文昌鱼(Branchiostoma japonicum)Plgl和IGF基因的表达和功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文昌鱼(amphioxus)是介于无脊椎动物和脊椎动物之间的过渡类型,是现存的与脊椎动物祖先最接近的无脊椎动物,一直被认为是研究脊椎动物起源和进化的重要模式动物。文昌鱼基因的序列和表达模式已经被广泛用于不同物种之间的比较基因组学研究和发育同源性分析。本文从文昌鱼(Branchiostoma japonicum)中克隆了在与脊椎动物肝脏特异性表达的纤溶酶原(Plg)基因,并对其结构、进化、表达和功能进行了研究,同时深入研究了也在脊椎动物肝脏特异性表达的胰岛素样生长因子(IGF)的功能,为脊椎动物肝脏的起源提供了更多证据。
     我们在文昌鱼中克隆了一个全长1949 bp的Plg cDNA,其开放阅读框长度为1290 bp,5’非翻译区长123 bp,3’非翻译区长536 bp,该cDNA包含的最长开放阅读框编码一个430个氨基酸的蛋白,分子量大约为48 kDa,将其命名为BbPlgl。运用信号肽分析预测软件Signal IP 3.0 server进行信号肽预测揭示其氨基端16个氨基酸为信号肽。通过经NetNGlyc 1.0 Server糖基化预测,在32位氨基酸处存在一个潜在的糖基化位点,因此推测BbPlgl可能为一种糖蛋白。BLASTp搜索结果显示该蛋白的氨基端含有两个kringle结构域,羧基端为类丝氨酸蛋白酶结构域。两个kringle结构域K1和K2在氨基酸水平上存在51.9%的一致性,而且BbPlgl的K1和K2与已知纤溶酶原的K1分别存在43.0%-58.2%和41.8%-51.9%的一致性,与K2分别存在41.8%-51.9%和50.6%-60.9%的一致性,与K3分别存在49.4%-57.0%和51.9%-63.3%的一致性,与K4分别存在50.6%-55.7%和46.8%-55.7%的一致性,与K5分别存在50.6%-57.0%和44.3%-50.6%的一致性,说明BbPlgl的K1和K2可能是纤溶酶原K1-K5的原型。将BbPlgl的kringle结构域和类丝氨酸蛋白酶结构域分别与纤溶酶原-凝血酶原家族成员的相应结构域构建系统进化树,结果显示文昌鱼BbPlgl的K1与kringle结构域的groupⅠ聚簇,BbPlgl的K2与kringle结构域的groupⅡ聚簇,类丝氨酸蛋白酶结构域位于纤溶酶原-载脂蛋白A亚家族(包括Plg, HGF, MSP, APOA)的基部,这些结果显示BbPlgl或许代表纤溶酶原-载脂蛋白A亚家族的一种原型。构建BbPlgl的原核表达载体,转化大肠杆菌后诱导表达。Western blotting结果显示该蛋白为重组表达蛋白。纯化的重组蛋白能够被人尿激酶所激活并对纤溶酶原的特异性发色底物S2251表现出8.7 mU/mg的酶活力。Northern blotting的结果显示BbPlgl的转录产物为单一条带,长度约为2000 bp。原位杂交显示BbPlgl转录本在肝盲囊和后肠中的表达量最高,在内柱、内柱下面的血管、鳃、卵巢有低水平的表达,而在肌肉、神经管和脊索和精巢中没有杂交信号。所有这些都表明,文昌鱼Plgl可能代表纤溶酶原-载脂蛋白A亚家族的一种原型,并且其表达具有组织特异性;同时,这也显示在Plg合成方面,文昌鱼的肝盲囊和脊椎动物的肝脏具有相似性,支持了文昌鱼肝盲囊和脊椎动物肝脏在功能上的相似性。
     为了更深入的探讨BbIGF功能和作用机制,进一步为研究原索动物的GH/IGF轴提供证据,本研究中将BbIGF基因中与脊椎动物IGF成熟肽对应的区域进行体外重组表达,构建BbIGF-MP的表达载体,转化大肠杆菌后诱导表达,纯化重组蛋白并进行质谱鉴定。我们采用组织消化法成功分离培养了昆明小鼠的原代肌肉细胞,并借助RT-PCR对其进行了初步鉴定。以体外分离培养的小鼠原代肌肉细胞为模型,以脊椎动物(人)的重组IGF-I做为参照,主要为了解决以下问题:(1)鉴定文昌鱼BbIGF-MP是否像人IGF-I一样具有和肌肉细胞以及肌肉组织IGF-I受体粗提物的结合能力;(2)鉴定BbIGF-MP是否能像人IGF-I一样做为促分裂原,促进肌肉细胞的增殖;(3)鉴定BbIGF-MP和人IGF-I在肌肉细胞中是否激活相同的胞内信号传导通路来发挥作用。结合实验显示异硫氰酸荧光素(FITC)标记的重组蛋白BbIGF-MP能够像脊椎动物IGF-I一样和原代肌肉细胞结合,同时酶联免疫吸附实验确定了其能够与小鼠肌肉组织以及文昌鱼中的IGF受体粗提物结合。MTT分析显示在10μg/ml的时候文昌鱼BbIGF-MP即能够显著促进细胞增殖,并呈现浓度依赖性,说明其具有促有丝分裂的功能。Western blot结果显示文昌鱼BbIGF-MP与不同时期原代肌肉细胞孵育后,能像重组人IGF-I一样在不同程度上促进MAPK和Akt的磷酸化,说明其通过这两条信号通路发挥作用。以上的研究进一步证实了文昌鱼BbIGF是功能上更接近IGF的insulin/IGF杂合多肽,而且其能够以和脊椎动物IGF-I相似的机制发挥功能。在脊椎动物中,IGFs尽管可以在多种组织中表达但其主要的合成部位仍是肝脏。肝脏是多种激素的重要的靶器官,而文昌鱼的肝盲囊一直被认为是脊椎动物肝脏的前体。我们的研究结果显示文昌色BbIGF与IGFs功能及作用机制的一致性,同时BbIGF在文昌鱼肝盲囊和后肠表达最为丰富,这进一步支持了文昌鱼肝盲囊是脊椎动物肝脏同源器官的推论,将GH/IGF轴进化的源头向前推进到了原始的脊索动物,也为进一步研究原索动物的GH/IGF轴铺平了道路。
Amphioxus or lancelet, a cephalochordate, has long been regarded as the living invertebrate most closely related to the proximate invertebrate ancestor of vertebrates. It is a well-known model organism widely used for interspecies comparative genome studies and developmental homology analysis. Here we obtain amphioxus plasminogen-like gene (BbPlgl) and report the characterization, expression, phylogenetic analysis and functional characterization of it. Moreover, in order to further demonstrate the origin of GH/IGF axis, we report the recombinant expression of the mature peptide of the amphioxus insulin-like growth factor gene (BbIGF) and functional characterization of it.
