基于功能化纳米材料增敏效应的电化学传感界面的构筑与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学生物传感器是一种将电化学分析与生物技术研究相结合而发展起来的一门学科。是将具有分子识别能力的生物活性材料(如酶、抗体等)与物理化学换能器有机组装而成。在生物传感器的研制过程中,生物敏感元件的固定方法和固载材料的选择尤为重要。基于此,本文致力于新型的复合纳米材料用于酶和免疫传感界面的构建以及固酶技术等方面进行了一系列探索性的研究。具体研究工作如下:
     1.基于氨基端基有机硅纳米球功能化的普鲁士蓝为媒介的葡萄糖生物传感器的研究
     在介体型酶生物传感器的研制过程中,电子媒介体易从电极表面渗漏到测试底液中,造成电化学信号不稳定,从而影响测定的稳定性和灵敏度,已成为制约其发展的瓶颈。为解决这个问题,电子媒介体-普鲁士蓝(PB),被有机硅纳米球保护起来,形成有机硅纳米球功能化的普鲁士蓝(OSiFPB),通过增加PB的分子量和包埋的方法来防止其渗漏。该材料兼具PB的电化学性质,呈现出良好的氧化还原特性。以此为电化学探针,来跟踪指示传感器制备过程中界面的电化学特征以及葡萄糖催化反应的进程。并结合比表面积大、吸附力强、生物亲和性好等优点的正电荷纳米金(PGNs),构建了PGNs/OSiFPB复合膜修饰葡萄糖氧化酶(GOD)的葡萄糖生物传感器。PGNs的引入不仅使GOD牢固的固定在电极表面,并且还可以很好的保持酶的生物活性。同时也起到了纳米导线的作用,加快OSiFPB在氧化还原过程中电子转移的速率。该传感器具有稳定性佳、灵敏度高的优点,实现了对葡萄糖快速、灵敏的测定。
     2.基于合金功能化的硅纳米纤维和凝集素-糖蛋白为复合固载基质的拟双酶葡萄糖生物传感器的研究
     通过化学合成的方法解决媒介体渗漏的方法有效,但是合成步骤较繁琐。为了简化试验程序,设计了一种具有独特的电学和光学特性的有机半导体材料---氨基化的北四甲酸(PTC-NH2),直接覆盖在PB的表面,形成结构镶嵌、稳定性好的有机-无机氧化还原复合膜(PTC-NH2/PB).同时,合成了一种全新的纳米复合物---金铂合金功能化的硅纳米纤维(GP-SNFs)为电极增敏材料,并组装在表面含有丰富氨基官能团的PTC-NH2表面。然后通过GP-SNFs强的表面作用力将半刀豆球蛋白A (Con A)捕获在电极表面,最后,结合凝集素-糖蛋白高的特异性吸附作用将葡萄糖氧化酶(GOD)固定在电极上。该传感器具有稳定性好、抗干扰能力强、线性范围宽、检测限低等特点。该工作具有三个特点:一是PTC-NH2/PB复合膜氧化还原活性强,导电性好,且比表面积大、表面活性位点多等优点,是一种极佳的电极修饰材料;二是由于GP-SNFs大的比表面积,提高了蛋白酶的负载量,同时为酶的固定提供了良好的微环境,保持酶的生物活性,所以提高了生物传感器的响应性能;三是从酶的固定方法考虑。采明了凝集素-糖蛋白特异性识别的方法对GOD进行固载,形成一层定向有序复合膜,这种固定方法更好地维持了酶的三维空间结构,使酶分子较好的保持原有的构型。
     3.基于铂纳米颗粒负载的碳纳米管和糖蛋白-凝集素特异作用构建葡萄糖生物传感器的研究
     基于直接电催化的第三代生物传感器。无需引入电子媒介体,故无需考虑其渗漏对样品造成污染的问题。但是由于氧化还原蛋白和酶的反应活性中心深埋在分子内部,难以和电极表面进行直接电子传输。合成了一种导电性优良的纳米铂负载碳纳米管的杂化材料(Ptnano-CNTs),扮演“分子导线”的角色,并结合层层自组装(LBL)技术和凝集素-糖蛋白特异性吸附作用将GOD固定在电极表面,成功地实现了GOD的直接电子传输。研究结果表明,几种物质的协同作用使得蛋白质分子在保持良好生物活性和电化学活性的同时,还提高了氧化还原蛋白质与电极之间的电子交换速度,从而制备具有高灵敏度、低检测限和高稳定性的葡萄糖生物传感器。
     4.基于葡萄糖氧化酶的直接电子转移为媒介的无试剂电流型CA 15-3免疫传感器的研究
     在传统的电化学免疫传感器构建中,大多需引用电子媒介体作为组装和检测进程中的跟踪试剂,但是其存在造成步骤繁琐、污染样品和信号不稳定等缺点。基于此,利用GOD自身电子转移产生的氧化还原峰为电化学探针,来实现直接对CA 15-3抗原分子的定量检测,设计了一种真止无试剂无媒介型的免疫传感器。将碳纳米管用有机硅纳米球分散,制得壳聚糖纳米球包覆的功能化碳纳米管复合材料(CNTs-OrgSi@CS)为电极基底。同时,采用铂纳米簇(Pt NCs)来增加界面的导电性,由于其粒径和酶的大小很接近,更能接近酶的氧化还原中心,极大地提高了酶与电极之间的电子转移速率,增加响应的灵敏度。在Pt NCs/CNTs-OrgSi@CS纳米复合膜的协同作用下,GOD产生了一对对称性好、可逆性强、电流值大的氧化还原峰。然后,将CA 15-3抗体通过Pt NCs连接在GOD的表面.我们以这对氧化还原峰为跟踪电信号,来考察不同浓度的抗原捕获上去的电流值的变化,进而米实现对抗原的定量检测。另外,使用GOD为封闭剂,封闭免疫电极上的非特异性吸附位点,并同时利用GOD的生物催化放大作用放大响应电流信号,进一步提高免疫传感器灵敏度的新方法。经实验研究证明,该方法操作简单,切实可行,与常规的方法相比,该免疫生物传感器更灵敏、稳定、清洁、绿色。
     5.基于"Click”化学和磁性金纳米壳协同作用的超灵敏葡萄糖生物传感器的应用研究
     致力于酶固定方法的研究。"click"化学,其反应具有较高立体选择效和高控制性,常用于有机或医药合成试验中。本研究中将‘'click"化学作为酶的固载技术,并用于传感器的制备过程。为了进一步提高传感器的灵敏度,合成了磁性金纳米壳(Au@Fe3O4)为修饰电极的增敏材料,并嫁接在新型的碳材料石墨烯表面,然后和离子液体-壳聚糖溶液混合(ILs-CS-Gra-Au@Fe3O4)。借助“click"化学,在Cu(Ⅰ)的催化作用下,将叠氮化的ILs-CS-Gra-Au@Fe3O4和炔基化的GOD进行"click"反应,构建了高灵敏的葡萄糖生物传感器。通过“click”化学,实现了对酶蛋白的成功固载。此方法反应条件温和,能够很好的保持酶的生物活性并增加酶的固载量和牢固性,成功的实现了酶自身的直接电子转移过程。较之传统的固定方法而言,该传感器的稳定性、灵敏度和寿命有了显著的提高,因此,通过这种方法所构建的传感器在生物技术领域中具有潜在的应用优势。
Electrochemically biosensor is a inter-discipline based on electrochemical analysis and biological technology, which consist of a biological recognition element (such as enzyme, antibody, etc) in intimate contact with a suitable transducer. In the fabricated process of biosensors, it is very important to choice the immobilized methods and materials of biomolecules. Therefore, a series of research focuses on the preparation of multi-functionalized nanomaterials, the construction of the electrochemical sensing interface and biomolecules immobilization. The detaij contents are as follows:
     1. Amine-terminated organosilica nanosphere functionalized prussian blue for the electrochemical detection of glucose.
     The mediated-enzyme biosensors have attracted much attention. However, there are still several challenges concerning immobilization of electron-shuttling mediators on the electrode surface since low molecular weight soluble mediators can easily diffuse away from the electrode surface into the bulk solution when the biosensor is used continuously, which would lead to significant signal loss and greatly affect the performance and lifetime of the biosensor. To circumvent this problem, the monomeric mediators are linked directly with the organic polymer or proteins system. First of all, we adopted a facile and bottom-up method to synthesize organosilica nanospheres. which contain rich amino-group. Then prussian blue was prepared in organosilica nanospheres suspension, which is donated as