W J. Cell wall pectin content modulates aluminum sensitivity of (Zeamays L) cells grown in suspension culture [J]. Plant Cell Environ,2000,23: 735-742.
    Siegel N and Haug A.Aluminum interaction with calmodulin:evidence for altered structure and function from optical and enzymatic studies [J]. Biochem Biophycs Acta,1983,744:36-45.
    Sivaguru M, Baluska F, Volkmann D, Felle H H and Horst W J. Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone[J]. Plant Physiol,1999,119:1073-1082.
    Sledge M K, Bouton J H, Tamulonis J, Kochert G and Parrot W A. QTL Analysis of Aluminum Tolerance of Diploid Alfalfa [R]. Town & Country Conference Center, CA, January,1995.
    Sledgea M K, Pechtera P and Paytonb M E. Aluminum Tolerance in Medicago truncatula Germplasm[J]. Crop science,2005,45:2001-2004.
    Snowden K C and Gardner R C. Five genes induced by aluminum in wheat (Triticum aestivum) roots[J]. Plant Physiol 1993,103:855-861.
    Steiger S, Pfeifer T, Ratajczak R, Martinoia E and LUTTGE U. The vacuolar malate transporter of Kalancho daigremontiana:A 32 kDa polypeptide[J]. J.Plant Physiol,1997,151:137-141.
    Stoutd G. Growth of Alfalfa on Acid Soils When Established With Pre-Inoculated Coated Seed[M]. Agriculture and Agri Food Canada,1994.87-110.
    Tabuchi A and Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum L) roots during aluminum-induced growth inhibition [J]. Physiol Plant,2001,112:353-358.
    Tang Y, Sorrells M E, Kochian L V and Garvin D G. Identification of RFLP markers linked to barley aluminum tolerance gene. Alp [J]. Crop Sci,2000,40:778-782.
    Talor G J. The physiology of aluminum phytotoxicity. In H Sige 1, A Sigel, eds, Metal Ions in Biological Systems[M],1988. Vol 24. Marcel Dekker, New York, 123-163.
    Taylor G J, Basu A, Basu U, Slaski J J, Zhang G and Good A. Al-induced,51 kilodalton,membrane-bound proteins are associated with resistance to Al in a segregating population of wheat[J]. Plant Physiol,1997,114:363-372.
    Tesfaye M, Temple S J, Allan D L, Vance C P and Samac D A. Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol,2001,127:1836-1844.
    Von Stein O D, Thies W G, Hofmann M. A high through put screening for rarely transcribed differentially expressed genes[J]. Nucleic Acids Research,1997, 25(13):2598-2602.
    Viola R E, Morrison J E and Cleland W W.Interaction of metal(Ⅲ)-adenosine 5,K-trisphosphate complexes with yeast hexokinase[J]. Biochemistry,1980, 19:3131-3137.
    Von Kampen J, Wettern M and Schulz M. The ubiquitin system in plants[J]. Physiologia Plantarum,1996,97:618-624.
    Von Uexkull H R and Mutert E. Global extent development and econmic impact of acid soils[J]. Plant Soil,1995,171(1):1-15.
    Watt D A. Aluminium-responsive genes in sugarcane:Identification and analysis of expression under oxidative stress[J]. J. Exp. Bot,2003,54:1163-1174.
    Wenzl P, Chaves AL, Patino G M, Mayer J E and Rao I M. Aluminum stress stimulates the accumulation of organic acids in root apices of Brachiaria species[J]. J. Plant Nutr. Soil Sci.,2002,165:582-588.
    Wu P, Liao C Y, Hu B, Yi K K, Jin W Z, Ni J J and He C. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages[J]. Theor. Appl. Genet.,2000,100:1295-1303.
    Yamanoto Y, Kobayashi Y, Rama Devi S, Rikiishi S and Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells[J].Plant Physiol,2002,128:63-72.
