睾丸高表达基因Fank1和RSB66的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物的精子发生是由精原细胞增殖分化最终形成精子的复杂而有序的过程,历经有丝分裂、减数分裂和变形三个阶段。在精子发生的每一个过程中都需要维持细胞增殖、细胞分化和细胞凋亡的精密平衡,而这些生命活动是由众多时间和空间特异性基因的转录和表达来精确调控的。因此,揭示睾丸高表达蛋白质的功能特征,对阐明精子发生的分子机制具有十分重要的意义。本研究对睾丸高表达蛋白质Fank1和RSB-66的表达特征和功能进行了初步研究。
     1.睾丸特异表达蛋白质Fank1的功能研究
     Fank1基因是我室根据NCBI数据库中的一个人睾丸特异性EST,通过电子克隆的方法获得的具有完整读码框的一个新基因。其开放阅读框编码330个氨基酸的蛋白质,氨基端是一个FN3结构域,羧基端由六个ANK结构域组成。Northern blot、RT-PCR和Western blotting分析结果表明Fank1特异表达于睾丸组织。
     以Fank1全长序列作为诱饵,筛选人胎脑cDNA表达文库,最终得到6条不同的基因序列,其中一个是JAB1。我们在体外和体内两种体系中确证了Fank1和JAB1的相互作用。首先,利用原核表达系统表达和纯化了融合蛋白GST-Fank1以及GST-FN3,与等量的HEK 293T细胞抽提液进行孵育后进行GST pulldown实验,结果发现细胞内源的JAB1蛋白质与GST-Fank1和GST-FN3能够同时被沉淀。同时我们将V5-JAB1和Flag-Fank1、Flag-FN3、Flag-ANK的表达质粒分别共同转染HEK293T细胞,用抗Flag的抗体进行沉淀,结果显示过表达的Fank1能与JAB1蛋白质相结合,FN3结构域和ANK结构域也能与JAB1相互作用。此外我们应用细胞免疫荧光的方法证明过表的JAB1与Fank1在空间上有共同的定位。
     为研究Fank1的功能,我们构建了pEGFP-N1-Fankl/CHO稳定细胞株和对照pEGFP-N1/CHO稳定细胞株。利用Mercury系统检测Fank1对细胞信号通路的影响,发现Fank1可以明显激活HSE和AP-1信号通路。已知JAB1参与AP-1信号通路的调节,我们通过双荧光素酶报告基因分析的方法验证Fank1在AP-1信号通路中的作用,结果发现加入Fank1可以明显增加AP-1的转录活性,并且其转录活性随着Fank1剂量的增加而增加。同时也证明了Fank1的两个结构域FN3和ANK也可以增加AP-1活性,但与Fank1全长相比,它们的激活作用较弱。通过小RNA干扰技术将JAB1有效干扰后,Fank1激活AP-1转录活性的能力明显下降,这说明Fankl对AP-1转录活性的激活是依赖JAB1的。为了了解Fank1激活AP-1信号通路的可能机制,我们检测了Fank1对c-Jun在细胞中的分布和活化水平。实验发现,Fank1可以增加c-Jun在细胞核内的聚集以及可以增加c-Jun的磷酸化水平,而过表达Fank1并没有引起JNK和磷酸化的JNK变化,说明c-Jun磷酸化水平的增加不是依赖于JNK的磷酸化增加。当JAB1被小RNA干扰后,细胞核内的c-Jun以及c-Jun的磷酸化水平都明显降低,说明JAB1对于介导Fankl调节AP-1活性是必要的。进一步应用电泳迁移率实验(EMSA)证实,与对照组相比,过表Fank1可以增加AP-1的DNA结合能力,增加其转录活性。
     AP-1在细胞凋亡中发挥重要作用,为了研究Fank1激活AP-1信号通路对细胞凋亡的影响,我们构建了过表Fank1的HeLa稳定细胞和对照HeLa细胞。在40J/m2的UV照射过表Fank1的HeLa细胞和对照HeLa细胞后,流式细胞术检测发现照射3小时以后两组细胞均有凋亡发生,与对照组相比,过表Fank1组在不同时间所发生的细胞凋亡数比对照组明显减少。同时发现在UV刺激后的不同时间点与对照组比较,c-Jun和磷酸化的c-Jun都有明显增加,但JNK和磷酸化的JNK并没有变化,而JAB1在两组细胞不同时间点之间没有变化。检测中发现具有抗凋亡作用的AP-1的靶基因Bcl-3表达升高,说明Fank1通过Bcl-3途径发挥抗凋亡作用。为了验证这种作用,我们通过RNA干扰JAB1后发现,Fank1发挥的这种抗凋亡作用可以被逆转。
     最后我们发现小鼠睾丸组织中有Bcl-3的表达,而文献报告c-Jun和JAB1在睾丸中均有表达。这样上述体细胞的实验结果就进一步提示,Fank1在精子发生的减数分裂和变形阶段可能也通过Bcl-3发挥抗凋亡作用。
     2、睾丸高表达蛋白质RSB66的功能研究
     RSB66基因是我们从RSB文库分离到的一条新基因,Northern blot显示RSB66只在大鼠睾丸中特异性表达。通过酵母双杂交、细胞内免疫共沉淀和GST pull down已经证实RSB66和INCA1 (Inhibitor of Cdk interacting with Cyclin A1)可以相互作用。为了研究RSB66的功能,我们利用原核表达系统分别对小鼠源的RSB66、INCA1和RSB66的人源的同源蛋白质C9orf9和INCA1进行原核表达,期望能够获得RSB66/INCA1复合物的晶体结构,对RSB66的功能进行提示。通过优化表达条件,我们获得了RSB66的可溶性表达并且得到纯的蛋白质,为晶体的生长奠定基础;但INCA1只能以GST-INCAl的融合形式在Rossetta感受态细胞中进行表达,并且以包涵体的形式出现,这为晶体的生长带来不便。我们试图利用双表达载体RSFDuet-1同时表达这两个蛋白质,以益于形成复合物。但经过多种条件的摸索均未成功,致使从晶体结构提示蛋白质功能的探索暂时终止
     鉴于c9orf9与肿瘤的发生有关,我们应用荧光定量PCR技术检测了良性前列腺增生组织与前列腺癌组织中c9orf9的表达以及不同乳腺癌细胞系中c9orf9的表达差异。结果发现,前列腺癌组织中c9orf9 mRNA含量明显低于良性前列腺增生组织。同时发现c9orf9在正常肾细胞中表达,而在肾癌细胞系中均未检测到表达,这一结果提示c9orf9可能作为一种候选的抑癌基因在前列腺癌的发生发展中发挥作用,而在多种乳腺癌细胞系中只有HCC38中c9orf9高表达。我们还筛选出针对c9orf9的有效RNA干扰靶点,这就为采用此靶点对c9orf9高表达的HCC38乳腺癌细胞进行表达干扰,进而研究c9orf9的功能奠定了基础。同时我们构建并筛选出稳定表达c9orf9的HeLa稳定细胞株,并通过双胸苷同步化的方法对过表c9orf9的HeLa稳定细胞进行细胞周期研究,发现过表c9orf9可以明显延迟G1/S期进程。
     最后我们筛选出可以有效干扰RSB66的干扰靶点,成功构建并筛选出RSB66RNA干扰的稳定GC-1细胞克隆,为利用我组建立的小鼠睾丸曲细精管显微注射平台对其在动物水平进行功能探索奠定了基础。
Spermatogenesis is a complex developmental process including mitosis of spermatogonial stem cells, meiosis of spermatocytes and spermiogenesis. Many testis highly expressed genes involve in the regulation of spermatogenesis, such as cell proliferation, cell differentiation and cell apoptosis. Therefore, identification and characterization of these genes is of great value to delineate the mechanism of spermatogenesis. In the present study, we show some primary results from exploring the expression and function of Fankl and RSB66 in mammalian spermatogenesis.