amine-terminated organosilica nanosphere functionalized prussian blue (OSiFPB). The OSiFPB compound could not only effectively prevent the leakage of the PB mediator during measurements, but also easily form stable film on the electrode surface with efficient redox-activity and excellent conductivity. Furthermore. with the negatively charged surface of OSiFPB. this film could be used as an interface to adsorb the positively charged gold nanoparticles (PGNs). which were prepared in organic solvents at relatively high concentrations with improved monodispersity compared to those prepared in aqueous solution. The presence of PGNs provided a congenial microenvironment for adsorbed biomolecules and decreased the electron transfer impedance. Finally, with glucose oxidase as a model biomolecular, the proposed sensor showed rapid and highly sensitive amperometric response to glucose and this immobilization approach effectively improved the stability of the electron transfer mediator. This work would be promising for construction of biosensor and bioelectronic devices.
     2. Determination of glucose using pseud o-bienzyme channeling based on sugar-lectin biospecific interactions in a novel organic-inorganic composite matrix.
     It is effective method to prevent the leakage of the mediate through chemical linking, but the step is complexity. A porous organic conducting polymer containing abundant amino groups (PTC-NH2) was coated on the surface of PB film, which could not only avoid the leakage of the PB efficiently, but also provide an interface of abundant amino-groups to further modifiability. At the same time, gold/platinum hybrid nanostructure supported on silica nanofibers (GP-SNFs) were synthesize to enhance the sensitivity. Finally, the glucose oxidase (GOD) was attached on the electrode surface through the strong biological affinity links between Con A and sugar chains intrinsically. The proposed biosensor possessed high sensitivity and stability for the detection of glucose. Several advantages of the obtained sensors should be highlighted. Firstly, it was found that this resulting nanomaterial exhibited a high electrocatalytic activity toward glucose, and a necessary pathway of electron transfer. Secondly, with the use of porous PTC-NH2, overcame the defect of mediator leakage successfully, which enhanced the stability and sensitivity of the bioassay. Thirdly, the pseudo-bienzymatic sensors could be operated at low working potentials, and interferences from other electroactive compounds are minimal in biological samples. The proposed method can be extended to a large group of enzymes to provide great promise platforms for biosensor and bioelectronics applications.
     3. Study of the biosensor based on Pt nanoparticles supported on carbon nanotubes and sugar-lectin biospecific interactions for the determination of glucose.
     The third generation biosensor is based on the direct electrochemistry of the enzyme without the introduction of the redox-mediator, so it is unnecessary to consider that its leakage caused pollution problem of the sample. However, the redox center of the majority of the enzymes is buried inside the protein matrix, which results in a slow process of direct electron transfer between the electrode and enzyme. To facilitate superior electron transport, the nanomaterial may be selectively placed in an optimum position between the redox center and the enzyme periphery. In this concept, Pt nanoparticles supported on carbon nanotubes (Ptnano-CNTs) were prepared in the presence of carbon nanotubes (CNTs), as "molecular wires" to enhance the electronic transfer. Thereafter, concanavalin A (Con A) was adsorbed onto the precursor film by the electrostatic force between positively charged chitosan and the negatively charged Con A. Finally, the multilayers of Con A/GOD films were prepared based on biospecific affinity of Con A and GOD via layer-by-layer (LBL) self-assembly technique. The results shows the proposed biosensor provides a remarkable synergistic action of the response current toward glucose. It also exhibits high sensitivity, low detection limit, excellent reproducibility. good and anti-interfering capability. Thus, the electrode has good application potential in glucose detection.