     In this study, we isolated a cDNA, designated BbPlgl, which was 1949 bp long with an opening reading frame (ORF) of 1290 bp, a 5'-untranslated region (UTR) of 123 bp and a 3'-UTR of 536 bp. The ORF of BbPlgl encoded a polypeptide of 430 amino acids with a calculated molecular weight of about 48 kDa. SignalP software analysis by the Signal IP 3.0 server revealed that BbPgl had a putative N-terminal signal peptide of 16 amino acids. There was a potential N-linked glycosylation site in BbPlgl located at the residual position 32. The BLASTp searching at NCBI shows that BbPlgl was characterized structurally by the presence of two kringle domains in the N-terminus and a serine protease domain in the C-terminus with a novel domain structure of K-K-SP. Phylogenetic analysis shows that kringles 1 and 2 of BbPlgl are grouped with two more ancient clusters, groupⅠand groupⅡ, respectively, and SP region of BbPlgl is positioned at the base of the subfamily containing Pig, HGF, MSP and APOA, suggesting that BbPlgl may represent the archetype of this subfamily members. Both the kringle domains K1 and K2 in BbPlgl comprised 79 amino acids, sharing an identity of 51.9% to each other. Moreover, the K1 and K2 in BbPlgl were both closely identical to Kl (43.0~58.2% and 41.8~51.9%), K2 (41.8~51.9% and 50.6~60.9%), K3 (49.4~57.0% and 51.9~63.3%), K4 (50.6~55.7% and 46.8~55.7%) and K5 (50.6-57.0% and 44.3~50.6%) of known Pigs. An expression vector including the entire ORF of BbPlgl and a 5'additional tag of pET28a was constructed and transformed into E. coli, which resulted in the original N-terminal Met in the recombinant protein replaced by Met-Gly-Ser-Ser-(His)6-Ser-Ser-Gly-Leu-Val-Pro-Arg-Gly-Ser-His-Met. The recombinant protein BbPlgl was purified by affinity chromatography on a Ni-NTA resin column. The purified recombinant BbPlgl with the His6 tag yielded a single band of approximately 48 kDa on SDS-PAGE gel after Coomassie blue staining. Western blotting showed that the mouse anti-human His-antibody (diluted 1:1000) reacted with the inclusion bodies of IPTG-induced E. coli BL21 with expression vector, forming a band of approximately 48 kDa on SDS-PAGE, corresponding to the molecular mass predicted by BbPlgl cDNA. The refolded BbPlgl was readily activated by human uPA and exhibited an enzymatic activity of 8.7 mU/mg protein. Besides, the catalytic activity was enhanced when the amount of the recombinant protein was increased while both human uPA and chromogenic substrate were in fixed quantities, showing that BbPlgl acts in a concentration-dependent manner. Moreover, the refolded BbPlgl was able to auto-activate at neutral and alkaline pH at 4℃without the addition of uPA, displaying an enzymatic activity of 6.5 mU/mg protein toward the chromogenic substrate (p<0.01). However, when human uPA was added, the activation was accelerated (p<0.05), indicating that human uPA can interact with BbPlgl, resulting in its activation. Northern blotting revealed the presence of an approximately 2000 bp transcript in B. belcheri. In situ hybridization histochemistry demonstrated that BbPlgl transcript was most abundant in the hepatic caecum and hind-gut, and at a lower level present in the gill and ovary, while it was absent in the muscle, neural tube, notochord and testis (Fig.8), implicating a tissue-specific expression pattern of BbPlgl in adult B. belcheri. This also suggests that in respect of Pig synthesis, the hepatic caecum in amphioxus is similar to the vertebrate liver, supporting the functional equivalence of amphioxus hepatic caecum to the vertebrate liver.
     In order to further discuss the functions and mechanisms of the BbIGF and demonstrate GH/IGF axis in amphioxus Branchiostoma belcheri, we constructed an expression vector including the cDNA coding for mature peptide of BbIGF and 5' additional tags of pET28a, then transformed into E. coli cells. The recombinant peptide was induced by IPTG, purified by affinity chromatography on a Ni-NTA resin column and characterized by MALDI TOF/TOF MS analysis. Meanwhile, we isolated the muscle cells from the new-borned Kunming mice and cultured for more than 10 days. The muscle lineage of the cells was demonstrated by the detection of Pax7, myoD and myogenin using RT-PCR. We employed the primary culture of the muscle cells as the in vitro model to reach the following aims:1) to identify if the BbIGF-MP had the abilities of binding to the cells and the partially purified IGF-I receptors as the human IGF-I does,2) to determine if the BbIGF-MP could act as a mitogen, stimulating the prliferation of the cells as the human IGF-I does, and 3) to identify components of the intracellular signaling cascades of BbIGF-MP and IGF-I in the muscle cells and to demonstrate their activation in response to both peptides throughout the in vitro growth and differentiation of muscle cells. The binding assay showed that the FITC-labeled BbIGF-MP could bind to the muscle cells as the human IGF-I does and the enzyme-linked immunosorbent assay (ELISA) confirmed its binding ability to the partially purified IGF-I receptors of mouse muscle and amphioxus as the human IGF-I. MTT Assay showed that BbIGF-MP could stimulate the proliferation of the mouse muscle cells at the concentration of 10 p.g/ml and acts in a concentration-dependent manner, displaying the mitogenic effect as the human IGF-I did. Western blotting revealed that the BbIGF-MP could activate different intracellular signal transduction pathways in mouse skeletal muscle cells depending on the stage of cell culture development as the human IGF-I does. In differentiating and proliferating myoblasts, both the MAPK and Akt pathways are activated by BbIGF-MP and human IGF-I, whereas in fully differentiated myotubes the effects of the peptides were lower than in myoblasts. Our study further confirmed BbIGF is functionally more related to IGF and acts in the similar mechanism to the human IGF-I. Vertebrate IGFs have been shown to be expressed in various tissues but, in all cases, liver is the primary organ producing IGFs. The liver is an important target organ of many hormones in the endocrine system and the hepatic caecum of the cephalochordate amphioxus has long been considered to be the precursor of vertebrate liver. Our results showed the similarity of the functions and mechanisms between BbIGF-MP and human IGF-I, moreover the BbIGF was specifically expressed in the hepatic caecum and hind-gut, further supporting the functional equivalence of amphioxus hepatic caecum to the vertebrate liver, pushing the evolutionary origin of GH/IGF axis to the primitive chordate. These also pave the way for further characterization of the GH/IGF axis in the protochordate.