     1. The functional study of testis highly expressed protein, Fankl
     Fankl is a novel gene obtained from a human testis-specific EST by in silicon cloning. Fankl encodes a 330-amino-acid consisted protein which contains a fibronectin type III domain in N-terminal and six ankyrin repeats in C-terminal. The result of Northern blot, RT-PCR and Western blotting showed that Fankl is expressed highly in testis.
     Using yeast two-hybrid system with the Fankl full length gene as bait to screen the human fetus brain expression library, six potential interaction proteins with Fankl were obtained. One nucleotide sequence among these clones was JAB1. In vitro and in vivo systems had been used to comfirm the interaction between Fankl and JAB1. GST-Fank1 and GST-FN3 fusion protein had been expressed in E coli cells, and purified by affinity chromatography. GST pull-down assay was performed by incubating GST-Fankl and GST-FN3 fusion protein or GST with HEK 293T cell lysate. The results showed that endogenous JAB1 protein can be co-precipitated with GST-Fankl and GST-FN3 using Glutathione Sepharose 4B agarose, but not with GST alone. To further examine whether Fankl and FN3, ANK domain can interact with JAB1 in physiological condition, pcDNA6-HisB-V5-JAB1 and p3xFlag-CMV-14-Fankl, p3xFlag-CMV-14-FN3, p3xFlag-CMV-14-ANK plasmids were co-transfected into HEK 293T cells. Lysates of transfected cells had been immunoprecipitated by anti-Flag and anti-V5 antibody respectively. The results showed that overexpressed Fankl protein could interact with JAB1 in vivo, moreover, we found FN3 domain strongly interacted with JAB1, while the ANK domain only exhibited a slight interaction with JAB1. Besides, we showed overexpressed Fank1 and JAB1 co-localised to both the cytoplasm and nucleus in MCF-7 cells and HEK 293T cells using immunocytochemistry and confocal microscopy.
     To study the function of Fank1, we constructed pEGFP-N1-Fank1/CHO and pEGFP-N1/CHO stable cell lines. Using CLONTECH's Mercury pathway profiling SEAP system, we found Fank1 overexpression significantly activated the HSE and AP-1 signalling pathways. Because JAB1 has been reported to activate an AP-1-dependent promoter and our results showed that Fank1 could interact with JAB1. we used dual luciferase reporter gene assay to testify the effect of Fank1 on AP-1 transcriptional activity. HEK 293T cells were transfected with an AP-1 promoter-driven luciferase reporter gene in the presence of c-Jun, JAB1 and Fank1. The results indicated that Fank1 overexpression increased the relative activation levels of the AP-1 reporter and Fank1 enhanced AP-1 activity in a concentration-dependent manner. In addition, we found that either the FN3 domain or ankyrin repeats of Fank1 could increase AP-1 activity, but full-length Fank1 enhanced this activity more than either domain alone. Furthermore, we found knockdown of JAB1 inhibited the Fank1-dependent activation of the AP-1 reporter gene. Taken together, these results suggested that Fank1 could activate the AP-1 pathway and that JAB1 is involved in Fank1-mediated activation of AP-1.
     To further define the mechanism of AP-1 activation by Fank1, the distribution and phosphorylation status of endogenous c-Jun was examined. HEK 293T cells were transfected with Flag-tagged Fank1 or with a control expression vector. Cytoplasmic and nuclear proteins were isolated and analysed by Western blotting. We found Fank1 increased c-Jun expression in the nucleus and Phosphorylation of both Ser-63 and Ser-73 of c-Jun was elevated. We also found Fank1 did not alter JNK activity compared to control. To further confirm the effect of Fank1 on c-Jun activation, we performed EMSA analysis and found Fank1 overexpression increased the binding capacity of c-Jun to DNA. To investigate the role of JAB1 in endogenous c-Jun activation by Fank1, we suppressed the expression of JAB1 by RNA interference method and found the increase in c-Jun expression and activation by Fank1 was visibly inhibited when JAB1 was knocked down. Taken together, these results suggested that Fank1 could enhance endogenous c-Jun activity and that this regulation was JAB1 dependent.
     AP-1 transcription factors are involved in regulation of apoptosis. To observe the effect of Fank1 on cell apoptosis, we generated HeLa/Flag-Fank1 and HeLa/Con. We measured apoptosis by FACS analysis and observed that apoptosis decreased significantly at different times in stable HeLa/Flag-Fank1 cells in comparison to control stable cells after UV exposure. To evaluate the degree of anti-apoptosis in stable HeLa/Flag-Fank1 cells after UV stimulation, we measured the cleavage of caspase 7 and poly(ADP-ribose) polymerase (PARP) and found the level of cleaved caspase 7 and PARP decreased in stable HeLa/Flag-Fank1 cells compared with the control stable cells. Furthermore, we found that overexpressed Fank1 could enhance the total expression and phosphorylation levels of c-Jun when compared with the control group after UV stimulation and Fank1 did not affect the total expression and phosphorylation levels of JNK. We detected the anti-apoptotic proteins that were the AP-1 target genes such as Bcl-2, Bcl-xL and Bcl-3, and found Bcl-3 was significantly upregulated compared with the control vector after UV exposure. Taken together, these results suggest that Fank1 exerted its anti-apoptotic effect by activating AP-1 activity, which then upregulated the expression of Bcl-3 after UV stimulation. Meanwhile, we investigated the functional linkage between Fank1 and JAB1 in the regulation of anti-apoptosis by knock down of JAB1. In all groups in which JAB1 was silenced, we found that Fank1 could not exert its anti-apoptotic effect after UV exposure and the upregulation of c-Jun and Bcl-3 by Fank1 was significantly suppressed. Taken together, these results indicate that the regulation of anti-apoptosis by Fankl is JAB1 dependent.
     Fank1 is a testis highly expressed gene, it is reported that c-Jun and JAB1 are expressed in testis, meanwhile our results confirmed Bcl-3 was expressed in testis. We supposed that Fank1 could function as a anti-apoptotis protein by upregulation of Bcl-3 through AP-1 pathway in Spermatogenesis.
     2. The functional study of testis highly expressed protein, RSB66
     rsb66 was a new gene obtained from RSB subtracted library. Northern blot showed that rsb66 was specifically expressed in rat testis. In previous studies, the interaction between RSB66 and INCA1 had been confirmed by a Yeast Two-Hybrid system, co- immunoprecipitation and GST-pull down assay respectively. We expect to analyze the Crystal structure of RSB66/INCA1 complex to reveal the function of RSB66. We expressed soluble recombinant GST-mRSB66 protein and His-RSB66 protein in E.coli and purified mRSB66 protein was obtained by affinity chromatography and gelfiltration chromatography method. However it was difficult to gain soluble INCA1 protein in different expressin vectors and different competent cells in prokaryotic expression system. And this caused a pause on analyzing the crystal structure of RSB66/INCA1 complex that would reveal the function of RSB66.
     It was reported that c9orf9, the human homologue of RSB66 was expressed lowly in bladder and lung carcinoma. We investigated the c9orf9 expression levels in the benign prostatic hyperplasia and prostate carcinoma clinical samples. The expression level of c9orf9 was measured by real-time PCR. The average expression of c9orf9 mRNA in prostate carcinoma was lower than that in benign prostatic hyperplasia. Meanwhile, the c9orf9 level in several breast cancer cell lines was detected by real-time PCR and Western blotting, highly expressed c9orf9 was found in HCC38 cell line. In addition, we screened the efficent RNA interference sequence for c9orf9. To further study the function of RSB66, HeLa-pMSCVpuro and HeLa-pMSCVpuro-c9orf9 stable cells were established and the cell cycle was analysed by flow cytometry. Compared with HeLa-pMSCVpuro stable cells, obvious prolonged G1/S phase was observed in HeLa-pMSCVpuro-c9orf9 stable cells occurred at 4,8,9h after release.