     4. Reagentless amperometric cancer antigen 15-3 immunosensor based on enzyme-mediated direct electrochemistry.
     A novel strategy was proposed for the construction of reagentless and mediatorless immunosensors based on the direct electrochemistry of glucose oxidase (GOD). Firstly, a composite material containing carbon nanotubes (CNTs) and core-shell organosilica@chitosan nanospheres was successfully prepared and cast on the glassy carbon electrode surface directly. Then. Pt nanoclusters (Pt NCs) as an electron relay were deposited on it to form the interface of biocompatibility and huge surface free energy for the adsorption of the first GOD layer. Subsequently, the second Pt NCs layer was deposited on the surface of GOD to capture CA 15-3 antibodies (anti-CA 15-3). Finally. GOD. as a blocking reagent instead of bovine serum albumin, was employed to block the possible remaining active sites of the Pt NCs and avoid the nonspecific adsorption. The immunosensor with the double layer GOD membranes as tracer performed excellent biocompatible and avoided the pollution of mediator molecules, as well as amplify the response of the antigen-antibody reaction was proposed. Such a detection of immunointeraction provided a new promising platform for clinical immunoassay.
     5. A new immobilized glucose oxidase approach on magnetic gold nanoshell surface via click chemistry and its direct electrochemistry.
     Immobilizing biomolecular on the sensing electrode surface is one of the most important points to be considered in the construction of amperometric biosensors. The reported methods have exhibited their own advantage and disadvantage. In this concept, we devoted to the method study of enzyme immobilization. In this study, a novel glucose biosensor was developed based on click reaction. Firstly, alkynyl-terminated multifunctional magnetic gold nanoparticles (alkynyl-Mag-GNSs) consisting of gold nanoshells, carboxymethylated chitosan inner layer, and magnetic core were synthesized, then were grafted on the synergistic beneficial characteristics interface of carboxyl-modified graphene oxide, ionic liquids and chitosan modified electrodes. Finally, azido-glucose oxidase (azido-GOD) was covalent immobilized onto the formed films by click reaction. Compared to the conventional methods, the biosensor exhibited more sensitivity, a lower detection limit, and a wider linear range to glucose detection. Overall, this work provided a new avenue for electrochemical investigation of enzyme immobilization.
引文
[1]铃术周一,霍纪文,姜远海,生物传感器.北京:科学出版社,1988.
    [2]Martin S.P., Lamb D.J., Lynch J.M., et al. Enzyme-based determination of cholesterol using the quarts crystal acoustic wave sensor. Anal. Chim. Acta,2003,487:91-100.
    [3]Peter W. CarrFourier analysis of the transient response of potentiometric enzyme electrodes. Anal. Chem.,1977,49:799-802.
    [4]Habermuller K., Mosbach M., Schuhmann W. Electron-transfer mechanisms in amperometric biosensor. Fresenius'.J.Anal.Chem.,2000,366:560-568.
    [5]周爱儒等,生物化学.人民卫生出版社,2001,2.
    [6]Clark L.C., Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY.Acad. Sci.,1962,102:29-32.
    [7]Updike S.J., Hicks G.P. The enzyme electrode. Nature,1967,214:986-988.
    [8]伍林,曹淑超,易德莲.酶生物传感器的研究进展.传感器技术2005,24:4-6.
    [9]Emine K., Sule P., Esma K. Potentiometric bienzymatic biosensor based on PVC membrane containing palmitic acid for determination of creatine. Process. Biochem.,2006,41: 1371-1377.
    [10]Ionescu R.E., Gondran C.. Ghebe L.A., et al. Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. Anal.Chem.,2004, 76:6808-6813.
    [11]Silvana A.. Jean L.M. Twenty years research in cholinesterase biosensors:From basic research to practical applications. Biomol. Eng.,2006,23:1-15.
    [12]Rahman M.M., Ahmad U., Kazuaki S. Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential. Sensor. Actual. B,2008,137:327-333.
    [13]Dmitri I., Kateryna A., Plamen A. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi myrothecium verrucaria. Bioelectrochemistry,2008,74:101-110.
    [14]Tan F., Yan F., Ju H.X. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer. Electrochem. Commun., 2006,8:1835-1839.
    [15]Peng Y., Jiang D.L., Su L., et al. Mixed monolayers of ferrocenylalkanethiol and encapsulated horseradish peroxidase for sensitive and durable electrochemical detection of hydrogen peroxide. Anal. Chem.,2009,81:9985-9992.
    [16]Polsky R., Harper J.C., Wheeler D.R., et al. Electrically addressable diazonium-functionalized antibodies for multianalyte electrochemical sensor applications. Biosens. Bioelectron.,2008, 23:757-764.
    [17]Solanki P.R.. Kaushik A.. Ansari A.A. Multi-walled carbon nanotubes/sol-gel-derived silica/ chitosan nanobiocomposite for total cholesterol sensor. Sensor. Actual. B,2009,137:727-735.
    [18]Zhang Y.J., Li J., Shen Y.F., et al. Poly-L-lysine functionalization of single-walled carbon nanotubes. J. Phys. Chem. B,2004,108:15343-15346.
    [19]Marrakchi M., Dzyadevych S.V., Lagarde F., et al. Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk. Mater. Sci. Eng. C,2008,28:872-875.
    [20]Liu Y., Lu H.J., Zhong W., et al. Multilayer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification. Anal. Chem.,2006.78:801-808.
    [21]Zhao W., Xu J.J., Shi C.G., et al. Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir.2005,21:9630-9634.
    [22]Yoon H.C., Hong M.Y., Kim H.S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Anal. Chem.,2000,72:4420-4427.
    [23]Zhao W., Xu J.J., and Chen H.Y. Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles. Front. Biosci.,2005,10:1060-1069.
