可溶性碳纳米管改性物的制备及其水凝胶载药性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)自1991年被发现以来,由于其特有的力学、电学和化学特性以及独特的准一维管状分子结构,在许多高科技领域中具有许多潜在应用价值,迅速成为化学、物理学、材料科学以及生物医药领域的的研究热点。然而,CNTs呈化学惰性且不溶于常见的溶剂,这成为开展对其研究与应用的最大障碍,并且很多的研究表明CNTs的溶解性越好,其生物毒性越低。鉴于此,本研究利用生物大分子壳聚糖对碳纳米管进行表面改性和修饰处理,改善了碳管溶解性能。同时利用碳纳米管/壳聚糖复合物制备了新型的半互穿网络智能水凝胶,考察了其结构和性能。研究内容包括以下几方面:
     (1)采用两步微波辐射法,先以70%的浓硝酸氧化多壁碳纳米管,所得产物再与壳聚糖经酰胺化反应,制备多壁碳纳米管/壳聚糖复合物,两个反应可在1h内完成。实验通过两次调节反应液pH值并采用高速离心的方法,分离了未反应的氧化碳纳米管及壳聚糖原料,得到了纯碳纳米管/壳聚糖化合物。
     (2)采用红外光谱、紫外光谱对复合物结构进行了结构表征,并采用透射电镜观测了其形貌,采用热重分析方法研究了其热分解性能。结果表明:经过浓硝酸处理,碳纳米管表面产生了-COOH,C=O等含氧官能团;经过酰胺化反应,实现了壳聚糖在多壁碳纳米管上的共价接枝。
     (3)以戊二醛为交联剂,采用冷冻干燥的方法制备了一系列壳聚糖.碳纳米管/壳聚糖半互穿网络凝胶。测试了凝胶的机械性能,考察了凝胶在不同pH值缓冲溶液中的平衡水保留率和干凝胶的平衡溶胀率。实验结果表明,添加壳聚糖-碳纳米管复合物的凝胶与普通壳聚糖凝胶相比机械强度明显增加,并且保持了较好的pH敏感性。
     (4)对壳聚糖-碳纳米管/壳聚糖半互穿网络凝胶在不同条件下的溶胀动力学和退胀动力学进行了研究。结果表明,加入了CNT-CS后,智能水凝胶依然有很好的溶胀特性。其退胀性能与纯的CS凝胶一样也具有明显的pH敏感性,会在较低和较高pH缓冲溶液中的去溶胀率低,而在中性缓冲溶液中的去溶胀率高,而且不同的加入量对pH敏感性的影响不大。在酸性介质中,水凝胶扩散机理的特性指数n接近1,溶胀过程为Ⅱ迁移,而在其他三种介质中,水凝胶扩散机理的特性指数n在1和0.5之间,溶胀过程可用non-Fikcina扩散来描述。
     (5)以甲磺酸帕珠沙星为模型药物,对含有10%的壳聚糖-碳纳米管半互穿网络凝胶(C10)的释药性能与纯的壳聚糖水凝胶(C0)做了初步的对比研究。结果表明,所制备的凝胶的载药量都非常大。凝胶C0对药物的释放,在前期出现很明显的暴释现象;而凝胶C10的释放的比较缓慢、平稳,在体外释放的时间长达一周,有更好的缓释特性。
Since their discovery in 1991,Carbon nanotubos(CNTs)have become the research focus in chemistry,physics,material science and biomedicine.CNTs have a lot of potential applications in the future Hi-Tech field due to their special mechanical,electronic,chemical properties and unique one-dimensional tube structures.However,CNTs are chemical inertia and cannot dissolve in general organic solvents, which hind their researches and applications.Moreover,it has been reported that CNTs' toxicity could be reduced by improving their solubility.Here biomacromolecule chitosan was used to modify carbon nanotubes to improve their solubilities.CS-CNT/CS semi-IPN hydrogels were prepared and their structure and properties were studied.The main contents of this study are shown as follows:
     (1)CNT-CS was prepared by two steps through first oxidation of multiple-walled carbon nanotubes using 70%HNO_3 and then amidation of the oxidized products under microwave irradiation.The two processes could be completed in one hour.Purification of products was achieved by twice adjusting of pH value of the solution and centrifugation in succession,pure chitosan-grafted multiple-walled carbon nanotubes were obtained as final products.