     Based on the technique of microinjection into seminiferous tubules of mouse and the germ cell transplantation system, we screened the efficient RNA interference target sequence for mRSB66 and constructed mRSB66(-)/GC1 and negative/GC1 stable cell lines. Next we will transplant mRSB66(-)/GC1 and negative/GC1 stable cell lines into mouse seminiferous tubules and observe the possible function of RSB66 in animal model.
引文
[1]. Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science.2002,296:2176-2178.
    [2]. Masquilier D, Foulkes NS, Mattei MG & Sassone-Corsi P. Human CREM gene: evolutionary conservation, chromosomal localization and inducibility of the transcript. Cell Growth and Differentiation.1993,4:931-937.
    [3]. Allan DJ, Harmon BV and Kerr JFR (1987) Cell death in spermatogenesis In Perspectives on mammalian cell death. Potten CS, ed. (London:Oxford University Press) pp.229-258.
    [4]. Orth JM, Gunsalus GL and Lamperti AA. Evidence from Sertoli celldepleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology.1988,122:787-794.
    [5]. Huckins C. The morphology and kinetics of spermatogonial degeneration in normal adult rats:an analysis using a simplified classification of the germinal epithelium. Anat Rec.1978,190(4):p.905-26.
    [6]. Allan DJ, H.B., Kerr JFR, Cell death in spermatogenesis. Perspectives on mammalian cell death, ed. e. In Ptten CS.1987, London:Oxford university Press. 229-258.
    [7]. Henriksen, K. and Parvinen M. Stage-specific apoptosis of male germ cells in the rat: mechanisms of cell death studied by supravital squash preparations. Tissue Cell.1998, 30(6):p.692-701.
    [8]. Packer AI, Besmer P and Bachvarova RF. Kit ligand mediates survival of type A spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol. Reprod. Dev. 1995,42:303-310.
    [9]. Odorisio T, Rodriguez TA, Evans EP, Clarke AR and Burgoyne PS. The meiotic checkpoint monitoring synapsis eliminates spermatocytes via p53-independent apoptosis. Nature Genetics.1998,18:257-261.
    [10]. Ham J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron.1995,14:927-939.
    [11]. Ivanov, V. N. et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol. Cell 2001,7:517-528.
    [12]. Mosavi LK, Minor DL Jr, Peng ZY. Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci.2002,99(25):16029-34.
    [13]. Skorstengaard K, Jensen MS, Sahl P, Petersen TE, Magnusson S. Complete primary structure of bovine plasma fibronectin. Eur J Biochem.1986,161(2):441-53.
    [14]. Henning JS, Kovich OI, Schaffer JV. Glomuvenous malformations. Dermatol Online J.2007 Jan 27;13(1):17.
    [15]Ostberg A, Moreno G, Su T, Trisnowati N, Marchuk D, Murrell DF. Genetic analysis of a family with hereditary glomuvenous malformations. Australas J Dermatol.2007 Aug;48(3):170-3.
    [16]. Cunha IW, Carvalho KC, Martins WK, Marques SM, Muto NH, Falzoni R, Rocha RM, Aguiar S, Simoes AC, Fahham L, Neves EJ, Soares FA, Reis LF. Identification of genes associated with local aggressiveness and metastatic behavior in soft tissue tumors. Transl Oncol.2010,3 (1):23-32.
    [17]. Chen H, Bai J, Ye J, Liu Z, Chen R, Mao W, Li A, and Zhou J. JWA as a functional molecule to regulate cancer cell migration via MAPK cascades and F-actin cytoskeleton. Cell Signal.2007,19:1315-1327.
    [18]. Zhu YJ, Li CP, Tang WY, Li AP, Liu QZ, and Zhou JW. Single nucleotide polymorphism of the JWA gene is associated with risk of leukemia:a case-control study in a Chinese population. Toxicol Environ Health A. J 2007,70:895-900.
    [19]. Chen R, Qiu W, Liu Z, Cao X, Zhu T, Li A, Wei Q, and Zhou J. Identification of JWA as a novel functional gene responsive to environmental oxidative stress induced by benzo[a]pyrene and hydrogen peroxide. Free Radic Biol Med.2007,42:1704-1714.
    [20]. Denti S, Sirri A, Cheli A, Rogge L, Innamorati G, Putignano S, Fabbri M, Pardi R, Bianchi E. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1. J Biol Chem.2004,279:13027-13034.
    [21]. Wang D, Li Z, Messing EM, Wu G. Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM. J Biol Chem.2002,277:36216-36222.
    [22]. Cheng L, Lemmon S, Lemmon V. RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J Neurochem.2005, 94:1102-1110.
    [23]. Millard, S. M., and Wood, S. A.. Riding the DUBway:regulation of protein trafficking by deubiquitylating enzymes. J Cell Biol.2006,173,463-468.
    [24]. Jolly LA, Taylor V, Wood SA. USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors. Mol Biol Cell.2009,20(7):2015-29.
    [25]. Hsiao SJ, Smith S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie.2008,90(1):83-92.
    [26]. Seegcr M, Kraft R, Ferrell K, et al. A novel protein complex involved in signal transduction possessing similarities to 26S proteasopoe subunits. FASEB,1998,12(6): 469-478.
    [27]. Claret FX, Hibi M, Dhut S, Toda T, Karin M. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature.1996,383 (6599):453-457.
    [28]. Hallstrom TC, Nevins J R. JAB1 is a specificity factor for E2F1-induced apoptosis. 2006, Genes Dev.20(5):613-623.
    [29]. Russell LD, Ettlin RA, Hikim APS and Clegg ED. Histological and Histopathological Evaluation of the Testis.1990, Cache River Press, Clearwater, FL, USA, pp.1-40.
    [30]. Zheng Z, Zheng H, Yan W. Fank1 is a testis-specific gene encoding a nuclear protein exclusively expressed during the transition from the meiotic to the haploid phase of spermatogenesis. Gene Expr Patterns,2007.7(7):777-83.
    [31]. Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M and Dubiel W. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J.1998,12(6):469-478.
    [32]. Bech-Otschir D, Kraft R, Huang X, Henklein P, Kapelari B, Pollmann C and Dubiel W. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J.2001,20(7):1630-1639
    [33]. Cope GA, and Deshaies RJ. COP9 signalosome:a multifunctional regulator of SCF and other cullin-based ubiquitin ligases.Cell.2003,114(6):663-671.
    [34]. Wolf DA, Zhou C, and Wee S. The COP9 signalosome:an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol.2003,5(12):1029-1033.
    [35]. Tomoda K, Kubota Y, and Kato J. Degradation of the cyclin-dependent-kinase inhibitor p27Kipl is instigated by JAB1. Nature.1999,398(6723):160-165.
    [36]. Santoro MG. Heat shock factors and the control of the stress response. Biochem Pharmacol.2000,59(1):55-63.
    [37]. Chimenov Y. & Kerppola TK. Close encounters of many kinds:Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene.2001, 6:533-542.
    [38]. Angel P and Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1991,1072:129-157.
    [39]. Ryseck RP. & Bravo R. cJun, JunB, and JunD differ in their binding affinities to the AP-1 and CRE consensus sequences:effect of Fos proteins. Oncogene.1991,6:533-542.
    [40]. Schutte J. et al. JunB inhibits and cFos stimulates the transforming and transactivating activities of cJun. Cell.1989,59:987-997.