引文
方永强,王龙.文昌鱼轮器哈氏窝匀浆对幼体蟾蜍睾丸发育的初步探讨.实验生物学报,1984,17:115-117
    方永强.文昌鱼生态习性及其资源的保护.动物学杂志,1987,22:41-45
    方永强.鱼类促性腺激素在文昌鱼哈氏窝免疫细胞化学定位.科学通报,1993,38(9):840-842
    方永强.文昌鱼在生殖内分泌进化中的地位.科学通报,1998,43(3):225-232
    方永强,周寿康,翁幼竹等.LHβ mRNA在文昌鱼脑和哈氏窝的定位及其表达.自然科学进展,2001,11:992-994
    方永强,翁幼竹,胡晓霞.文昌鱼内柱结构与功能及其神经内分泌调节.自然科学进展,2002,12(10):1090-1094
    王玢,左明雪.人体及动物生理学.高等教育出版社(第二版)北京,2001,300-301
    王磊,宿红艳,冯培勇,张士璀.文昌鱼与比较基因组学和分子发育.海洋湖沼通报,2005,4:84-91
    张殿昌.鱼类胰岛素样生长因子研究进展.上海水产大学学报,2005,4(1):66-71
    张士璀,袁金铎,李红岩.文昌鱼----研究脊椎动物起源和进化的模式动物.生命科学,2001,13(5):214-218
    张天荫.动物胚胎发育讲座(二):文昌鱼的胚胎发生.生物学通报,1994,29(8):25-27
    张致一,朱益陶,陈大元.促黄体素(LH)在文昌鱼哈氏窝中免疫细胞化学定位.科学通报,1982,27(15):946-947
    Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci,2000,57:1050-1093
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W Lipman DJ. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research,1997,25:3389-3402
    Atkin NB and Ohno S. DNA values of four primitive chordates. Chromosoma,1967,23:10-13
    Azuma H, Mima N, Shirakawa M, et al. Molecular pathogenesis of type I congenital plasminogen deficiency:expression of recombinant human mutant plasminogens in mammalian cells. Blood,1997,89:183-190
    Bachmann F. The plasminogen-plasmin enzyme system. In Hemostasis and Thrombosis:Basic Principles and Clinical Practice (Coleman, R. W., Hirsh, J., Marder, V. J.& Salzman, E. W., eds),3rd edit., J.B. Lippincott Co., Philadelphia,1994,1592-1622
    Bagley CJ, May BL, Szabo L, McNamara PJ, Ross M, Francis GL, et al. A key functional role for the insulin-like growth factor 1 Nterminal pentapeptide. Biochem J,1989,259:665-71
    Ballard FJ, Read LC, Francis GL, Bagley CJ, Wallace JC. Binding properties and biological potencies of insulin-like growth factors in L6 myoblasts. Biochem J,1986,233:223-230
    Barinka C, Parry G, Callahan J, et al. Structural basis of interaction between umkinase-type plasminogen activator and its receptor. J Mol Biol,2006,363(2):482-495
    Barrington EJW. The localization of organically bound to dine in the endostyle of Amphioxus. Mar Biol Ass UK,1958,37:117-126
    Bassas L, Lesniak MA, Serrano J, Roth J, de Pablo F. Developmental regulation of insulin and type I insulin-like growth factor receptors and absence of type II receptors in chicken embryo tissues. Diabetes,1988,37:637-644
    Bayne ML, Applebaum J, Chicchi GG, Miller RE, Cascieri MA. The roles of tyrosines 24,31, and 60 in the high affinity binding of insulinlike growth factor-I to the type 1 insulin-like growth factor receptor. J Biol Chem,1990,265:15648-52
    Belczewski AR, Laplaud PM, Chapman MJ and Koschinsky ML. The complete cDNA sequence encoding plasminogen from European hedgehog (Erinaceus europaeus). Gene,1996,171: 271-274
    Bodine SC et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol,2001,3:1014-1019
    Boveri DT. Uber die Bildungsstatte der Geschlechtdriisen und die Entstehung der Genitalkamem beim Amphioxus. Anat. Anz.1892,7:170-181
    Boyd JH, Chau EH, Tokunanga C, et al. Fibrinogen decreases cardiomyocyte contractility through an ICAM-1-dependent mechanism. Crit Care,2008,12(1):R2
    Brandt J, Andersen AS, Kristensen C. Dimeric fragment of the insulin receptor alpha-subunit binds insulin with full holoreceptor affinity. J Biol Chem,2001,276:12378-12384
    Brown J, Esnouf RM, Jones MA, Linnell J, Harlos K, Hassan AB, et al. Structure of a functional IGF2R fragment determined from the anomalous scattering of sulfur. EMBO J,2002,21: 1054-1062
    Bugge TH, Kombrinck KW, Flick MJ, et al. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell,1996,87:709-719
    Burland TG. DNASTAR's Lasergene sequence analysis software. Methods Mol Biol,2000,132: 71-91
    Calera MR, Martinez C, Liu H, El Jack AK, Birnbaum MJ, and Pilch PF. Insulin increases the association of Akt-2 with Glut4-containing vesicles. J Biol Chem,1998,273:7201-7204
    Canalis EJ. Clinical review 35 growth factors and their potential clinical value. Clin Endecrinol Metaabe,1992,75(1):1-4
    Canestro C, Albalat R, Hjelmqvist L, Godoy L, Jornvall H, Gonzalez-Duarte R. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution. Mol Evol,2002,54:81-89
    Cao C, Lawrence DA, Li Y, et al. Endocytic receptor LRP together with tPA and PA1-1 coordinates M ac-1-dependent macrophage migration. EMBJ,2006,25(9):1860-1870
    Cao Y, Ji RW, Davidson D, Schaller J, Marti D, Sohndel S, McCance SG, O'Reilly MS, Llinas M & Folkman J. Kringle domains of human angiostatin. J Biol Chem,1996,46:29461-29467
    Cao Y, O'Reilly MS, Marshall B, et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest,1998,101(5):1055-1063
    Cara JF, Mirmira RG, Nakagawa SH, Tager HS. An insulin-like growth factor I/insulin hybrid exhibiting high potency for interaction with the type I insulin-like growth factor and insulin receptors of placental plasma membranes. J Biol Chem,1990,265:17820-5
    Carrick FE, Wallace JC, Forbes BE. The interaction of insulin-like growth factors (IGFs) with insulin-like growth factor binding proteins (IGFBPs):a review. Lett Pept Sci,2001.8: 147-153
    Carter-Su C, Schwartz J, Smit LS. Molecular mechanism of growth hormone action. Annu Rev Physiol,1996,58:187-207
    Cascieri MA, Chicchi GG, Applebaum J, Green BG, Hayes NS, Bayne ML. Structural analogs of human insulin-like growth factor (IGF) I with altered affinity for type 2 IGF receptors. J Biol Chem,1989,264:2199-202
    Castellino FJ. A unique enzyme-protein substrate modifier reaction:plasmin/streptokinase interaction. Trends Biochem Sci,1979,4:1-5
    Cederholm-Williams SA. The binding of plasminogen (mol. wt.84000) and plasmin to fibrin. Thromb Res,1977,11:421-423
    Chang C, Chu Y, Chen D. Immunocyctochemical demonstration of luteinizing hormone (LH) in Hatschek's pit of amphioxus (Branchiostoma belcheri). Kexue Tongbao,1982,27: 1233-1234
    Chang CY, Liu YH, Zhu HH. The sex steroid hormones and their functional regulation in amphioxus(Branchiostoma belcheriGray). Proc 9th Internet Symp Comp Endocrinol,1981,9
    Chan SJ, Cao Q, Steiner DF. Evolution of the insulin superfamily:cloning of a hybrid insulin/insulin-like growth factor cDNA from amphioxus. Proceedings of the National Academy of Sciences of the United States of America,1990,87:9319-9323
    Chapman HA. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opin Cell Biol,1997,9:714-724
    Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W and Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Bio,2006,294:482-496
    Claeys H, Vermylen J. Physical-chemical and proenzyme properties of NH2-terminal glutamic acid and NH2-terminal lysine human plasminogens:Influence of 6-aminohexanoic acid. Biochim Biophys Acta,1974,342:351-359
    Clay LA, Wang SY, Wolters WR, Peterson BC, Waldbieser GC. Molecular characterization of the insulin-like growth factor-Ⅰ (IGF-Ⅰ) gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta,2005,1731:139-148
    Coleman JL, Gebbia JA, Piesman J, Degen JL, Bugge TH & Benah JL. Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell,1997,89:1111-1119