    [24]Liu L.J., Jin X., Yang S.M., et al. A highly sensitive biosensor with (Con A/HRP)n multilayer films based on layer-by-layer technique for the detection of reduced thiols. Biosens. Bioelectron.,2007,22:3210-3216.
    [25]Kobayashi Y., Anzai J.I. Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications. J. Electroanal. Chem.,2001.507: 250-255.
    [26]Dai Z.F., Wilson J.T., Chaikof E.L. Construction of pegylated multilayer architectures via (strept)avidin/biotin interactions. Mater. Sci. Eng. C.2007.27:402-408.
    [27]Yan Y.M., Baravik I., Yehezkeli O., et al. Integrated electrically contacted glucose oxidase/ carbon nanotube electrodes for the bioelectrocatalyzed detection of glucose.J. Phvs. Chem. C, 2008.112:17883-17888.
    [28]Fu Y.C., Chen C., Xie Q.J., et al. Immobilization of enzymes through one-pot chemical preoxidation and electropolymerization of dithiols in enzyme-containing aqueous suspensions To develop biosensors with improved performance. Anal. Chem.,2008,80:5829-5838.
    [29]Fu Y.C., Li P.H., Xie Q.J. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater. 2009,19:1784-1791.
    [30]Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry:diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.,2001,40:2004-2021.
    [31]胡君,李映.凌云等.“链接”化学及其在药物研究中的应用.化学试剂,2007,29:207-211.
    [32]Khanttskyy B., Dallinger D., Kappe C.O.J. Combining biginelli multicomponent and click chemistry:Generation of 6-(1.2.3-Triazol-l-yl)-dihydropyrimidone libraries. Comb. Chem., 2004.6:884-892.
    [33]Speers A.E., Cravatt B.F. A Tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc.,2005,127:10018.
    [34]Gierlich J., Burley G.A., Carell T.. et al. Click chenistry as a reliable method for the high-density postsynthethic functionalization of alkyne-modified DNA. Org. Lett.,2006,8: 3639-3642.
    [35]Speers A.E., Adam G.C., Cravatt B.F. Activity-based protein profiling in vivo using a copper(1)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc,2003,125: 4686-4687.
    [36]Brennan J.L., Hatzakis N.S., Robert Tshikhudo T., et al. Bionanoconjugation via click chemistry:The creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem.,2006,17:1373-1375.
    [37]Gole A., Murphy C.J. Azide-derivatized gold nanorods:Functional materials for "click" chem-istry. Langmuir,2008,24:266-272.
    [38]Ran Q., Peng R., Liang C., et al. Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry. Talanta,2011,83:1381-1385.
    [39]陈丽娟,杨明星,林深.主-客体化学研究进展,合成化学,2002,10:205-210.
    [40]Daniel M.C., Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quaumm-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104:293-346.
    [41]Lu A.H., Salabas E.L., Schuth F. Magnetic nanoparticles:synthesis, protection, functionaliza-tion, and application. Angew. Chem. Int. Ed.,2007,46:1222-1244.
    [42]Hong W.J., Bai H., Xu Y.X., et al. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C,2010,114: 1822-1826.
    [43]Sheng Q.L., Shen Y., Zhang H.F., et al. Neodymium(111) hexacyanoferrate(II)nanoparticles induced by enzymatic reaction and their use in biosensing of glucose. Electrochim. Acta,2008, 53:4687-4692.
    [44]Sheng Q.L., Luo K., Zheng J.B., Zhang H.F. Enzymatically induced formation of neodymium hexacyanoferrate nanoparticles on the glucose oxidase/chitosan modified glass carbon electrode for the detection of glucose. Biosens. Bioelectron.,2008,24:429-434.
    [45]Gao R.F.. Zheng J.B. Amine-terminated ionic liquid functionalized carbon nanotube-gold nano particles for investigating the direct electron transfer of glucose oxidase. Electrochem. Commun.,2009,11:608-611.
    [46]Kang X.H.. Mai Z.B., Zou X.Y., et al. A Novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal. Biochem.,2007.369:71-79.
    [47]Zhong H., Lei X., Hurt X.. et al. Design of one-to-one recognition triple Au nanoparticles DNA probe and its application in the electrochemical DNA biosensor. Chem. Commun.,2009, 45:6958-6960.
    [48]Xu H., Mao X., Zeng Q.X.. et al. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal. Chem..2009.81:669-675.
    [49]Zhang S.S., Zhong H.. Ding C.E. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Anal. Chem.,2008.80:7206-7212.
    [50]Mao X., Ma Y.Q.. Zhang A.G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal. Chem.,2009,81:1660-1668.
    [51]Zayats M.. Baron R., Popov I., et al. Biocatalytic growth of Au nanoparticles:From mechan-istic aspects to biosensors design. Nano Lett.,2005.5:21-25.
    [52]Britto P.J., Santhanam K.V.. Rubio A., et al. Improved charge transfer at carbon nanotube electrodes. Adv. Mater.,1998.11:154-157.
    [53]Ragupathy D., Gopalan A.I.. Lee K.P. Synergistic contributions of murtiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochem. Commun.,2009,11:397-401.
    [54]Wu X.M., Zhao B., Wu P.. et al. Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. J.Phys. Chem. B,2009.113:13365-13373.
    [55]黄桂荣.陈建.石墨烯的合成与应用.炭素技术,2009,28:35-39.
    [56]Kang X.H., Wang J.. et al.Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron.,2009,9:3458-3462.
    [57]Shao Y.Y.. Wang J., Wu H.. et al. Graphene based electrochemical sensors and biosensors:A Review. Electroanal,2010.22:1027-1036.
    [58]Song Y.J.. Qu K.G., Zhao C., et al. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater,2010.22:2206-2210.
    [59]Qiu J.D.. Peng H.Z.. Liang R.P. et al. Preparation of three-dimensional ordered macroporous Prussian blue film electrode for glucose biosensor application. Electroanal.,2007.19: 1201-1206.