    [41]. Chiu R, Angel P. & Karin M. JunB differs in its biological properties from, and is a negative regulator of c-Jun. Cell.1989,59:979-986.
    [42]. Bounpheng MA, Melnikova IN, Dodds SG., Chen H, Copeland NG, Gilbert D J, Jenkins NA and Christy BA. Gene.2000,242:41-50.
    [43]. Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways, Nat. Cell Biol.2002,4:s41-s49.
    [44]. Cohen DR, Vandermark SE, McGovern JD. Bradley MP. Transcriptional regulation in the testis:a role for transcription factor AP-1 complexes at various stages of spermatogenesis, Oncogene.1993,8:443-455.
    [45]. Chang L & Karin M. Mammalian MAP kinase signalling cascades. Nature.2001, 410:37-40.
    [46]. Hill, CS, Wynne J & Treisman R. Serum-regulated transcription by serum response factor (Srf)-a novel role for the DNA binding domain. EMBO J.1994,13:5421-5432.
    [47]. Smeyne R. Continuous c-Fos expression procedes programmed cell death in vivo. Nature.1993,363:166-169.
    [48]. Marti A. et al. Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene.1994,9:1213-1223.
    [49]. Buttyan R, Zakeri Z, Lockshin R & Wolgemuth D. Cascade induction of c-fos, c-myc, and heat shock 70K transcripts during regression of the rat ventral prostate gland. Mol. Endocrinol. 1988,2:650-657.
    [50]. Estus S. et al. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J. Cell Biol.1994,127: 1717-1727.
    [51]. Ham J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron.1995,14:927-939.
    [52]. Colotta F, Polentarutti N, Sironi M & Mantovani A. Expression and involvement of c-fos and cjun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J. Biol. Chem.1992,267:18278-18283.
    [53]. Shaulian E. et al. The mammalian UV response:c-Jun induction is required for exit from p53-imposed growth arrest. Cell.2000,103:897-907.
    [54]. Devary Y, Gottlieb RA, Lau L & Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol. Cell. Biol.1991,11:2804-2811.
    [55]. Karin M. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. NY Acad. Sci.1998,851:139-146.
    [56]. Whitfield J, Neame SJ, Paquet L, Bernard O & Ham J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron.2001,29:629-643.
    [57]. Shaulian E & Karin M. AP-1 in cell proliferation and survival. Oncogene.2001,20: 2390-2400.
    [58]. Tournier C. et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science.2000,288:870-874.
    [59]. Kolbus A. et al. c-Jun-dependent CD95-L expression is a rate-limiting step in the induction of apoptosis by alkylating agents. Mol. Cell. Biol.2000,20,575-582.
    [60]. Ivanov VN. et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol. Cell.2001,7:517-528.
    [61]. Eferl R. et al. Functions of c-jun in liver and heart development. J. Cell Biol.1999, 145:1049-1061.
    [62]. Hilberg F, Aguzzi A, Howells N & Wagner EF. c-jun is essential for normal mouse development and hepatogenesis. Nature.1993,365:179-181.
    [63]. Rebollo A. et al. Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by AP1 and AP1-like transcription factors. Mol. Cell. Biol. 2000,20:3407-3416.
    [64]. David Kashatus, Patricia Cogswell and Albert S. Baldwin. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev.2006,20:225-235.
    [65]. Adams JM, Cory S. The bcl-2 protein family:arbiters of cell survival. Science. 1998,281:1322-1326.
    [66]. Ashkenazi A, Dixit VM. Death receptors:signaling and modulation, Science.1998, 281:1305-1308.
    [67]. Green DR. Apoptotic pathways:paper wraps stone blunts scissors. Cell.2000, 102:1-4.
    [68]. Hengartner MO. The biochemistry of apoptosis. Nature.2000,407:770-776.
    [69]. Reed JC. Mechanisms of apoptosis. Am. J. Pathol.2000,157:1415-1430.
    [70]. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature.2000,403(6765):98-103.
    [71]. Zong WX, Lindsten T, Ross AJ, MacGregor GR, Thompson CB:BH3 only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev.2001,15:1481-1486.
    [72]. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K et al.:The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell.2000,6:1389-1399.
    [73]. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2001,2:63-67.
    [74]. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell.2001,8:705-711.
    [75]. Passegue E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U & Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell.2001,104:21-32.
    [76]. Li ZL, Abe H, Ueki K, Kumagai K, Araki R, Otsuki Y. Identification of c-Jun as bcl-2 transcription factor in human uterine endometrium. J Histochem Cytochem.2003, 51(12):1601-9.
    [77]. Ohno H, Takimoto G, McKeithan TW. The candidate protooncogene Bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell.1990, 60:991-999.
    [78]. Zhang Q, Didonato JA, Karin M, McKeithan TW. Bcl-3 encodes a nuclear protein which can alter the subcellular location of NF-kB proteins. Mol. Cell. Biol.1994, 14:3915-3926.
    [79]. Kimura Y, Takeshita T, Kondo M, Ishii N, Nakamura M, Van Snick J, Sugamura K. Sharing of the IL-2Rg chain with the functional IL-9 receptor complex. Int. Immunol. 1995,7:115-120.
    [80]. Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K, Siebenlist U. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-kappa B-mediated inhibition. Nature.1992,359:339-42.
    [81]. Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, et al. The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J.1993,12:3893-901.
    [82]. Nolan GP, Fujita T, Bhatia K, Huppi C, Liou HC, Scott ML, Baltimore D. The Bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol.1993,13(6):3557-66.
    [83]. McKeithan TW, Rowley JD, Shows TB and Diaz MO. Cloning of the chromosome translocation breakpoint junction of the t(14;19) in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci.1987,84:9257-9260.
    [84]. Cogswell PC, Guttridge DC, Funkhouser WK. Selective activation of NF-κ B subunits in human breast cancer:Potential roles for NF-κ B/p52 and for Bcl-3. Oncogene.2000,19:1123-1131.
    [85]. Thornburg NJ, Pathmanathan R and Raab-Traub N. Activation of nuclear factor-κ B p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res.2003,63: 8293-8301.
    [86]. Canoz O, Rassidakis G.Z, Admirand JH and Medeiros LJ. Immunohistochemical detection of BCL-3 in lymphoid neoplasms:A survey of 353 cases. Mod. Pathol.2004, 17:911-917.
    [87]. Bhatia K, Huppi K, McKeithan T, Siwarski D, Mushinski JF, Magrath I. Mouse Bcl-3:cDNA structure, mapping and stage-dependent expression in B lymphocytes. Oncogene.1991,6:1569.
    [88]. Zhang MY, Harhaj EW, Bell L, Sun SC, Miller BA. Bcl-3 expression and nuclear translocation are induced by granulocyte-macrophage colony-stimulating factor and erythropoietin in proliferating human erythroid precursors. Blood.1998,92:1225-1234.
    [89]. Richard M, Louahed J, Demoulin JB, Renauld JC. Interleukin 9 regulates NF-kB activity through Bcl-3 gene induction. Blood.1999,93:4318-4327.
    [90]. Angel P. et al., The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell.1988,55(5):875-85.
    [1]Chen X, Hu T, Liang G, et al. A novel testis protein, RSB-66, interacting with INCA1 (inhibitor of Cdk interacting with cyclin A1) [J]. Biochem Cell Biol,2008,86(4):345-51.
    [2]Amira N, Cancel-Tassin G, Bernardini S, et al. Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2:identification of 5 candidates tumor suppressor genes [J]. Int J Cancer,2004, 111(4):539-42.
    [3]Boelens MC, van den Berg A, Fehrmann RS, et al. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer [J]. J Pathol,2009,218(2):182-91.
    [4]Diederichs S, Baumer N, Ji P, et al. Identification of interaction partners and substrates of the cyclin A1-CDK2 complex [J]. J Biol Chem,2004,279(32):33727-41.