    Conklin EG. The development of isolated and partially separated blastomeres of amphioxus. J Exp Zool,1932,64(2):303-374
    Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signalling pathways. J Biol Chem,1997, 272:6653-6662
    Cotteril AM. The therapeutic potential of recombinant human insulin-like growth factor-1. Clin Endocrinol,1992,37(1):11-15
    Czekay RP, Loskutoff DJ. Unexpected role of plasminogen activator inhibitor 1 in cell adhesion and detachment. Exp Biol Med(Maywood),2004,229 (11):1090-1096
    Daughaday WH, Rotwein P. Insulin-like growth factors I and II Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations, Endocr Rev,1989,10:68-91
    Davidson CJ, Tuddenham EG and McVey JH.450 million years of hemostasis. J Thromb Haemost, 2003,1:1487-1494
    Davie EW, Fujikawa K, Kisiel W. The coagulation cascade:Initiation, maintenance, and regulation. Biochemistry,1991,30:10363-10370
    Davis GE, Pintar Allen KA, Salazar R, et al. Matrix metalloproteinase-1 and-9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci,2001, 114(Pt5):917-930
    Day RM, Cioce V, Breckenridge D, Castagnino P, Bottaro DP. Differential signaling by alternative HGF isoforms through c-Met:activation of both MAP kinase and PI 3-kinase pathways is insufficient for mitogenesis. Oncogene,1999,18:3399-3406
    DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor Ⅱ gene disrupted by targeting. Nature,1990,345: 78-80
    DeClerck YA, Imren S, Montgomery AM, Mueller BM, Reisfeld RA & Laug WE. Proteases and protease inhibitors in tumor progression. Advan Exp Med Biol,1997,425:89-97
    Degen SJ, Bell SM, Schaefer LA and Elliott RW. Characterization of the cDNA coding for mouse plasminogen and localization of the gene to mouse chromosome 17. Genomics,1990,8: 49-61
    Dehal P, Satou Y, Campbell R K, et al. The draft genome of Ciona intestinalis:insights into chordate and vertebrate origins. Science,2002,298:2157-2167
    De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors:implications for drug design. Nat Rev Drug Discov,2002,1:769-83
    Denley A, Bonython ER, BookerGW, Cosgrove LJ, Forbes BE,Ward CW, et al. Structural determinants for high-affinity binding of insulinlike growth factor 11 to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. Mol Endocrinol,2004,18:2502-12
    Denley A, Wang CC, McNeil KA, Walenkamp MJ, van Duyvenvoorde H, Wit JM, et al. Structural and functional characteristics of the Val44Met insulin-like growth factor I missense mutation: correlation with effects on growth and development. Mol Endocrinol,2005,19:711-721
    Devi GR, Byrd JC, Slentz DH, MacDonald RG An insulin-like growth factor Ⅱ (IGF-Ⅱ) affinity-enhancing domain localized within extracytoplasmic repeat 13 of the IGF-Ⅱ/mannose 6-phosphate receptor. Mol Endocrinol,1998,12:1661-1672
    De Vroede MA, Romanus JA, Standaert ML, Pollett RJ, Nissley SP, Rechler MM. Interaction of insulin-like growth factors with a nonfusing mouse muscle cell line:binding, action, and receptor down-regulation. Endocrinol,1984,114:1917-1929
    De Wolf E, Gill R, Geddes S, Pitts J, Wollmer A, Grotzinger J. Solution structure of a mini IGF-1. Protein Sci,1996,5:2193-202
    Doolittle RF, Jiang Y and Nand J. Genomic Evidence for a Simpler ClottingScheme in Jawless Vertebrates. J Mol Evol,2008,66:185-196
    Doolittle RF, Surgenor DM. Blood coagulation in fish. Am J Physiol,1962,203:964-970
    East E, Baker D, Pryce G, et al. A role for the plasminogen activator system in inflammation and neurode generation in the central nervous system during experimental allergic encephalomyelitis. Am J Pathol,2005,167(2):545-554
    Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-Ⅰ-stimulated myogenesis. J Cell Biol,1996,135:431-440
    Ewton DZ, Falen SL, Florini JR. The type Ⅱ insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs:pleiotypic actions of IGFs on myoblasts are apparently mediated by the type I receptor. Endocrinology,1987,120:115-123
    Ewton DZ, Roof SL, Magri KA, Mc Wade FJ, and Florini JR. IGF-II is more active than IGF-I in stimulating L6A1 myogenesis:greater mitogenic actions of IGF-I delay differentiation. J Cell Physiol,1994,161:277-284
    Fan C, Zhang S, Liu Z, Li L, Luan J and Saren G. Identification and expression of a novel class of glutathione-S-transferase from amphioxus Branchiostoma belcheri with implications to the origin of vertebrate liver. Int J Biochem Cell Biol,2007,39:450-461
    Fan C, Zhang S, Li L and Chao Y. Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity. Mol Immunol,2008,45(12):3338-46.
    Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev,2002,23:824-854
    Flick MJ, Du X, Witte DP, et al. Leukocyte engagement of fibrin(ogen)via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest,2004, 113(11):1596-1606
    Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev,1996,17:481-517
    Forsyth CB, Solovjov DA, Ugarova TP, et al. Integrin alpha(M)beta(2)-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med,2001,193 (10):1123-1133
    Franzen A. On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among invertebrates. Zool. Btdr. Uppsala,1956,31:355-482
    Fresriksson G, Ericaon LE, Olsson R. Iodine binding in the endostyle of larval Branchiostoma Lanceolatum. Gen Comp Endocrinol,1984,56:177-84
    Fruchtman S, Jackson L, Borski R. Insulin-like growth factor-I disparately regulates prolatin and growth hormone synthesis and secretion; studies using the teleost pituitary model, Endocrinology,2000,141:2886-2894
    Frystyk J. Free insulin-like growth factors measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res,2004,14:337-375
    Fujimoto S, Katsuki H, Ohnishi M, Takagi M, Kume T and Akaike A. Plasminogen potentiates thrombin cytotoxicity and contributes to pathology of intracerebral hemorrhage in rats. J Cereb Blood Flow Metab,2008,28:506-515
    Gans C, Kemp N, Poss S. The lancelets:A new look at some old beasts. Israel J Zoo,1996, 42(Supplement):1-446
    Garcia-Fernandez J, Holland PW. Amphioxus Hox genes:insights into evolution and development. The International journal of developmental biology,1996, Suppl 1:71S-72S
    Garmroudi F, MacDonald RG. Localization of the insulin-like growth factor Ⅱ (IGF-Ⅱ) binding/cross-linking site of the IGF-Ⅱ/mannose 6-phosphate receptor to extracellular repeats 10-11. J Biol Chem,1994,269:26944-26952
    Garrett TP, McKern NM, Lou M, Frenkel MJ, Bentley JD, Lovrecz GO, et al. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature,1998,394: 395-399
    Gilmour THJ. Feeding method of cephalochordate larvae. Israel. J. Zool. Suppl.1996,42:87-95
    Guo B, Zhang SC, Wang SH, Liang YJ. Expression, mitogenic activity and regulation by growth hormone of growth hormone/insulin-like growth factor in Branchiostoma belcheri. Cell Tissue Res,2009,338(1):67-77
    Gu X, Wang Y and Gu J. Age distribution of human gene families shows significant roles of both large and small scale duplications in vertebrate evolution. Nat Genet,2002,31:205-209
    Haeckel E. Naturliche Schopfungsgeschichte. Georg Reimer, Berlin.1868.