    Yen H E, Wu S M, Hung Y H and Ye S K. Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization[J]. Physiologia Plantarum.2000, 110:402-409.
    Zhang G, Hoddnott J andTaylor G J. Characterasation of 1,3-beta-D-glucan (callose) synthesis in roots of Triticum aestivum in response to aluminum toxicity[J].J Plant Physiol,1994,144:229-234.
    Zhang W H, Ryan P R and Tyerman S D. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots[J]. Plant Physiology,2001,125:1459-1472.
    Zhang X N, Qu Z C and Wan Y Z. Application of Suppression Subtractive Hybridization(SSH) to Cloning Differentially Expressed cDNA in Dunaliella salina (Chlorophyta) Under Hyperosmotic Shock[J]. Plant Molecular Biology Reporter.2002a,20:49-57.
    Zhang X N, Wang H, Qu Z C,Ye M M and Shen D L. Cloning and Prokaryotic Expression of a Salt-induced cDNA Encoding a Chloroplastic Fructose-1,6-diphosphate Aldolase in Dunaliella salina (Chlorophyta)[J]. DNA Sequence,2002b,13(4):195-202.
    Zhang X N, Chang F L, Zhang H W and Shen D L. Isolation and Characterization of a Salt-Induced PsaG of Photosystem I in Dunaliella salina[J].DNA Sequence-The Journal of Sequencing and Mapping.2002c,13(3):173-177.
    Zuber J, Tchernitsa O I, Hinzmann B, Schmitz A C, Grips M, Hellriegel M, Sers C, Rosenthal A and Schafer R. A genome-wide survey of RAS transformation targets[J]. Nat Genet,2000,24:144-152.
    Zhu M Y, Ahn S and MatsumotoH. Inhibition ofgrowth and developmentof .rootborder cells inwheatbyAl[J]. Plant Physiology,2003,117:359-367.
    黄巧云.土壤酸化过程中铝的形态与小麦缺钙和铝毒发生的条件[J].华中农业大学学报,1995,147-153.
    刘桂丰,侯英杰,王玉成,褚延广.干旱胁迫下刚毛柽柳消减文库的构建及分析[J].植物研究,2005,25(1):69-73.
    罗小英,崔衍波,邓伟,李德谋,裴炎.超量表达苹果酸脱氢酶基因提高苜蓿的耐受性[J].分子植物育种,2004,5:621-626.
    唐剑锋,罗湖旭,林咸永,章永松,李刚.铝胁迫下小麦根细胞壁果胶甲醋酶活性的变化及其与耐铝性的关系[J].浙江大学学报(农业与生命科学版),2006,32(2):145-151.
    唐万虎,张祖新,邹锡玲,陈旋,郑用琏.玉米耐盐渍功能基因组分析及相关基因Sicyp51的鉴定与克隆[J].中国科学,2005,35(1):29-36.
    汤华,郑用琏,贺立源,李建生.玉米耐铝毒基因的分离.植物生理与分子生物学学报,2005,31(5):507-514.
    王允青,武际,朱宏斌,李孝勇,鲁伊宁,郭熙盛.酸性红黄壤施用白云石对小麦、红豆产量的效应[J].安徽农业科学,2002,30(2):262-263.
    王允青,郭熙盛,武际.非金属矿物改良皖南酸性红黄壤应用研究[J].土壤通报,2005,36(1):34-37.
    王转,贾晋平,景蕊莲.用抑制差减杂交法分离小麦幼苗水分胁迫诱导表达的cDNA[J].生物技术通报,2003,5:36-39.
    熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987,39.
    杨建立,俞雪辉,刘强,郑绍建.铝胁迫对小麦根尖细胞蛋白质及苹果酸分泌的影响[J].植物营养与肥料学报,2005,11(3):390-393.
    张芬琴,于金兰.铝处理对苜蓿种子萌发及其幼苗生理生化特性的影响[J].草业 学报,1999,9:61-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700