    [5]BL21(DE3)pLysS competent cells:instruction manual, transgen
    [6]OrigamiB(DE3) competent cells:instruction manual, transgen
    [7]BL21-Codonplus competent cells:instruction manual, Stratagene
    [8]Rossetta(DE3) competent cells:instruction manual, transgen
    [9]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008 [J]. CA Cancer J Clin.2008, 58:71-96.
    [10]中华医学会泌尿外科分会.前列腺癌诊断治疗指南[J].中华现代外科学杂志,2006,3(22):1839-1856.
    [11]Scher HI, Heller G. Clinical states in prostate cancer:toward a dynamic model of disease progression [J]. Urology,2000,55:323-327.
    [12]De Marzo AM, Meeker AK, Zha S, et al. Human prostate cancer precursors and pathobiology[J]. Urology,2003,62:55-62.
    [13]Giovannucci E. Epidemiologic characteristics of prostate cancer [J]. Cancer, 1995:1766-77.
    [14]. Cuhna GR, Donjacour AA, Cooke PS, et al. The endocrinology and developmental biology of the prostate [J]. Endoc Rev,1987,8(3):338-62.
    [15]Makridakis NM, Reichardt JK. Molecular epidemiology of hormone-metabolic loci in prostate cancer [J]. Epidemiol Rev,2001,23:24-29.
    [16]Barba M, Terrenato I, Schunemann H, et al. Indicators of Sexual and Somatic Development and Adolescent Body Size in Relation to Prostate Cancer Risk:Results from a Case-control Study [J]. Urology,2008,72(1):183-7.
    [17]Rowlands M, Gunnell D, Harris R, et al. Circulating insulin-like growth factor peptides and prostate cancer risk:a systematic review and meta-analysis [J]. Int J Cancer, 2009,124(10):2416-29.
    [18]Lima GA, Correa LL, Gabrich R, et al. IGF-I, insulin and prostate cancer [J]. Arq Bras Endocrinol Metabol,2009,53(8):969-75.
    [19]Shariat SF, Lotan Y, Saboorian H, et al. Survivin expression is associated with features of biologically aggressive prostate carcinoma [J]. Cancer,2004,100:751-757.
    [20]Kishi H, Igawa M, Kikuno N, et al. Expression of the survivin gene in prostate cancer:correlation with clinicopathological characteristics, proliferative activity and apoptosis [J]. J Urol,2004,171:1855-1860.
    [21]Zellweger T, Ninck C, Bloch M, et al. Expression patterns of potential therapeutic targets in prostate cancer [J]. Int J Cancer,2005,113:619-628.
    22. Gazdar AF, Kurvari V, Virmani A, Gollahon L, Sakaguchi M, Westerfield M, Kodagoda D, Stasny V, Cunningham HT, Wistuba I, Tomlinson G, Tonk V, Ashfaq R, Leitch AM, Minna JD, Shay JW 1998 Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int J Cancer 78:766-774
    23. Boyan BD, Sylvia VL, Frambach T, Lohmann CH, Dietl J, Dean DD, Schwartz Z.Estrogen-dependent rapid activation of protein kinase C in estrogen receptor-positive MCF-7 breast cancer cells and estrogen receptor-negative HCC38 cells is membrane-mediated and inhibited by tamoxifen.Endocrinology.2003,144(5):1812-24.
    24. Shiang CY, Qi Y, Wang B, Lazar V, Wang J, Fraser Symmans W, Hortobagyi GN, Andre F, Pusztai L. Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast Cancer Res Treat.2009 Dec 19. [Epub ahead of print]
    [25]Weinberg, R.A. (1995) The retinoblastoma protein and cell cycle control. Cell.81, 323-330.
    [26]Wu, L. et al. (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature,414,457-462.
    [27]Stein GS, van Wijnen AJ, Stein JL, Lian JB, Montecino M, Zaidi SK, Braastad C. An architectural perspective of cell-cycle control at the G1/S phase cell-cycle transition. J Cell Physiol.2006 Dec;209(3):706-10.
    [28]. The E2F transcriptional network:old acquaintances with new faces. Dimova DK, Dyson NJ. Oncogene.2005 Apr 18;24(17):2810-26. Review.
    [29]. Regulators of G1 cyclin-dependent kinases and cancers.Lee MH, Yang HY. Cancer Metastasis Rev.2003 Dec;22(4):435-49.
    [30]. Pei XH, Xiong Y. Biochemical and cellular mechanisms of mammalian CDK inhibitors:a few unresolved issues. Oncogene.2005 Apr 18;24(17):2787-95.
    [31]. Deshpande A, Sicinski P, Hinds PW. Cyclins and cdks in development and cancer:a perspective. Oncogene.2005 Apr 18;24(17):2909-15.
    [32]. Clark, D. W., Mitra, A., Fillmore, R. A., Jiang, W. G., Samant, R. S., Fodstad, O., and Shevde, L. A. NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. Curr Cancer Drug Targets.2008,8(5),421-430
    [33]. Hill R, Bodzak E, Blough MD and Lee PW. p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle.2008,7(16),2535-2543
    [34]. Ji P, Agrawal S, Diederichs S, Baumer N, Becker A, Cauvet T, Kowski S, Beger C, Welte K, Berdel WE, Serve H, Muler-Tidow C. Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene.2005, 24(16):2739-44.
    [35]Yang D, Qi Y, Chen Q, Wang Z, Jin X, Gao J, Fu J, Xiao X, Zhou Z. The over-expression of p53 H179Y residue mutation causes the increase of cyclin A1 and Cdk4 expression in HELF cells. Mol Cell Biochem.2007, Oct;304(1-2):219-26..
    [36]Wang Y, Song W, Li S, Guan X, Miao S, Zong S, Koide SS and Wang L. GC-1 mRHBDDl knockdown spermatogonia cells lose their spermatogenic capacity in mouse seminiferous tubules. BMC cell biology.2009,10:25.
    [1]. Nolan GP, Baltimore D. The inhibitory ankyrin and activator Rel proteins. Curr Opin Genet Dev.1992;2:211-20.
    [2]. Verma IM, Stevenson JK, Schwarz EM. et, al. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev.1995;9:2723-35.
    [3]. Lenardo MJ, Baltimore D. NF-kappa B:a pleiotropic mediator of inducible and tissue-specific gene. control. Cell.1989;58:227-9.
    [4]. Ohno H, Takimoto G, McKeithan TW. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination and cell cycle control. Cell. 1990;60:991-7.
    [5]. McKeithan TW, Ohno H, Dickstein J, et, al. Genomic structure of the candidate proto-oncogene BCL3. Genomics.1994;24:120-6.
    [6]. Kimura YT, Takeshita M, Kondo N, et, al. Sharing of the IL-2Rg chain with the functional IL-9 receptor complex. Int. Immunol.1995,7:115-120.
    [7]. Hatada EN, Nieters A, Wulczyn FG, et, al. The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNAbinding. Proc Natl Acad Sci USA.1992;89:2489-93.
    [8]. Wulczyn FG, Naumann M, Scheidereit C. Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-kappa B. Nature.1992;358:597-9.
    [9]. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev.2004, 15;18(18):2195-224.
    [10]. Bates PW, Miyamoto S. Expanded nuclear roles for Iκ appaBs. Sci STKE.2004, 12;2004(254):pe48.
    [11]. Naumann M, Wulczyn FG, Scheidereit C. The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B. EMBO J.1993;12:213-22.
    [12]. Kerr LD, Duckett CS, Wamsley P, et, al. The proto-oncogene bcl-3 encodes an I kappa B protein. Genes Dev.1992;6:2352-63.
    [13]. Nolan GP, Fujita T, Bhatia K, et, al. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol Cell Biol.1993;13:3557-66.