    Hammar JA. Zur Kenntnis der Leberentwicklung bei Amphioxus. Anat Anz,1898,14:602-606
    Han L, Zhang S, Wang Y, Sun X. Immunohistochemical localization of vitellogenin in the hepatic diverticulum of the amphioxus Branchiostoma belcheri tsingtauense, with implications for the origin of the liver. Invertebr Bio,2006,125:172-176
    Hashimoto R, Fujiwara H, Higashihashi N, Enjoh-Kimura T, Terasawa H, Fujita-Yamaguchi Y, et al. N-terminal deletion mutants of insulin-like growth factor-II (IGF-II) show Thr7 and Leu8 important for binding to insulin and IGF-I receptors and Leu8 critical for all IGF-II functions. J Biol Chem,1995,270:18013-8.
    He YN, Tang B, Zhang SC, Liu ZH, Zhao BS, Chen LL. Molecular and immunochemical demonstration of a novel member of Bf/C2 homolog in amphioxus Branchiostoma belcheri: Implications for involvement of hepatic cecum in acute phase response. Fish Shellfish Immun,2008,24(6):768-778
    Holland LZ, Holland PWH, Holland ND. Revealing homologies between body parts of distantly related animals by in situ hybridization to developmental genes:Amphioxus versus vertebrates. In Ferraris, J. D. (Eds.), Molecular Zoology:Advances, Strategies, and Protocols, Wiley-Liss, New York.1996,267-282
    Holland LZ, Holland ND. Chordate origins of the vertebrate central nervous system. Current Opinion in Neurobiology,1999,9:596-602
    Holland LZ, Laudet V, Schubert M. The chordate amphioxus:an emerging model organism for developmental biology. Cell Mol Life Sci,2004,61:2290-2308
    Holland PWH, Garcia-Fernandez J, Williams NA et al. Gene duplications and the origins of vertebrate development. Development,1994, Suppl:125-133
    Horrevoets A, Smilde A E, Fredenhurgh J C, et al. The activation-resistant conformation of recombinant human plasminogen is stabilized by basic residues in the amino-terminal hinge region. J Biol Chem,1995,270:15770-15776
    Huai Q, Mazar AP, Kuo A, et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science,2006,311(5761):656-659
    Hua QX, Shoelson SE, Kochoyan M, Weiss MA. Receptor binding redefined by a structural switch in a mutant human insulin. Nature,1991,354:238-41
    Hughes AL. Phylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol,1999,48:565-567
    Hughes AL. Modes of Evolution in the Protease and Kringle Domains of the Plasminogen-Prothrombin Family. Mol Phylogenet Evol,2000,14:469-478
    Ichinose A. Multiple Members of the Plasminogen-Apolipoprotein(a) Gene Family Associated with Thrombosis. Biochemistry,1992,31:3113-3118
    Ikeo K, Takahashi K, Gojobori T. Evolutionary origin of numerous kringles in human and simian apolpoprotein(a). FEBS Lett,1991,287:146-148
    Jackson CM, Nemerson Y. Blood coagulation. Annu Rev Biochem,1980,49:765-811
    Jamieson TA, Brizel DM, Killian JK, Oka Y, Jang HS, Fu X, et al. M6P/IGF2R loss of heterozygosity in head and neck cancer associated with poor patient prognosis. BMC Cancer, 2003,3:4
    Jansson M, Andersson G, Uhlen M, Nilsson B, Kordel J. The insulinlike growth factor (IGF)binding protein 1 binding epitope on IGF-Ⅰ probed by heteronuclear NMR spectroscopy and mutational analysis. J Biol Chem,1998,273:24701-7
    Jenkins GR, Seiffert D, Parmer RJ and Miles LA. Regulation of plasminogen gene expression by interleukin-6. Blood,1997,89:2394-2403
    Jones NC, Fedorov YV, Rosenthal S, Olwin BB. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol,2001,186: 104-115
    Kajimoto Y, Rotwein P. Structure and expression of a chicken insulin-like growth factor 1 precursor. Mol Endocrinol,1989,3:1907-1913
    Kajimoto Y, Rotwein P. Evolution of insulin-like growth factor I (IGF-I):structure and expression of an IGF-I precursor from Xenopus laevis. Mol Endocrinol,1990,4:217-226
    Kajimura S, Uchida K, Yada T, et al. Effects of insulin-like growth factors (IGF-I and IGF-II) on growth hormone and prolactin release and gene expression in euryhaline tilapia, Oreochromis mossambicus, Gen Comp Endocrinol,2002,127:223-231
    Kaliman P, Canicio J, Shepherd PR, Beeton CA, Testar X, Palacin M, and Zorzano A. Insulin-like growth factors require phosphatidylinositol 3-kinase to signal myogenesis:dominant negative p85 expression blocks differentiation of L6E9 muscle cells. Mol Endocrinol,1998,12:66-77
    Kasuga M, Karlsson FA, Kahn CR. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science,1982,215:185-187
    Kawauchi H, Suzuki K, Yamazaki T, Moriyama S, Nozaki M, Yamaguchi K, Takahashi A, Youson J, Sower SA. Identification of Growth Hormone in the Sea Lamprey, an Extant Representative of a Group of the Most Ancient Vertebrates. Endocrinology,2002,143: 4916-4921
    Kawauchi H, Sower SA. The dawn and evolution of hormones in the adenohypophysis. Gen Comp Endocrinol,2006,148:3-14
    Kelley KM, Schmidt KE, Berg L, Sak K, Galima MM, Gillespie C, Balogh L, Hawayek A, Reyes JA, Jamison M. Comparative endocrinology of the insulin-like growth factor-binding protein. J Endocrinol,2002,175:3-18
    Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev,2000,21:215-244
    Kida M, Wakabayashi S and Ichinose A. Expression and induction by IL-6 of the normal and variant genes for humanplasminogen. Biochem Biophys Res Commun,1997,230:129-132
    Kobayashi M, Takata Y, Ishibashi O, Sasaoka T, Iwasaki TM, Shigeta Y, et al. Receptor binding and negative cooperativity of a mutant insulin, [LeuA3]-insulin. Biochem Biophys Res Commun,1986,137:250-257
    Kortschak RD, Samuel G, Saint R, et al. EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol, 2003,13:2190-2195
    Kozak M An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res,1987,15:8125-8148
    Kozmik Z, Holland ND, et al. Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structure, and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. Development, 1999,126:1295-1304
    Laron Z. Somatomedin, insulin, growth hormone and growth:a review. Isr J Med Sci,1982,18: 823-829
    Laron Z. Laron syndrome (primary growth hormone resistance or insensitivity):the personal experience. J Clin Endocrinol Metab,2004,89:1031-1044
    Lawlor M, Feng X, Everding DR, Sieger K, Stewart CE, Rothwein P. Dual control of muscle cell survival by distinct growth factor regulated signaling pathways. Mol Cell Biol,2000,20: 3256-3265