     (2)The chemical structure of chitosan-grafted multiple-walled carbon nanotubes was characterized by IR and UV spectroscopy.Their morphology was characterized by transmission electron microscopy (TEM),and the content of CS was analyzed by TGA.Results show that -COOH,C=O groups were successfully generated.Chitosan has been covalently grafted to the MWCNTs through the amide-acyl bonding.
     (3)A series of CS-CNT/CS semi-IPN hydrogels were prepared by a pre-freezing and freeze-drying technique sequentially using glutaraldehyde as a crosslinker.The mechanical properties of all hydrogels were tested.Equilibrium water retention and equilibrium swelling ratio of hydrogels was studied in the buffer solutions with different pH values.Contrast with the normal CS hydrogel,the mechanical strength of these semi-IPN hydrogels was remarkably improved,while the pH sensitivities were well preserved.
     (4)The swelling and deswelling kinetics of CS-CNT/CS semi-IPN hydrogels were studied.When CNT-CS composites were added into CS hydrogels,the swelling property and deswelling property of CS-CNT/CS semi-IPN hydrogels can be preserved well.Meanwhile,it showed excellent pH sensitivity as the the normal CS hydrogel.Deswelling ratios were lower in strong acid and strong alkaline buffer solutions than in neuter buffer solutions.The effect of the amount of CNT-CS on the pH sensitivity was not remarkable.Under acid conditions,the kinetic exponent of hydrogel approximate to 1 and the swelling mechanism isⅡstyle.The other kinetic exponent is between 1 and 0.5 and the transport mechanism belongs to non-fickian.
     (5)Comparing to normal hydrogels,CS-CNT/CS semi-IPN hydrogels containe 10%CS-CNT composites(C10)and can be used as drug delivery system for model drugs-PZFX.It was found that the loading ratio of hydrogels is huge.Drug releasing ability of hydrogels CO is beginning with a burst,while hydrogels C10 release drugs slowly.It is proved that hydrogels C10 could prolong drug releasing time up to one week.
引文
[1]Iijima S.Helical microtubules of graphitie carbon.Nature,1991,354(6348):56-58
    [2]Thomas W Ebbesen.Self-preservation of rough-wall turbulent boundary layers.Phys.Today,1996,49(6):26-31
    [3]刘治,陈晓红,宋怀河.碳纳米管及其研究进展.化工新材料2002,30(4):1-4
    [4]Thess A,Lee R,Nikolaev P,et al.Crystalline ropes of metallic carbon nanotubes.Science,1996,273(5274):483-487
    [5]Jose-Yacaman M,Miki-Yoshide M,Rendon L,et al.Catalytic growth of carbon microtubules with fullerene structure.Appl.Phys.Lett.,1993,62(2):202-204
    [6]Ivanov V,Nagy J B,Lambin P,et al.The study of carbon nanotubes produced by catalytic method.Chem.Phy.Lett.,1994,223(2):329-335
    [7]Ebbesen T W.Carbon nanotubes.Phy.Today[J],1996,49:26-32
    [8]Hernadi K,Fonseca A,Nagy J B,et al.Catalytic synthesis carbon nanotubes.Synth Met.,1996,77(3):31-34
    [9]Peigney A,Laurent C,Dobigeon F,et al.Carbon nanotubes novel catalyticmethod.J.Mater.Res.,1997,12(3):613-615
    [10]Withers J C,Loutfy R D,Lowe T P.Fullerene commercial vision.Fullerrene Sci.Technol.,1997,5(1):1-31
    [11]Yacaman J,M,Yoshida M,Rendon L.Catalytic growth of carbon microtubules with fullerene structure.Appl.Phys.Lett.,1993,62(6):657-659
    [12]张春山,邵曼君.碳纳米管及其研究进展.化工新型材料,2004,32(7):1-5