    [60]Wang C.H., Yang C. Song Y.Y., et al. Adsorption and direct electron transfer from hemo-globin into a three-dimensionally ordered macroporous gold film. Adv. Funct.Mater,2005,15: 1267-1275.
    [61]Chen X.J.. Wang Y.Y.. Zhou J.J., et al. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem.,2008.80:2133-2140.
    [62]Qian L., Yang X.R. Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta,2006.68:721-727.
    [63]Diaconu M.. Litescu S.C., Radu G.L.. Laccase-MWCNT-chitosan biosensor-a new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensor. Actual. B,2010. 145:800-806.
    [64]Yang S.L.. Liu X.Y.. Zeng X.D.. et al. Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensor. Actual. B, 2010.145:762-768.
    [65]Xu S.. Li Z.H., Wang Q.. et al. A novel one-step method to synthesize nano/micron-sized ZnO sphere. J. Alloy. Compd.,2008.465:56-60.
    [66]Zhang M.N., Yamaguchi A., Morita K., et al. Electrochemical synthesis of Au/polyaniline-poly(4-Styrenesulfonate) hybrid nanoarray for sensitive biosensor design. Electrochem. Commun.,2008,10:1090-1093.
    [67]Daniel M.C., Astruc D. Gold Nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104:293-346.
    [68]Guo S. J., Wang E. K. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta,2007,29:181-192.
    [69]Xiao Y., Patolsky F., Katz E. "Plugging into enzymes":Nanowiring of redox enzymes by gold nanoparticle. Science,2003,299:1877-1881.
    [70]谭惠民.高分子新材料丛降-超支化聚合物.北京,化学工业出版社,2005,80-81.
    [71]Sun Y.Y., Yan F., Yang W.S., et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials, 2006,27:4042-4049.
    [72]邱星屏.Fe304磁性纳米粒子的合成及表征.厦门大学学学报:自然科学版,1999,38:711-715.
    [73]Kato K., Radbruch A. Isolation and characterization of CD34-hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry,1993,14:384-392.
    [74]陈功,殷瑁.磁性纳米材料在生物医学领域的应用.中国医学装备.2006,3:30-32.
    [75]Rossi L.M., Quach A.D., Rosenzweig Z. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem.,2004,380:606-613.
    [76]Loaiza O.A., Laocharoensuk R., Burdick J., et al. Adaptive orientation of multifunctional nanowires for magnetic control of bioelectrocatalytic processes. Angew. Chem. Int. Ed.,2007, 46:1508-1511.
    [77]Stoeva S.I., Huo F., Lee J.S.. et al. Three-layer composite magnetic nanoparticle probes for DNA.J.Am. Chem. Soc.,2005,127:15362-15363.
    [78]Guo S.J., Dong S.J., Wang E.K., Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables:preparation and application as electrocatalysts for oxygen reduction. J. Phys. Chem. C,2008,112:2389-2393.
    [79]Wang Y., Qian W.P., Tan Y., et al. Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells. Talanta,2007,72:1134-1140.
    [80]Hecht H.J., Kalisz H.M., Hendle J., et al. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J. Mol. Biol.,1993,229:153-172.
    [81]Swoboda B.E., Massey V. Purification and properties of the glucose oxidase from Aspergillus nige. J. Biol. Chem.1965,240:2209-2215.
    [82]Wang G., Thai N.M., Yau S.T. Preserved enzymatic activity of glucose oxidase immobilized on all unmodified electrode. Electrochem. Commun.2006,8:987-992.
    [83]Pasic A., Koehler H., Klimant I., Schaupp L. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sensor. Actual. B.2007,122:60-68.
    [84]Wang Y.T., Yu L.. Zhu Z.Q.. et al. Improved enzyme immobilization for enhanced bioelectro-catalytic activity of glucose sensor. Sensor. Actual B,2009,136:332-337.
    [85]钱军民,李旭祥.氧化还原聚合物酶电极生物传感器电流型酶传感器用高分子媒介体的研究进展.石化技术与应用2000,18:187-190.
    [86]Kurita R., Tabei H., Iwasaki Y., et al. Biocompatible glucose sensor prepared by modifying protein and vinyl ferrocene monomer composite membrane. Biosens. Bioelectron.,2004,20: 518-523.
    [87]Bean L.S., Heng L.Y.. Yamin B.M., et al, The electrochemical behaviour of ferrocene in a photocurable poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor. Bioelectrochemistry.2005,65:157-162.
    [88]Ghica M.E., Brett C.M.A. A glucose biosensor using methyl viologen redox mediator on carbon film electrodes. Anal. Chim. Acta,2005,532:145-151.
    [89]Qiu J.D., Deng M.Q., Liang R.P., Xiong M. Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sensor. Actuat. B, 2008135:181-187.
    [90]Yin B., Yuan R., Chai Y.Q., et al. Amperometric glucose biosensors based on layer-by-layer assembly of chitosan and glucose oxidase on the prussian blue-modified gold electrode. Biotechnol. Lett.,2008,30:317-322.
    [91]Wang J. Electrochemical glucose biosensors. Chem. Rev.,2008,108:814-825.
    [92]Patolsky F., Weizmann Y., Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed.,2004.43:2113-2117.
    [93]焦奎,张书圣.张敏等.电化学免疫分析法进展.分析化学,1995,23:1211-1217.
    [94]Cheng W., Jiang J., Dong S.J., et al. Alternate assemblies of thionine and Au-nanoparticles on an amino functionalized surface. Chem. Commun.,2002,16:1706-1707.
    [95]Santos A.S., Pereira A.C., Duran N., et al. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube. Electrochim. Adta,2006,52:215-220.
    [96]Du P.. Wu P.. Cai C.X. A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly(nile blue A). J. Electroanal. Chem., 2008.624:21-26.
    [97]Yang D.W., Liu H.H. Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for deter-mination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens. Bioelectron.,2009,25:733-738.