    Lawn RM, Schwartz K and Patthy L. Convergent evolution of apolipoprotein(a) in primates and hedgehog. PNAS,1997,94:11992-11997
    Legros R. Development de la cavite buccale de I'Amphioxus contribution a I'etude de la morphologie delatete,Ⅱ Developpement de la cavite definitive et du velum, Ⅲ. Considerations generales. Arch Anat Microse,1898, (2):1-43
    Leibush BN, Lappova YL, Bondareva VM, Chistyacova OV,Gutierrez J, Plisetskaya EM. Insulin-family peptidereceptor interaction at the early stage of vertebrate evolution. Comp Biochem Physiol [B] Biochem Mol Biol,1998,121:57-63
    Leshem Y, Gitelman I, Ponzetto C, and Halevy O. Preferential binding of Grb2 or phosphatidylinositol 3-kinase to the met receptor has opposite effects on HGF-induced myoblast proliferation. Exp Cell Res,2002,274:288-298
    Liang Y, Zhang S, Lun L, Han L. Presence and localization of antithrombin and its regulation after acute lipopolysaccharide exposure in amphioxus, with implications for the origin of vertebrate liver. Cell and Tissue Research,2006,323:537-541
    Liang Y, Zhang S. Demonstration of plasminogen-like protein in amphioxus with implications for the origin of vertebrate liver. Acta Zoologica,2006,87(2):141-145
    Li C. Human growth hormone:1974-1981. Mol Cell Biochem,1982,46:31-4]
    Li CH, Yamashiro D, Gospodarowicz D, Kaplan SL, Van Vliet G. Total synthesis of insulin-like growth factor 1 (somatomedin C). Proc Nat Acad Sci,1983,80:2216-2220
    Lijnen HR, Collen D. Molecular and cellular basis of fibrinolysis. In:Hoffman R, Benz EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P, editors. Hematology:basic principles and practice,4th edition. Philadelphia:Elsevier.2005:1955-1959
    Linde V, Nielsen LS, Foster DC, et al. Elimination of the Cys558-Cys556 bond in Lys78-plasminogen, effect on activation and fibrin interaction. Eur J Biochem,1998,251: 472-479
    Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igflr). Cell,1993, 75:59-72
    Liu MY, Zhang SC. A kringle-containing protease with plasminogen-like activity in the basal chordate Branchiostoma belcheri. Biosci Rep,2009,29(6):385-395
    Longstaff C, Thelwell C. Understanding the enzymology of fibrinolysis and improving thrombolytic therapy. FEBS Lett,2005,579:3303-3309
    Madison EL, Goldsmith EJ, Gerard RD, Gething MJH & Sambrook JF. Serpin-resistant mutants of human tissue-type plasminogen activator. Nature,1989,339:721-724
    Martin AM, Kuhlmann C, Trossbach S, et al. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors..J Biol Chem,2008,283(18):12004-12013
    Marshall JM, Brown AJ, Ponting CP. Conformational studies of human plasminogen and plasminogen fragments:Evidence for a novel third conformation of plasminogen. Biochemistry,1994,33:3599-3606
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol,1961,9:493-495
    McCance SG, Castellino FJ. Contributions of individual kringle domains toward maintenance of the chloride-induced tight conformation of human glutamic acid-I plasminogen. Biochemistry, 1995,34:9581-9586
    Medynski D, Tuan M, Liu W, Wu S and Lin X. Refolding, purification, and activation of miniplasminogen and microplasminogen isolated from E. coli inclusion bodies. Protein Expr Purif,2007,52:395-402
    Melchor JP, Strickland S. Tissue plasminogen activator in central nervous system physiology and pathology [J]. Thromb Haemost,2005,93(4):655-660
    Menhart N, Hoover GJ, McCance SG, Castellino FJ.. Roles of individual kringle domains in the functioning of positive and negative effectors of human plasminogen activation. Biochemistry,1995,34:1482-1488
    Meroni G, Buraggi G, Mantovani R and Taramelli R. Motifs resembling hepatocyte nuclear factor 1 and activator protein 3 mediate the tissue specificity of the human plasminogen gene. Eur J Biochem,1996,236:373-82
    Mignatti P & Rifkin DB. Plasminogen activators and matrix metalloproteinases in angiogenesis. Enzyme Protein,1996,49:117-137
    Monaco F, Dominici R, Andreoli M, De Pirro R, Roche J. Thyroid homone fomation in thyroglobulin synthesized in the amphioxus (Branchiostoma lanceolatum Pallas). Comp Biochem Physiol,1981,70B:341-343
    Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, et al. Insulin-like growth factor Ⅱ receptor as a multifunctional binding protein. Nature,1987,329:301-307
    Moss FP and LeBlond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec,1971,170:421-424
    Muller J. Ueber den Bau und die Lebenserscheinungen des Branchiostoma lubricum Costa, Amphioxus Lanceolatus. Yarrell Abh K Preuss Akad Wiss Berl,1884,1844:79-116
    Muller W. Uber die hypobranchialrinne der tunicaten und deren vorhandersein bei amphioxus and den cyklostomen. Jena. Z. Med. Nature,1873,7:327-332
    Murphy G, Stanton H, Cowell S, Knauper V, Atkinson S & Gavrilovic J. Mechanisms for pro matric metalloproteinase activation. APMIS,1999,107:38-44
    Musaro A and Rosenthal N. The role of local insulin-like growth factor-1 isoforms in the pathophysiology of skeletal muscle. Curr Genomics,2002,3:149-162
    Nicholl SM, Roztocil E, Davies MG. Plasminogen activator system and vascular disease. Curr Vasc Pharmacol,2006,4(2):101-116
    Nielsen H, Engelbrecht J, Brunak S and von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng,1997,10:1-6
    Nieuwkoop PD & Sutasurya LA. Primoridal Germ Cells in the Chordates:Embryogenesis and Phylogenesis. Cambridge Univ. Press, Cambridge,1979
    Nozaki M, Gorbman A. The question of functional homology of Hatschek's pit of amphioxus (Branchiostoma belcheri) and the vertebrate adenohypophysis. Zool Sci,1992,9:387-395
    Ohno S. Evolution by Gene Duplication[M]. Berlin:Springer-Verlag,1970
    Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol,2004,27:219-240 Rev
    O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin:A novel angiogenesis inhibitor that mediates the supp ression of metastases by Lewis lung carcinoma. cell,1994,79(2):315-328
    Pannekoek H, Veerman H, Lambers H, et al. Endothelial plasminogen activator inhibitor(PAI):a new member of the Serpin gene family. EMBO J,1986,5(10):2539-2544
    Parker MH, et al. Looking back to the embryo:defining transcriptional networks in adult myogenesis. Nat Rev Genet,2003,4:497-507
    Pashmforoush M, Chan SJ, SteinerDF. Structure and expression of theinsulin-like peptide receptor from amphioxus. Mol Endocrinol,1997,10:857-866