    [13]胡文平,刘云圻,曾鹏举.纳米碳管.化学通报,2000,(2):7-11
    [14]Pederson M R,Broughton J Q,Nanocapillarity in fullerene tubules.Phys.Rev.Lett.,1992,69(18):2689-2692
    [15]Ajayan P M.Nanotubes from carbon.Chem.Rev.,1999,99(7):1787-1799
    [16]Wong E W,Sheehan P E,Lieber C M,.Nanobeam mechanics:elasticity strength and toughness of nanorods and nanotubes.Science,1997,277,1971-1975
    [17]Overney G,Zhong W,Tomanek D.Structural digidity and low-frequency vibrational-modes of long carbon tubules.Z.Phys.D,1993,27(1):93-96
    [18]Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes instabilities beyond linear response.Phys.Rev.Lett.,1996,76(14):2511-2514
    [19]陈卫祥,陈文录,徐铸德等.碳纳米管的特性及其高性能的复合材料.复合材料学报,2001,18(4):1-3
    [20]孙晓刚.碳纳米管的特性及应用.中国粉体技术,2001,7:29-33
    [21]董树荣,张孝彬,涂江平等.新型纳米材料-纳米碳管.材料科学与工程,1998,16(2):19-22
    [22]Ebbesen T W,Lezec H J,Hiura H,et al.Electrical conductivity of individual carbon nanotubes.Nature,1996,382(6586):54-56
    [23]Saito R,Fujita M,Dresselhaus G,et al.Electronic-structure and growth-mechanism of carbon tubules.Mat.Sci.Eng.,1993,19(2):185-191
    [24]Berber S,Kyum K,Tomanek D.Unusually high thermal conductivity of carbonnanotubes.Phys.Rev.Lett.,2000,84:4613-4619
    [25]Tsang S C,Chen Y K,Green M L H,et al.A simple chemical method of opening and filling carbon nanotubes.Nature,1994,372(7775):159-162
    [26]Lago R M,Tsang S C,Green M L H,et al.Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups.Chem.Commu.,1995,63(864):1355-1356
    [27]Hiura H,Ebbesen T W,Tanigaki K,Opening and purification of carbon nanotubes in high yields.Adv.Mater.,1995,7(14):275-276
    [28]Liu J,Rinzler A G,Dai H J,et al.Fullerene pipes.Science,1998,280(9789):1253-1256
    [29]Niyogi S,Hu H,Hamon M A,et al.Chromatographic Purification of Soluble Single-Walled Carbon Nanotubes(s-SWCNTs).J.Am.Chem.Soc.,2001,123(4):733-734
    [30]Zhao B,Hu H,Niyogi S,et al.Chromatographic Purification and Properties of Soluble Single-Walled Carbon Nanotubes.J.Am.Chem.Soc.,2001,123(47):11673-11677
    [31]李博,廉永福,施祖进等.单层碳纳米管的化学修饰.高等学校化学学报,2000,21(11):1633-1635
    [32]Fu K F,Huang W J,Lin Y,et al.Defunctionalization of Functionalized Carbon Nanotubes.Nano Lett.,2001,1(8):439-441
    [33]Sun Y P,Huang W J,Lin Y,et al.Soluble Dendron-Functionalized Carbon Nanotubes:Preparation,Characterization,and Properties.Chem.Mater.,2001, 13(9):2864-2869
    [34]Chen J,Rao A M,Haddon R C,et al.Dissolution of full-length single-walled carbon nanotubes.J.Phys.Chem.B.,2001,105(13):2525-2528
    [35]Riggs J E,Guo Z X,Sun Y P,et al.Srong luminescence of solubilized carbon nanotubes.J.Am.Chem.Soc.,2000,122(24):5879-5880
    [36]Hill D E,Lin Y,Rao A M,et al.Functionalization of Carbon Nanotubes with Polystyrene.Macromol.,2002,35(25):9466-9471
    [37]Chen Q,Dai L,Gao M,Mau A W H.Plasma activation of carbon nanotubes for chemical modification.Phy.Chem.B,2001,105(3):618-622
    [38]Dai L,Zientek P,John H A,et al.Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma- activated polymer surfaces.Surf.Interface Anal.,2000,29(1):46-55
    [39]Tasis D,Tagmatarchis N,Georgakilas V,Prato M.Soluble carbon nanotubes.Chem.Eur.J.,2003,(9):4000-4008
    [40]Lin T,Bajpai V,Ji T,et al.Chemistry of carbon nanotubes,Aust.J.Chem.,2003,56(7):635-651