    [98]Yao Y.L., Shiu K.K. Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film. Electrochim. Acta,2007, 53:278-284.
    [99]Sun N.J., Guan L.H., Shi Z.J., et al. Ferrocene Peapod Modified Electrodes:Preparation. Characterization, and Mediation of H2O2. Anal. Chem.,2006.78:6050-6057.
    [100]Fiorito P.A., Goncales V.R., Ponzio E.A., et al. Synthesis, characterization and immobili- zation of prussian blue nanoparticles:A potential tool for biosensing devices. Chem. Commun.,2005.3:366-368.
    [101]Garcia Armada M.P.. Losada J., Cuadrado I., et al. Electrodes modified with a siloxane copolymer containing interacting ferrocenes for determination of hydrogen peroxide and glucose. Sensor. Actuat. B,2003,88:190-197.
    [102]Yi H., Wu L. Q., Bentley W.E., et al. Biofabrication with chitosan. Bionacromlecules,2005, 6:2881-2894.
    [103]Walcarius A., Mandler D., Cox J.A., et al. Exciting new directions in the intersection of functionalized sol-gel materials with electrochemistry. J. Mater. Chem.,2005,15:3663-3689.
    [104]Yang S., Jia W.Z., Qian Q.Y., et al. Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity. Anal. Chem.,2009,81:3478-3484.
    [105]Yao H., Hong J.M., Li N., et al. Homogenous thionine-SiO2 nanocomposite spheres: sonochemical preparation, characterization, and application in H2O2 biosensor. J. Nanosci. Nanotechnol.,2009,9:2421-2425.
    [106]Fei B., Lu H.F., Xin J.H. One-step preparation of organosilica@chitosan crosslinked nano-spheres. Polymer,2006,47:947-950.
    [107]Ipe B., Yoosaf K., Thomas K.G. Functionalized gold nanoparticles as phosphorescent nano-materials and sensors. J. Am. Chem. Soc.,2006,128:1907-1913.
    [108]Guo S.J., Wang E.K. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta,2007,598:181-192.
    [109]Crespilho F.N., Emilia Ghica M., Florescu M.. et al. A strategy for enzyme immobilization on layer-by-layer dendrime-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun.,2006,8:1665-1670.
    [110]Wang M.J., Wang L.Y., Wang G., et al. Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody-antigen reactions. Biosens. Bioelectron.,2004,19:575-582.
    [111]Lei C.X., Yang Y., Wang H., et al. Amperometric immunosensor for probing complement Ⅲ (C3) based on immobilizing C3 antibody to a nano-Au monolayer supported by sol-gel-derived carbon ceramic electrode. Anal. Chim. Acta,2004,513:379-384.
    [112]Gittins D.I., Caruso F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed.,2001,16:3001-3004.
    [113]Zhang L.Y., Yuan R., Chai Y.Q., et al. Investigation of the electrochemical and electro-catalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode. Anal. Chim. Acta,2007,596:99-105.
    [114]Zhuo Y.. Yuan P.X., Yuan R.. et al. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials,2008.29:1501-1508.
    [115]Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem.,1979,101:19-28.
    [116]Bard A.J., Faulkner L.R. Electrochemical methods:Fundamentals and applica-tions.2nd ed., Wiley. New York,2001, p.231.
    [117]Kamin R.A., Wilson G.S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem.,1980,52:1198-1205.
    [118]Fiorito P.A., Brett C.M.A., Co"irdoba de Torresi S.I. Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta,2006,69:403-408.
    [119]Wang X.Y.. Gu H.F., Yin F.,et al. A glucose biosensor based on prussian blue/chitosan hybrid film. Biosens. Bioelectron..2009.24:1527-1530.
    [120]Chen M.. Diao G.W. Electrochemical study of mono-6-thio-β-cyclodextrin/ferrocene capped on gold nanoparticles:Characterization and application to the design of glucose amperometric biosensor. Talanta,2009.80:815-820.
    [121]Qiu J.D., Zhou W.M., Guo J., et al. Amperometric sensor based on ferrocene-modified multi-walled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal. Biochem.,2009.385:264-269.
    [122]Pan D.W., Chen J.H., Nie L.H., et al. An amperometric glucose biosensor based on poly(o-aminophenol) and prussian blue films at platinum electrode. Anal. Biochem.,2004.324: 115-122.
    [123]Li J.P.. Wei X.P.. Yuan Y.H. Synthesis of magnetic nanoparticles composed by prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensor. Actual. B,2009,139:400-406.
    [124]Chen L., Gorski W, Bioinorganic composites for enzyme electrodes. Anal. Chem.,2001.73: 2862-2868.
    [125]Kandimalla V. B., Tripathi V. S., Ju H.X. A conductive ormosil encapsulated with ferrocene conjugate and multiwall carbon nanotubes for biosensing application. Biomaterials,2006.27: 1167-1174.
    [126]Sarma A. K., Vatsyayan P.. Goswami P.. et al. Recent advances in material science for developing enzyme electrodes. Biosens. Bioelectron.,2009,24:2313-2322.
    [127]Buschmann W.E.. Ensling J.. Gutlich P., et al. Electron transfer, linkage isomerization. bulk magnetic order, and spin-glass behavior in the iron hexacyanomanganate prussian blue analogue. Chem. Eur. J.,1999.5:3019-3028.
    [128]Chiu J.Y., Yu C.M., Yen M.J., et al. Glucose sensing electrodes based on a poly(3.4-ethylenedioxythiophene)/prussian blue bilayer and multi-walled carbon nanotubes. Biosens. Bioelectron.,2009.24:2015-2020.
    [129]Shobha Jeykumari D.R., Sriman N.S. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens. Bioelectron., 2008.23:1686-1693.
    [130]Liu Z.Y., Yuan R.. Chai Y.Q., et al. Highly sensitive, reagentless amperometric immunosensor based on a novel redox-active organic-inorganic composite film. Sensor. Actual. B,2008.134: 625-631.