    Patterson BC, Sang QA. Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type Ⅳ collagenase (MMP-9). J Biol Chem,1997,272:28823-28825
    Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis. Cell,1985,41:657-663
    Patruno M, Maccatrozzo L, Funkenstein B, Radaelli G. Cloning and expression of insulin-like growth factors Ⅰand Ⅱ in the shidrum (Umbrinacirrosa). Comp Biochem Physiol [B] Biochem Mol Biol,2006,144:137-151
    Pavelic J, Matijevic T, Knezevic J. Biological and physiological aspects of action of insulin-like growth factor peptide family. Indian J Med Res,2007,125:511-522
    Pennica D, Holmes WE, Kohr WJ, Harkins RN, Vehar GA, Ward CA, Bennett WF, Yelverton E, Seeburg PH, Heyneker HL, Goeddel DV and Collen D. Cloning and expression of human tissue-type plasminogen activator in E. coli. Nature,1983,301:214-221
    Petersen TE, Martzen MR, Ichinose A and Davie EW. Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem,1990,265: 6104-6111
    Plesner T, Behrendt N, Ploug M. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR [J]. Stem Cells,1997,15(6): 398-408
    Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer,2004,4:505-518
    Ponting CP, Holland SK, Cederholm-Williams SA, Marshall JM, Brown AJ, Spraggon G, Blake CCF. The compact domain conformation of human Glu-plasminogen in solution. Biochim Biophys Actu,1992a,1159:155-161
    Ponting CP, Marshall JM, Cederholm-Williams SA. Plasminogen:A review. Blood Coag Fibrinolysis,1992b,3:605-614
    Pozios KC, Ding J, Degger B, Upton Z, Duan CM. IGFs stimulate zebrafish cell proliferation by activating MAP kinase and PI3-kinase-signaling pathways. Am J Physiol Regulatory Integrative Comp Physiol,2001,280:R1230-R1239
    Quinn LS, Haugk KL. Overexpression of the type-1 insulin like growth factor receptor increases ligand-dependent proliferation and differentiation in bovine skeletal myogenic cultures. J Cell Physiol,1996,168:34-41
    Raum D, Marcus D, Alper CA, Levey R., Taylor PD and Starzl TE. Synthesis of human plasminogen by the liver. Science,1980,208:1036-1037
    Rijken DC, Sakharov DV. Basic principles in thrombolysis:Regulatory role of plasminogen. Thromb Res,2001,103:S41-S49
    Rinderknecht E, Humbel RE. Amino-terminal sequences of two polypeptides from human serum with nonsuppressible insulin-like and cell-growth-promoting activities:Evidence for structural homology with insulin B chain. Proc Natl Acad Sci USA,1976,73:4379-4381
    Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem,1978,253:2769-2776
    Rommel C et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol,2001,3:1009-1013
    Rosenthal SM and Cheng ZQ. Opposing early and late effects of insulin-like growth factor Ⅰ on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci USA,1995,92:10307-10311
    Roth BV, Burgisser DM, Luthi C, Humbel RE. Mutants of human insulin-like growth factor Ⅱ: expression and characterization of analogs with a substitution of TYR27 and/or a deletion of residues 62-67. Biochem Biophys Res Commun,1991,181:907-914
    Rubin JB, Shia MA, Pilch PF. Stimulation of tyrosine-specific phosphorylation in vitro by insulin-like growth factor I. Nature,1983,305:438-440
    Ruppert EE. Cephalochordata (Acrania). In Harrison, F. W.& Ruppert, E. E. (Eds.), Microscopic anatomy of invertebrates. Wiley, New York,1997.15:349-504
    Saito H, Hamilton SM, Tavill AS, Louis L and Ratnoff OD. Production and release of plasminogen by isolated perfused rat liver. Proc Natl Acad Sci,1980,77:6837-6840
    Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al. The design, expression, and characterization of human insulin-like growth factor Ⅱ (IGF-Ⅱ) mutants specific for either the IGF-Ⅱ/cation-independent mannose 6-phosphate receptor or IGF-I receptor. J Biol Chem,1991,266:20626-20635
    Sandri M et al. Foxo transcription factors induce the atrophyrelated ubiquitin ligase atrogin-I and cause skeletal muscle atrophy. Cell,2004,117:399-412
    Sarrias MR, Farnos M, Mota R, Sanchez-Barbero F, Ibanez A, Gimferrer I, Vera J, Fenutria R, Casals C, Yelamos J, Lozano F. CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc Nat Acad Sci USA,2007,104:11724-11729
    Sato J, Sehorey J, Ploplis VA, et al. The fibrinolytic system in dissemination and matrix protein deposition during a mycobacterium infection [J]. Am J Pathol,2003,163(2):517-531
    Schaffer ML, Deshayes K, Nakamura G, Sidhu S, Skelton NJ. Complex with a phage display-derived peptide provides insight into the function of insulin-like growth factor I. Biochemistry,2003,42:9324-9334
    Schmid AC, Esther N, Kloas W, et al. Insulin-like growth factor-Ⅰ and-Ⅱ in the ovary of a bony fish, Oreochromis mossambicus, the tilapia:in situ hybridization, immunohistochemical localization, Northern blot and cDNA sequences. Mol Cell Endocrinol,1999,156:141-149
    Schroeder DL, Nielsen SS and Hayes KD. The effect of raw milk storage temperature on plasmin activity and plasminogen activation in pasteurized milk. Int. Dairy J,2008,18:114-119
    Schumacher R, Mosthaf L, Schlessinger J, Brandenburg D, Ullrich A. Insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors. J Biol Chem,1991,266:19288-19295
    Scott CD, Firth SM. The role of the M6P/IGF-Ⅱ receptor in cancer:tumor suppression or garbage disposal? Horm Metab Res,2004,36:261-271
    Seale P, et al. Pax7 is required for the specification of myogenic satellite cells. Cell,2000,102: 777-786
    Sembrat K. Effect of the endostyle of the lancelet (Branchiostoma lanceolatum) on the metamorphosis of axolotl. Zool Polon,1953,6:3-19
    Sherwood NM, McRory JE. Ancient divergence of insulin and insulin-like growth factor. DNA Cell Biol,1997,16:939-949
    Sherwood NM, Tello JA, Roch GJ. Neuroendocrinology of protochordates:Insights from Ciona genomics. Comp Biochem Physiol A Mol Integr Physiol,2006,144:254-271
    Shimizu M, Webster C, Morgan DO, Blau HM, Roth RA. Insulin and insulin-like growth factor receptors and responses in cultured human muscle cells. Am J Physiol,1986,251: E611-E615
    Shooter GK, Magee B, Soos MA, Francis GL, Siddle K,Wallace JC. Insulin-like growth factor (IGF)-Ⅰ A-and B-domain analogues with altered type 1 IGF and insulin receptor binding specificities. J Mol Endocrinol,1996,17:237-246