    [14]. Inoue J, Takahara T, Akizawa T, et, al. Bcl-3, a member of the I kappa B proteins, has distinct specificity towards the Rel family of proteins. Oncogene.1993;8:2067-73.
    [15]. Franzoso G, Bours V, Park S, et, al. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-kappa B-mediated inhibition. Nature.1992;359:339-42.
    [16]. Franzoso G, Bours V, Azarenko V, et, al. The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. EMBO J.1993;12:3893-901.
    [17]. Schwarz EM, Krimpenfort P, Berns A, et, al. Immunological defects in mice with a targeted disruption in Bcl-3. Genes Dev 1997;11:187-97.
    [18]. Na SY, Choi HS, Kim JW, Na DS and Lee JW.1998. Bcl3, an IkappaB protein, as a novel transcription coactivator of the retinoid X receptor.J. Biol. Chem.273: 30933-30938.
    [19]. Na SY, Choi JE, Kim HJ, Jhun BH, Lee YC, Lee JW. Bcl3, an IkappaB protein, stimulates activating protein-1 transactivation and cellular proliferation. Biol Chem.1999 Oct 1;274(40):28491-6.
    [20]. Dechend R, Hirano F, Lehmann K, et, al. The Bcl-3 oncoprotein acts as a bridging factor between NF-κ B/Rel and nuclear co-regulators. Oncogene 1999,18:3316-3323.
    [21]Kabuta T, Hakuno F, Cho Y, et, al. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-kappaB activity. Biochem Biophys Res Commun.2010 Mar 11.
    [22]Michel F, Soler-Lopez M, Petosa C, et, al. Crystal structure of the ankyrin repeat domain of Bcl-3:a unique member of the IkappaB protein family. EMBO J.2001,20: 6180-6190.
    [23]. Wessells J, Baer M, Young HA, et, al. BCL-3 and NF-kappaB p50 attenuate lipopolysaccharide-induced inflammatory responses in macrophages. J Biol Chem.2004; 279(48):49995-50003.
    [24]Watanabe N, Iwamura T, Shinoda T, et, al. Regulation of NFKB1 proteins by the candidate oncoprotein BCL-3:generation of NF-kappaB homodimers from the cytoplasmic pool of p50-p105 and nuclear translocation. EMBO J.1997;16:3609-20.
    [25]. Muhlbauer M, Chilton PM, Mitchell TC, et, al. Impaired Bcl3 up-regulation leads to enhanced lipopolysaccharide-induced interleukin (IL)-23P19 gene expression in IL-10(-/-) mice. J Biol Chem.2008;283:14182-9.
    [26]. Kuwata H, Watanabe Y, Miyoshi H, et, al. IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in macrophages. Blood.2003;102:4123-9.
    [27]. Caamano JH, Perez P, Lira SA, et, al. Constitutive expression of Bc1-3 in thymocytes increases the DNA binding of NF-kappaB1 (p50) homodimers in vivo. Mol Cell Biol.1996; 16:1342-8.
    [28]. Masahiro Yamamoto, Kiyoshi Takeda. Role of nuclear IkB proteins in the regulation of host immune responses. J Infect Chemother.2008,14:265-269.
    [29]. Franzoso G, Carlson L, Scharton-Kersten T, Role of nuclear IkB proteins in the regulation of host immune responses. Critical roles for the Bcl-3 oncoprotein in T cell-mediated immunity, splenic microarchitecture, and germinal center reactions. Immunity 1997;6:479-90.
    [30]. Corn RA, Hunter C, Liou HC, et al. Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and Th effector differentiation. J Immunol 2005;175:2102-10.
    [31]. Zhang X, Wang H, Claudio E, et, al. A role for the IkappaB family member Bcl-3 in the control of central immunologic tolerance. Immunity.2007 Sep;27(3):438-52.
    [32]. Bassetti MF, White J, Kappler JW, et, al. Transgenic Bcl-3 slows T cell proliferation. Int Immunol.2009 Apr;21(4):339-48.
    [33]. Carmody RJ, Ruan Q, Palmer S, et, al. Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science.2007;317(5838):675-8.
    [34]Mitchell TC, Thompson BS, Trent JO, et, al. A short domain within Bcl-3 is responsible for its lymphocyte survival activity. Ann N Y Acad Sci.2002 Dec;975:132-47.
    [35]Mitchell TC, Teague TK, Hildeman DA, et, al. Stronger correlation of bcl-3 than bcl-2, bcl-xL, costimulation, or antioxidants with adjuvant-induced T cell survival. Ann N Y Acad Sci.2002 Dec;975:114-31.
    [36]Hacker G, Bauer A, Villunger A. Apoptosis in activated T cells:what are the triggers, and what the signal transducers? Cell Cycle.2006. 1;5(21):2421-4.
    [37]Bauer A, Villunger A, Labi V, et, al. The NF-kappaB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells.Proc Natl Acad Sci U S A.2006 Jul 18; 103(29):10979-84.
    [38]Rebollo A, Dumoutier L, Renauld JC, et, al. Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by AP1 and AP1-like transcription factors. Mol Cell Biol.2000 May;20(10):3407-16.
    [39]Valenzuela JO, Hammerbeck CD, Mescher MF. Cutting edge:Bcl-3 up-regulation by signal 3 cytokine (IL-12) prolongs survival of antigen-activated CD8 T cells. J Immunol.2005;174(2):600-4.
    [40]Dai R, Phillips RA, Ahmed SA. Despite inhibition of nuclear localization of NF-kappa B p65, c-Rel, and RelB,17-beta estradiol up-regulates NF-kappa B signaling in mouse splenocytes:the potential role of Bcl-3. J Immunol.2007;179(3):1776-83.
    [41]Jamaluddin M, Choudhary S, Wang S, et, al. Respiratory syncytial virus-inducible BCL-3 expression antagonizes the STAT/IRF and NF-kappaB signaling pathways by inducing histone deacetylase 1 recruitment to the interleukin-8 promoter. J Virol. 2005;79(24):15302-13.
    [42]McKeithan TW, Rowley JD, Shows TB, et, al.1987. Cloning of the chromosome translocation breakpoint junction of the t(14;19) in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci.84:9257-9260.
    [43]Cogswell PC, Guttridge DC, Funkhouser WK, et, al. Selective activation of NF-_B subunits in human breast cancer:Potential roles for NF-κ B2/p52 and for Bcl-3. Oncogene.2000,19:1123-1131.
    [44]Thornburg NJ, Pathmanathan R and Raab-Traub N.2003. Activation of nuclear factor-κ. B p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res. 63:8293-8301.
    [45]Canoz O, Rassidakis GZ, Admirand JH, et, al. Immunohistochemical detection of BCL-3 in lymphoid neoplasms:A survey of 353 cases. Mod. Pathol.2004,17:911-917.
    [46]Pallares J, et al:Abnormalities in the NF-κ Bfamily and related proteins in endometrialcarcinoma. J Pathol 2004; 204:569-577.
    [47]. Viatour P, Dejardin E, Warnier M, et al. GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell 2004;16:35-45.
    [48]Westerheide SD, Mayo MW, Anest V, et, al. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G(1) transition. Mol Cell Biol.2001,21(24):8428-36.
    [49]Viatour P, Bentires-Alj M, Chariot A, et, al. NF-κB2/p100 induces Bcl-2 expression. Leukemia.2003,17:1349-1356.
    [50]el-Deiry WS, Tokino T, Velculescu VE, et, al. WAF1, a potential mediator of p53 tumor suppression. Cell.1993,75(4):817-25.
    [51]Oda E, Ohki R, Murasawa H, et, al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science.2000,288 (5468):1053-8.