    [131]Zhuo Y, Yuan, P.X., Yuan R.. et al. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials,2008,29:1501-1508.
    [132]Li W. J., Yuan R., Chai Y.Q.,et al. Reagentless Electrochemical hydrogen peroxide biosensor based on toluidine blue-derived organic material and functionalized gold nanoparticles. J. Electrochem. Soc.,2008,155:F97-F103.
    [133]Hong C.L., Yuan R., Chai Y.Q., et al. Biomolecule-doped organic/inorganic hybrid nano-composite film for label-free electrochemical immunoassay of a-1-Fetoprotein. Electroanal,2008,20:989-995.
    [134]Xu Y., Lin X. Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis. Electrochim. Acta,2007,52:5140-5149.
    [135]Zhang S.Z., Ni W.H., Kou X.H., et al. Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Adv. Funct. Mater.,2007,17:3258-3266.
    [136]Tsung C.K., Hong W.B., Shi Q.H., et al. Stape and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers. Adv. Funct. Mater.,2006,16:2225-2230.
    [137]Zhou S., Mcllwrath K., Jackson, G., et al. Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures.J. Am. Chem. Soc.,2006,128:1780-1781.
    [138]Danaee I., Jafarian M., Forouzandeh F., et al. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int. J. hydrogen energ.,2008.33: 4367-4376.
    [139]Peng T.Z., Cheng Q., Stevens R.C. Amperometric detection of escherichia coli heat-labile enterotoxin by redox diacetylenic vesicles on a sol-gel thin-film electrode. Anal. Chem..2000, 72:1611-1617.
    [140]Cheng Q., Peng T.Z., Stevens R.C. Signaling of escherichia coli enterotoxin on supra-molecular redox bilayer vesicles. J. Am. Chem. Soc.,1999,121:6767-6768.
    [141]Han K.K.; Richard C.; Delacourre A. Chemical cross-links of proteins by using bifunctional reagents. Int J Biochem.,1984,16:129-145.
    [142]Liang R.P., Qiu J.D., Cai P.X. A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique. Anal. Chim. Acta, 2005,534:223-229.
    [143]Kobayashi Y., Anzai J. Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications. J. Electroanal. Chem.,2001,507: 250-255.
    [144]Anzai J., Kobayashi Y., Nakamura N., et al. Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s. Langmuir,1999.15:221-226.
    [145]Guo S.J., Dong S.J., Wang E.K. Gold/platinum hybrid nanoparticles supported on multi-walled carbon nanotube/silica coaxial nanocables:Preparation and application as electrocatalysts for oxygen reduction. J. Phys. Chem. C.2008.112:2389-2393.
    [146]Cheng K.C., Kai J.J., Chen F.R. Improving the durability of prussian blue based on nano-composite thin film in Li- based liquid electrolyte. Electrochim. Acta.2007.52:6554-6560.
    [147]Zhou Y., Yang H.. Chen H.Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta,2008,76: 419-423.
    [148]Liu Q.. Lu X.B., Li J., et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron., 2007,22:3203-3209.
    [149]王荣.基于普鲁十蓝膜修饰铂电极的葡萄糖传感器的研究.化学研究与应用,2001,13.
    [150]Mattos I.L.. Gorton L., Laurell T. Development of biosensors based on hexacyanoferrates. Talanta,2000,52:791-799.
    [151]Li T.. Yao Z.H., Ding L. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol-gel film onto prussian blue modified electrode. Sensor. Actual. B,2004,101:155-160.
    [152]Serp P.H., Corrias M., Kalck P.H. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A.,2003.253:337-358.
    [153]Mestl G., Maksimova N.I.. Keller N., et al. Carbon nanofilaments in heterogeneous catalysis: An industrial application for new carbon materials. Angew. Chem. Int. Ed..2001,40: 2066-2068.
    [154]Penza M.. Rossi R... Alvisi M., et al. Pt and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sensor. Actuat. B,2008,135:289-297.
    [155]Girishkumar G.. Vinodgopal K., Kamat P.V. Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction. J. Phys. Chem.5,2004,108:19960-19966.
    [156]Liu Z., Lin X., Lee J.Y.. et al. Preparation and characterization of platinum-based electro-catalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir,2002.18:4054-4060.
    [157]Chakraborty S., Retna Raj C. Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine. Sensor. Actual. B,2010.147:222-227.
    [158]Zhuo Y., Yuan R.. Chai Y.Q., et al. Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on nafion modified electrode surface for a-1-fetoprotein determinations. Sensor. Actual. B,2006,114:631-639.
    [159]Chen X., Zhang J.Z., Wang B.Q., et al. Hydrogen peroxide biosensor based on sol-gel-derived glasses doped with Eastman AQ polymer. Anal. Chim. Acta.2001.434:255-260.
    [160]Ruan CM., Yang F., Lei C.H., et al. Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator. Anal. Chem.. 1998.70:1721-1725.
    [161]Fu Y.C., Li P.H., Xie Q.J., et al. One-pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv. Funct. Mater..2009.19:1784-1791.
    [162]Bahshi L.. Frasconi M., Tel-Vered R., et al. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Anal. Chem.,2008,80:8253-8259.
    [163]Liu G.D., Lin Y.H. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal. Chem.,2006,78:835-843.
    [164]Anzai J., Kobayashi Y. Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir,2000,16:2851-2856.
    [165]Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science,1997, 277:1232-1237.
    [166]Liu L.J., Jin X., Yang S.M., et al. A highly sensitive biosensor with (Con A/HRP)n multilayer films based on layer-by-layer technique for the detection of reduced thiols. Biosens. Bioelectron.,2007.22:3210-3216.
    [167]Bucur B., Danet A.F., Marty J.L. Versatile method of cholinesterase immobilisation via affinity bonds using concanavalin A applied to the construction of a screen-printed biosensor. Biosens. Bioelectron.,2004,20:217-225.
    [168]Kobayashi Y., Anzai J. Preparation and optimization of bienzyme multilayer films using lectin and glyco-enzymes for biosensor applications. J. Electroanal. Chem.,2001,507: 250-255.