    [41]Tasis D,Tagmatarchis N,Bianco A,et al.Chemistry of carbon nanotubes.Chem.Rev.[J],2006,106(3):1105-1136
    [42]Yu J G,Huang K L,Liu S Q,Tang J C.Preparation and characterization of soluble methyl-b-cyclodextrin functionalized single-walled carbon nanotubes.Phy.E,2008,40:689-692
    [43]Pastorin G,Wu W,Wieckowski S,et al.Double functionalization of carbon nanotubes for multimodal drug delivery.Chem.Commun.,2006,(11):1182-1184
    [44]McDevitt M R,Chattopadhyay D,Kappel B J,et al.Tumor Targeting with Antibody-Functionalized,Radiolabeled Carbon Nanotubes.J.Nucl.Med.,2007,48(7):1180-1189
    [45]Liu Z,Cai W B,He L N,et al.In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.Nat.Nanotechnology,2007,2(1):47-52
    [46]Bianco A,Hoebeke J,Kostarelos K,et al.Carbon nanotubes:on the road to deliver.Curr.Drug Deliver,2005,2(3):253-259
    [47]Pantarotto D,Partidos C D,Hoebeke J,et al.Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses.Chem.Biol.,2003,10(10):961-966
    [48]Pantarotto D,Singh R,McCarthy D,et al.Functionalized carbon nanotubes for plasmidDNA gene delivery.Angew.Chem.Int.Ed.,2004,43(39):5242-5346
    [49]Bianco A,Hoebeke J,Godefroy S,Chaloin O,Pantarotto D,Briand JP,Muller S,Prate M,Partidos CD.Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties.J.Am.Chem.Soc.,2005,127(1):58-59
    [50]Kam N W,Liu Z,Dai H.Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing.J.Am.Chem.Soc.,2005,127(36):12492-12493
    [51]Kam N W,Liu Z,Dai H.Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for Efficient Intracellular Delivery of siRNA and Potent Gene Silencing.J Am Chem.Soc.,2005,127(36):12492-12493
    [52]Webste T.J.,Waid M.C.,MeKenzie J.L.,et al.Nano-bioteehnology:cearbon nanofibres as improved neural and orthopaedic implnats.NnaoTeeh.,2004,15(1):48-56
    [53]Lee K M,Li L C,Dai L M.Asymmetric end-functionalization of multi-walled carbon nanotubes.J.AM.Chem.Soc.,2005,127,4122-4123
    [54]Varma R S,Dahiya R.An expeditious and solvent-flee synthesis of 2-amino substituted isoflav-3-enes using microwave irradiation.J.Org.Chem.,1998,63,8038-8041
    [55]Elena V,Basiuk,Ivan P L,et al.Solvent-free derivatization of pristine multi-walled carbon nanotubes with dithiols.Mater.Lett.,2006,60:3741-3746
    [56]Sarah E B,Wei C,Tami L L,Kevin P W.Covalaently bonded adducts of deoxyribonucleic acid(DNA)oligonucleotides with single-wall carbon nanotubes:synthsis and hybridization.Nano Lett,2002,2(12):1413-1417
    [57]Chen J,Rao A M,Hu H,et al.Dissolution of full-length single-walled carbon nanotubes.J.Phys.Chem.B,2001,105,2525-2528
    [58]Ko F H,Lee C Y,Ko C J,Chu T C.Purification of multi-walled carbonnanotubes through microwave heating of nitric acid in a closed vessel.Carbon.,2005,43,727-733
    [59]Chen C M,Chen M,Peng Y W,Yu H W,Chen C F.High efficiency microwave digestion purification of multi-walled carbon nanotubes synthesized by thermal chemical vapor deposition.Thin Solid Films,2006,498,202-205
    [60]Zhu S Y,Zhang H C,Bai R K.Microwave accelerated dissolution of MWCNT in aniline.Mater.Lett.,2007,61(11):16-18
    [61]Wang Y B,Iqbal Z F,Mitra.Microwave-induced rapid chemical funetionalization of single-walled carbon nanotubes.Carbon,2005,43,1015-1020
    [62]房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状.高技术通讯,2001,(3):107-110