    [52]Nakano K and Vousden KH. PUMA, a novel proapo-ptotic gene, is induced by p53. Mol. Cell 2001,7:683-694.
    [53]Yu J, Zhang L, Hwang PM, et, al. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell.2001 Mar;7(3):673-82.
    [54]Chipuk JE, Kuwana T, Bouchier-Hayes L, et, al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science.2004; 303(5660):1010-4.
    [55]Bond GL, Hu W and Levine AJ. MDM2 is a central node in the p53 pathway:12 years and counting. Curr. Cancer Drug Targets 2005,5:3-8.
    [56]David Kashatus, Patricia Cogswell and Albert S. Baldwin. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev.2006 20:225-235
    [57]Pratt MA, Bishop TE, White D, et, al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells:roles in growth and hormone independence. Mol Cell Biol.2003;23(19):6887-900.
    [58]Szymanowska N, Klapper W, Gesk S, et, al.BCL2 and BCL3 are recurrent translocation partners of the IGH locus. Cancer Genet Cytogenet.2008 Oct 15; 186(2):110-4.
    [59]Ohno H, Nishikori M, Maesako Y, et, al. Reappraisal of BCL3 as a molecular marker of anaplastic large cell lymphoma. Int J Hematol.2005 Dec;82(5):397-405.
    [60]Ellerhorst JA, Ekmekcioglu S, Johnson MK, et, al. Regulation of iNOS by the p44/42 mitogen-activated protein kinase pathway in human melanoma. Oncogene 2006;25:3956-3962.
    [61]Uffort DG, Grimm EA, Ellerhorst JA. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma. J Invest Dermatol.2009,129(1):148-54.
    [62]Massoumi R, Kuphal S, Hellerbrand C, et, al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med.2009, 206(1):221-32.
    [63]Massoumi RM, Podda R, Fassler and R Paus. Cylindroma as tumor of hair follicle origin. J. Invest. Dermatol.2006,126:1182-1184.
    [64]Mallakin A, Sugiyama T, Kai F, et, al. The Arf-inducing transcription factor Dmp1 encodes a transcriptional activator of amphiregulin, thrombospondin-1, JunB and Egr1. Int J Cancer.2010,126(6):1403-16.
    [65]Brocke-Heidrich K, Ge B, Cvijic H, et, al. BCL3 is induced by IL-6 via Stat3 binding to intronic enhancer HS4 and represses its own transcription. Oncogene.2006, 25(55):7297-304.
    [66]Brenne AT, Fagerli UM, Shaughnessy JD Jr, et, al. High expression of BCL3 in human myeloma cells is associated with increased proliferation and inferior prognosis. Eur J Haematol.2009,82(5):354-63.
    [67]Park SG, Chung C, Kang H, et, al. Up-regulation of cyclin D1 by HBx is mediated by NF-kappaB2/BCL3 complex through kappaB site of cyclin D1 promoter. J Biol Chem. 2006,281(42):31770-7.
    [68]Zheng MZ, Qin HD, Yu XJ, et, al. Haplotype of gene Nedd4 binding protein 2 associated with sporadic nasopharyngeal carcinoma in the Southern Chinese population. J Transl Med.2007,5:36.
    [69]Nakamura H, Ishii C, Suehiro M, et al. The latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus induces expression of the putative oncogene Bcl-3 through activation of the nuclear factor-kappaB. Virus Res.2008,31(2):170-9.
    [70]Kung CP, Raab-Traub N. Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3. J Virol.2008; 82:5486-93.
    [71]Thornburg NJ, Raab-Traub N. Induction of epidermal growth factor receptor expression by Epstein-Barr virus latent membrane protein 1 C-terminal-activating region 1 is mediated by NF-kappaB p50 homodimer/Bcl-3 complexes. J Virol.2007, 81(23):12954-61.
    [72]. Yeh PY, Kuo SH, Yeh KH, et al. A pathway for tumor necrosis factor-alpha-induced Bcl10 nuclear translocation. Bcl10 is up-regulated by NF-kappaB and phosphorylated by Aktl and then complexes with Bcl3 to enter the nucleus. J Biol Chem.2006, 281(1):167-75.
    [73]Suazo J, Santos JL, Silva V, et al. Possible association due to linkage disequilibrium of TGFA, RARA and BCL3 with nonsyndromic cleft lip with or without cleft palate in the Chilean population. Rev Med Chil.2005,133(9):1051-8.
    [74]Gaspar DA, Matioli SR, Pavanello RC, et al. Evidence that BCL3 plays a role in the etiology of nonsyndromic oral clefts in Brazilian families. Genet Epidemiol.2002, 23(4):364-74.
    [75]Petricevic B, Wessner B, Sachet M, Vrbanec D, Spittler A, Bergmann M. CL097, a TLR7/8 ligand, inhibits TLR-4-dependent activation of IRAK-M and BCL-3 expression. Shock..2009;32(5):484-90.
    [76]. Dann SM, Spehlmann ME, Hammond DC, et al. IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J Immunol.2008,180(10):6816-26.
    [77]Massoumi R. The central role of Bcl-3 in atopic dermatitis. J Invest Dermatol.2009, 129(9):2088-90.
    [78]Buchau AS, MacLeod DT, Morizane S, et al. Bcl-3 acts as an innate immune modulator by controlling antimicrobial responses in keratinocytes. J Invest Dermatol. 2009,129(9):2148-55.
    [79]Bourteele S, Oesterle K, Weinzierl AO, et al. Alteration of NF-kappaB activity leads to mitochondrial apoptosis after infection with pathological prion protein. Cell Microbiol. 2007,9(9):2202-17.
    [80]. Elliott S, Hays E, Mayor M, et al. The triterpenoid CDDO inhibits expression of matrix metalloproteinase-1, matrix metalloproteinase-13 and Bcl-3 in primary human chondrocytes. Arthritis Res Ther.2003,5(5):R285-91
    [81]Elliott SF, Coon CI, Hays E, et al. Bcl-3 is an interleukin-1-responsive gene in chondrocytes and synovial fibroblasts that activates transcription of the matrix metalloproteinase 1 gene. Arthritis Rheum.2002,46(12):3230-9.
    [82]Huang HL, Yeh WC, Lai MZ, et al. Impaired TNF-α-induced A20 expression in ElA/Ras-transformed cells. Br J Cancer.2009,101(9):1555-64.
    [83]Weyrich AS, Denis MM, Schwertz H, et al. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood.2007, 109(5):1975-83.
    [84]Watanabe N, Wachi S, Fujita T. Identification and characterization of BCL-3-binding protein:implications for transcription and DNA repair or recombination. J Biol Chem.2003,278(28):26102-10.
    [85]Kim YM, Sharma N, Nyborg JK. The proto-oncogene Bcl3, induced by Tax, represses Tax-mediated transcription via p300 displacement from the human T-cell leukemia virus type 1 promoter. J Virol.2008,82(23):11939-47.
    [86]Yang J, Williams RS, Kelly DP. Bcl3 interacts cooperatively with peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator lalpha to coactivate nuclear receptors estrogen-related receptor alpha and PPARalpha. Mol Cell Biol.2009, 29(15):4091-102.
    [87]. Takami Y, Nakagami H, Morishita R, et al. Potential role of CYLD (Cylindromatosis) as a deubiquitinating enzyme in vascular cells. Am J Pathol.2008, 172(3):818-29.
    [88]Rezzoug F, Huang Y, Tanner MK, et al. TNF-alpha is critical to facilitate hemopoietic stem cell engraftment and function. J Immunol.2008,180(1):49-57.
    [89]. Tsavachidou D, Podrzucki W, Seykora J, et al. Gene array analysis reveals changes in peripheral nervous system gene expression following stimuli that result in reactivation of latent herpes simplex virus type 1:induction of transcription factor Bcl-3. J Virol. 2001,75(20):9909-17.