    [169]Guo M.L., Chen J.H., Nie L.H., et al. Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride. Electrochim. Acta,2004,49:2637-2643.
    [170]Rong L.Q., Yang C., Qian Q.Y. Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta,2007,72:819-824.
    [171]Bard A.J., Faulkner L.R. Electrochemical Methods,2nd edition, Wiley, New York, (2001) p. 211.
    [172]Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem.,1979,100:263-270.
    [173]Liu Q., Lu X.B., Li J., et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens. Bioelectron., 2007.22:3203-3209.
    [174]Deng C.Y., Chen J.H., Chen X.L., et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens. Bioelectron.,2008.23:1272-1277.
    [175]Wen D., Zou X.Q., Liu Y., et al. Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta,2009,79:1233-1237.
    [176]Dhanraj R., Calum D., Denise E., et al. Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing. Sensor. Actual. B,2010,143:547-554.
    [177]Park S., Chung T.D., Kim H.C. Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem.,2003.75:3046.
    [178]Zhou Y., Yang H., Chen H.Y. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta,2008,76: 419-423.
    [179]Tang H., Chen J.H., Yao S.Z., et al. Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode. Anal. Biochem.,2004.331:89-97.
    [180]Liu Y., Wang M.K., Zhao F., et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron.,2005, 21:984-988.
    [181]Yang X., Dai T., Lu Y. Synthesis of novel sunflower-like silica/polypyrrole nanocomposites via self-assembly polymerization. Polymer,2006.47:441-447.
    [182]Yang H.P., Zhua Y.F. Glucose biosensor based on nano-SiO2 and "unprotected"'Pt nano-clusters. Biosens. Bioelectron.,2007.22:2989-2993.
    [183]Wang J., Electrochemical biosensors:toward point-of-care cancer diagnostics. Biosens. Bioelectron.,2006.21:1887-1892
    [184]Li W.J., Yuan R., Chai Y.Q., et al. Reagentless electrochemical hydrogen peroxide biosensor based on toluidine bule-derived organic material and functionalized gold nanoparticles. J. Electrochem Soc.,2008,155:F97-F103.
    [185]Fan C.H., Plaxco K.W., Heeger A.J. High-efficiency fluorescence quenching of conjugated polymers by proteins. J. Am. Chem. Soc.,2002,124:5642-5643.
    [186]Dai Z., Yan F., Chen J., Ju H.X. Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125. Anal. Chem.2003.75:5429-5434.
    [187]Chen J., Yan F., Dai Z., Ju H.X. Reagentless amperometric immunosensor for human chorionic gonadotrophin based on direct electrochemistry of horseradish peroxidase. Biosens. Bioelectron.2005,21:330-336.
    [188]Wang Y., Ren. J., Deng. K., Gui, L., Tang. Y. Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem. Mater.2000,12: 1622-1627.
    [189]Fei B., Lu H.F., Xin J.H. One-step preparation of organosilica@chitosan crosslink nano-spheres. Polymer.2006,47:947-950.
    [190]李践.无创血糖测试仪的现状和发展.医疗设备,2004,17:10-11.
    [191]Potts R.O., Tamada J.A., Tierney J.M. Glucose monitoring by reverse iontophoresis. DiabetesMetab. Res.2002.18:s49-s53.
    [192]Tierneym J., Tamada J.A., Potts R.O., et al. Clinical evaluation of the bio-grapher:a continual, non-invasive glucose monitor for patientswith diabetes. Biosens. Bioelectron.2001,16: 621-629.
    [193]Tierneym J., Jayalakshmi Y., Parris N.A., et al. Design of a biosensor for continual, trans-dermal glucose monitoring. Clin. Chem.,1999.45:1681-1683.
    [194]Di J.W., Cheng J.J., Xu Q., et al. Direct elc.trochemistry of lactate dehydrogenase immo-bilized on silica sol-gel modified gold electrode and its application. Biosens. Bioelectron.2007. 23:682-687.
    [195]Yang F., Jiao L.S., Shen Y.F., et al. Enhanced response induced by polyelectrolyte-functiona lized ionic liquid in glucose biosensor based on sol-gel organic-inorganic hybrid material. J. Electroanal. Chem.,2007,608:78-83.
    [196]Rajesh B.V., Takashima W., et al. An amperometric urea biosensor based on covalent immo-bilization of urease onto an electrochemically prepared copolymer poly(N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials,2005,26:3683-3690.
    [197]Singh S.. Solanki P.R., Pandey M.K., et al. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor. Anal. Chim. Acta.,2006,568:126-132.
    [198]Huang X.H., Chen Z.H. CoFe2O4 nanoparticles hosted in silica xerogels. Scr. Mater.,2006.54: 169-173.
    [199]Mitchell D.T.. Lee S.B., Trofin L., et al. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc.,2002,124:11864-11865.
    [200]Geim A.K., Novoselov K.S., Morozov S.V., et al. Electric field effect in atomically thin carbon films. Science,2004,306:666-669.
    [201]Bolot in K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun.,2008,146:351-355.
    [202]Balandin A.A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene. Nano Lett,2008,8:902-907.
    [203]Stoller M.D., Park S., Zhu Y., et al. Graphene-based ultracapacitors. Nano Lett.,2008,8: 3498-3502.
    [204]李汝雄.绿色溶剂离子液体的合成与应用.北京:化学工业出版社,2003:20-21.
    [205]Stoeva S.I., Huo F.W., Lee J.S., Mirkin C.A. Three-layer composite magneuc nanoparticle probes for DNA. J. Am. Chem. Soc.,2005.127:15362-15363.
    [206]Kim J., Park S.J., Lee J.E., Jin S.M., J.H., Lee J.H., Lee I.J. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Ed.,2006,45:7754-7758.
    [207]Liang Y.Y.. Zhang L.M. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan. Biomacromolecules,2007,8:1480-1486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700