    Sim BK, O'Reilly MS, Liang H, Fortier AH, He W, Madsen JW, Lapcevich R, Nacy CA. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res,1997,57:1329-1334
    Sitrin RG, Pan PM, Harper HA, et al. Clustering of urokinase receptors (uPAR; CD87) induces proinflammatory signaling in human polymorpho-nuelear neutrophils [J]. J Immunol,2000, 165(6):3341-3349
    Siwanowicz I, Popowicz GM, Wisniewska M, Huber R, Kuenkele KP, Lang K, et al. Structural basis for the regulation of insulin-like growth factors by IGF binding proteins. Structure, 2005,13:155-167
    Smiley ST, King JA, Hancock ww. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor [J]. J Immunol,2001,167(5):2887-2894
    Sorensen H, Whittaker L, Hinrichsen J, Groth A, Whittaker J. Mapping of the insulin-like growth factor Ⅱ binding site of the Type Ⅰ insulin-like growth factor receptor by alanine scanning mutagenesis. FEBS Lett,2004,565:19-22
    Sowdhamini R, Ramakrishnan C, Balaram P. Modelling multiple dlsulfide loop containing polypeptides by random conformation generation. The test cases of a-conotoxin GI and endothelin 1. Protein Eng,1993,65373-65882
    Stitt TN et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell,2004,14:395-403
    Stockdale FE and Holtzer H. DNA synthesis and myogenesis. Exp Cell Res,1961,24:508-520
    Strokes MD, Holland ND. The lancelet:also known as'amphioxus,'this curious creature has returned to the limelight as a player in the phylogenetic history of the vertebrates. American Scientist,1998,86:552-560
    Tattersall WM. Notes on the classification and geographical distribution of the Cephaloehordata. Tram Liverpool Biol Soc,1903,17:269-302
    Terasawa H, Kohda D, Hatanaka H, Nagata K, Higashihashi N, Fujiwara H, et al. Solution structure of human insulin-like growth factor Ⅱ:recognition sites for receptors and binding proteins. EMBO J,1994,13:5590-5597
    Thomas I M. The accumulation of radioactive iodine by amphioxus. J Mar Biol Ass UK 1956,35: 203-210.
    Thorsen S. The mechanism of plasminogen activation and the variability of the fibrin effector during tissue-type plasminogen activator mediated fibrinolysis. Ann. NY Acad Sci,1992,667: 52-63
    Tjoy LT, Welsch U. Electron microscopical observations on Kolhker's an d Hatschek's pit on the wheel organ in the head region of amphioxus (Branchiostoma lanceolatum). Cell Tissue Res, 1974,153(3):175-187
    Trieu T, Behnke D, Gerlach D & Tang J. Activation of human plasminogen by recombinant staphylokinase. Methods Enzymol,1993,223:156-167
    Tsafriri A. Ovulation as a tissue remodeling process. Proteolysis and cumulus expansion. Advan.Exp. Med Biol,1995,377:121-140
    Tung TC, Wu SC, Tung YYF. The development of isolated blastomeres of amphioxus. Sci Sin, 1958,7(12):1280-319
    Tung TC, Wu SC, Tung YYF. The developmental potencies of the blastomere layers in amphioxus egges at the 32-cell stage.Sci.Sin,] 959,9:119—41
    Tung TC, Wu SC, Tung YYF. Rotation of the animal blastomeres in amphioxus eggs at the 8-cell stage. Sci Record New Ser,1960,4:389-394
    Tung TC, Wu SC, Tung YYF. The presumptive area of the egg of arnphioxus. Sci Sin,1963,11: 82-90
    van Zonneveld AJ, Veerman H and Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. J Biol Chem,1986,261:14214-14218
    Venkatesh TV, Holland ND, Holland LZ, Su MT, Bodmer R. Sequence and developmental expression of AmphiNk2-1:Insights into the evolution origin of the vertebrate thyroid gland and forebrain. Dev Genes Evol,1999,209:254-259
    Wada H, Satoh N. Details of the evolutionary history from invertebrates, as deduced from the sequences of 18 S rDNA.Proc Natl Acad Sci USA,1994,91:1801-1804
    Walenkamp MJ, Karperien M, Pereira A, Hilhorst-Hofstee Y, van Doom J, Chen JW, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab,2005,90:2855-2864
    Walther PJ, Steinman HM, Hill RL, McKee PA. Activation of plasminogen by urokinase:Partial characterization of a pre-activation peptide. J Bid Chem,1974,249:1173-1181
    Wang XQ, Lin XL, Loy JA, Tang J & Zhang X. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science,1998,281:1662-1665
    Wang X, Terzyan S, Tang J, Loy JA, Lin X. and Zhang XC. Human Plasminogen Catalytic Domain Undergoes an unusual Conformational Change upon Activation. J Mol Biol,2000, 295:903-914
    Weide I, Romisch J & Simmet T. Contact activation triggers stimulation of the monocyte 5-lipoxygenase pathway via plasmin. Blood,1994,83:1941-1945
    Welsch U. The fine structure of the pharynx, cyrtopodocytes and digestive caecum of Amphioxus (Branchiostoma lanceolatum). Symposium of the Zoological Society, London,1975,36: 17-41
    Westlund B, Dahms NM, Kornfeld S. The bovine mannose 6-phosphate/insulin-like growth factor II receptor. Localization of mannose 6-phosphate binding sites to domains 1-3 and 7-11 of the extracytoplasmic region. J Biol Chem,1991,266:23233-23239
    Whitaker AN, Rowe EA, Masci PP, Joe F and Gaffney PJ. The binding of glu-and lys-plasminogens to fibrin and their subsequent effects on fibrinolysis. Thromb Res,1980,19: 381-391
    Wiman B. Primary structure of peptides released during activation of human plasminogen by urokinase. Icur J Biochem,1973,39:1-9
    Winn N. et al. Insulin-like growth factor isoforms in skeletal muscle aging, regeneration, and disease. Cold Spring Harb Symp Quant Biol,2002,67:507-518
    Yepes M, Lawrence DA. Neuroserpin:a selective inhibitor of tissue-type plasminogen activator in the central nervous system [J]. Thromb Haemost,2004,91(3):457-464
    Yuan J, Zhang S, Liu Z, Luan Z, Hu G. Cloning and phylogenetic analysis of an amphioxus myogenic bHLH gene AmphiMDF. Biochemical and Biophysical Research Communications, 2003,301:960-967
    Zhang L, Seiffert D, Fowler BJ, Jenkins GR, Thinnes TC, Loskutoff DJ, Parmer RJ and Miles LA. Plasminogen has a broad extrahepatic distribution. Thromb Haemostasis,2002,87:493-501
    Zhang W, Gustafson TA, Rutter WJ, Johnson JD. Positively charged side chains in the insulin-like growth factor-1 C-and D-regions determine receptor binding specificity. J Biol Chem,1994, 269:10609-10613
    Zou Y, He L, Huang SH. Identification of a surface protein on human brain microvascular endothelial cells as vimentin interacting with Escherichia coli invasion protein IbeA. Biochem Bioph Res Co,2006,351:625-630

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700