    [90]. Brasier AR, Lu M, Hai T, et al. NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence. J Biol Chem. 2001;276:32080-93.
    [91]. Ge B, Li O, Wilder P, et al. NF-kappa B regulates BCL3 transcription in T lymphocytes through an intronic enhancer. J Immunol.2003;171:4210-8.
    [92]. Corn RA, Aronica MA, Zhang F, et al. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response. J Immunol.2003;171:1816-24.
    [93]. Beurel E, Jope RS. Differential regulation of STAT family members by glycogen synthase kinase-3. J Biol Chem.2008;283:21934-44.
    [94]. Bhatia K, Huppi K, McKeithan T, et al. Mouse bcl-3:cDNA structure, mapping and stage-dependent expression in B lymphocytes. Oncogene.1991,6(9):1569-73.
    [95]. Richard M, Louahed J, Demoulin JB, et al. Interleukin-9 regulates NF-kappaB activity through BCL3 gene induction. Blood.1999,93(12):4318-27.
    [96]. Massoumi R, Chmielarska K, Hennecke K, et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NfkappaB signaling. Cell.2006,125:665-677.
    [97]. Weyrich AS, Dixon DA, Pabla R, et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci U S A.1998, 95(10):5556-61.
    [98]. Zhao Y, Ramakrishnan A, Kim KE, et al. Regulation of Bcl-3 through interaction with the Lck tyrosine kinase. Biochem Biophys Res Commun.2005,335(3):865-73.
    [99]. Viatour P, Merville MP, Bours V, et al. Protein phosphorylation as a key mechanism for the regulation of BCL-3 activity. Cell Cycle.2004,3(12):1498-501.
    [1]Sweeney C, Murphy M, Kubelka M, et al. A distinct cyclin A is expressed in germ cells in the mouse. Development,1996; 122(1):53-64.
    [2]Yang R, Morosetti R and Koeffler HP. Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines. Cancer Res.1997; 57(5):913-920.
    [3]Diederichs S, Baumer N, Schultz N, et al. Expression patterns of mitotic and meiotic cell cycle regulators in testicular cancer and development. Int J Cancer.2005; 116(2):207-17.
    [4]Malkov M, Fisher Y, Don J. Developmental schedule of the postnatal rat testis determined by flow cytometry. Biol Reprod 1998; 59:84-92.
    [5]Yang R, Muller C, Huynh V, et al. Functions of cyclin Al in the cell cycle and its interactions with transcription factor E2F-1 and the Rb family of proteins. Mol Cell Biol. 1999; 19(3):2400-7.
    [6]Muller-Tidow C, Wang W, Idos GE, et al. Cyclin Al directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues:tissue-specific regulation of B-myb function.Blood.200; 97(7):2091-7.
    [7]Ravnik SE, Wolgemuth DJ. Regulation of meiosis during mammalian spermatogenesis:the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol.1999; 207(2):408-18.
    [8]Liu D, Matzuk MM, Sung WK, et al. Cyclin Al is required for meiosis in the male mouse. Nature Genetics.1998; 20(4):377-380.
    [9]Liu D, Liao C and Wolgemuth DJ. A role for cyclin A1 in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Developmental Biology. 2000; 224(2):388-400.
    [10]Nickerson HD, Joshi A, Wolgemuth DJ. Cyclin Al-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol.2007; 306(2):725-35.
    [11]Ji P, Agrawal S, Diederichs S. Cyclin A1, the alternative A-type cyclin, contributes to G1/S cell cycle progression in somatic cells. Oncogene.2005; 24(16):2739-44.
    [12]Cohen PE, Pollard JW. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays.2001; 23:996-1009.
    [13]Cooke HJ, Saunders PT. Mouse models of male infertility. Nat Rev Genet 2002; 3:790-801
    [14]Wolgemuth DJ, Lele KM, Jobanputra V, et al. The A-type cyclins and the meiotic cell cycle in mammalian male germ cells. Int J Androl.2004; 27(4):192-9.
    [15]Chimento A, Sirianni R, Delalande C, et al.17beta-Estradiol activates rapid signaling pathways involved in rat pachytene spermatocytes apoptosis through GPR30 and ERalpha. Mol Cell Endocrinol.2010; 320(1-2):136-144.
    [16]Olfa G, Christophe C, Philippe L, et al. RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone.2010; 46(4):901-10.
    [17]Ekberg J, Brunhoff C, Jaras M, et al. Increased expression of cyclin A1 protein is associated with all-trans retinoic acid-induced apoptosis. Int J Biochem Cell Biol.2006; 38(8):1330-9.
    [18]Ji P, Baumer N, Yin T, et al. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer.2007; 121(4):706-13.
    [19]Rivera A, Mavila A, Bayless KJ, et al. Cyclin A1 is a p53-induced gene that mediates apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian, and lung carcinoma cells.Cell Mol Life Sci.2006; 63(12):1425-39.
    [20]Salazar G, Joshi A, Liu D, et al. Induction of apoptosis involving multiple pathways is a primary response to cyclinAl-deficiency in male meiosis. Dev Dyn.2005; 234(1):114-23.
    [21]Carter AD, Wroble BN, Sible JC. Cyclin A1/Cdk2 is sufficient but not required for the induction of apoptosis in early Xenopus laevis embryos. Cell Cycle.2006; 5(19):2230-6.
    [22]Haraguchi T, Ishikawa T, Yamaguchi K, et al. Cyclin and protamine as prognostic molecular marker for testicular sperm extraction in patients with azoospermia. Fertil Steril.2009; 91(4 Suppl):1424-6.
    [23]Muller-Tidow C, Ji P, Diederichs S, et al. The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol.2004; 24(20):8917-28.
    [24]Ji P, Baumer N, Yin T,et al. DNA damage response involves modulation of Ku70 and Rb functions by cyclin A1 in leukemia cells. Int J Cancer.2007; 121(4):706-13.
    [25]Coletta RD, Christensen K, Reichenberger KJ, et al. The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci U S A.2004; 101(17):6478-83.
    [26]Papanikolaou NA. Rational targeting in acute promyelocytic leukemia. In Vivo. 2010; 24(1):21-7.
    [27]Krug U, Yasmeen A, Beger C, et al. Cyclin A1 regulates WT1 expression in acute myeloid leukemia cells. Int J Oncol.2009; 34(1):129-36.
    [28]Zhoucun A, Zhang S, Yang Y. Mutations of the cyclin A1 gene are not a common cause of male infertility. Syst Biol Reprod Med.2009; 55(4):125-8.
    [29]Yang N, Eijsink JJ, Lendvai A, et al. Methylation markers for CCNA1 and C13ORF18 are strongly associated with high-grade cervical intraepithelial neoplasia and cervical cancer in cervical scrapings. Cancer Epidemiol Biomarkers Prev.2009; 18(11):3000-7.
    [30]Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, et al. Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma.Oral Oncol.2008; 44(4):400-6.
    [31]Jia JS, Xu SR. Expression of cyclin A1 mRNA in patients with myelodysplastic syndrome and its clinical significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2009; 17(2):377-81.
    [32]Wegiel B, Bjartell A, Ekberg J, et al. A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene.2005; 24(42):6385-93.
    [33]Wegiel B, Bjartell A, Tuomela J, et al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst.2008; 100(14):1022-36.
    [34]Wegiel B, Bjartell A, Culig Z, et al. Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival. Int J Cancer.2008; 122(7):1521-9.
    [35]van der Meer T, Chan WY, Palazon LS, et al. Cyclin A1 protein shows haplo-insufficiency for normal fertility in male mice. Reproduction.2004; 127(4):503-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700