    [63]Scrapa J S,Mueller D D,Klotz I M.Slow hydrogen-deuterium exchange in a non-.alpha.-helical polyamide.J.Am.Chem.Soc.,1967,89(24):6024-6030
    [64]Tanaka T.Collapse of gels and the critical endpoint.Phy.Rev.Lett.,1978,40:820-823
    [65]Hirokawu Y,Tanaka T.Volume phase transition in a nonionic gel.J.Chem.Phy.,1984,81:6397-6380
    [66]Sousa R G,Freitas R F,Magalhaes W F.Structural characterization of poly(N-isopropylacrylamide)gels and some of their copolymers with acrylamide through positron annihilation lifetime spectroscopy.Polym.,1998,39(16):3815-3819
    [67]Kuramoto N,Shishido Y.Property of thermo-sensitive and redox-active poly(N-cyclopropylacrylamide-co-vinylferrocene)and poly(N-isopropylacryl amide -co-vinylferrocene).Polym.,1998,39(3):669-675
    [68]Chen L,Houma Y,Mizutani T,et al.Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer.Polym.,2000,41(1):141-147
    [69]Katono H,Sanui K,Ogata N,et al.Drug release off behaveior and deswelling kinetics of thermo-responsive IPNs composed of poly(acrylarnide-co-butyl methacrylate)and poly(acrylic acid).Polym.J.,1991,23(10):1179-1189
    [70]Takashi A,Masahiko K,Hiroki K,et al.Temperature-responsive interpenetrating polymer networks constructed with Poly(acrylic acid)and Poly(N,N-dimethyl -acrylamide).Macromol.,1994,27(4):947-952
    [71]Hirokawa Y,Tanaka T.Volume phase transition in nonionic gels.J.Chem.Phy.[J],1984,81(2):6379-6380
    [72]Otake K,Inomata H,Konno M,et al.Thermal analysis of the volume phase transition with N-isopropylacrylamide gels.Macromol.,1990,23(1):283-289
    [73]IIavsky M,Hrouz J,Havlicek I.Phase transition in swollen gels.Ⅶ.Effect of charge concentration on the temperature collapse of poly(N,N-diethylacrylamide) networks in water.Polym.,1985,26(10):1514-1518
    [74]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)-co-(丙烯腈)水凝胶的合成及性能研究.高分子学报,1997,(4):500-503
    [75]Lim Y H,Kim D,Lee D S.Drug releasing characteristics of thermo- and pH-sensitive interpenetrating polymer networks based on poly(N-isopropylaeryl amide).Journal of Applied Polym.Sci.,1997,64(13):2647-2655
    [76]Lee Y M,Kim S H,Cho C S.Synthesis and swelling characteristics of pH and thermo-responsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol)and poly(acrylic acid).J.Appl.Polym.Sci.,1996,62(2):301-311
    [77]Kang M S,Gupta V K.Photochromic cross-links in thermoresponsive hydrogels of poly(N-isopropylacrylamide):Enthalpic and entropie consequences on swelling behavior.J.Phy.Chem.B,2002,106(16):4127-4132
    [78]De S K,Aluru N R.A ehemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels.Mech.Mater.,2004,36(5):395-410
    [79]Gong J P,Nitta T,Osada Y.Electrokinetic modelling of the contractile phenomena of polyelectrolyte gels,one-demensional capillary model.J.Phy.Chem.,1994,98(38):9583-9587
    [80]Shiga K,Hirose Y,Okada A,et al.Elecyric fieldassociatcd deformation of polyelectrolyte gel near a phase transition point.J.Appl.Polym.Sci.,1992,46(4):635-640
    [81]Sawahata K,Hara M,Yaounage H,et al.Electrically controlled drug delivery system using polyelectrolyte gels.J.Controlled Release,1990,14(3):253-262
    [82]Kato N,Takahashi F.Acceleration of deswelling ofpoly(N-isopropylacrylamide)hydrogels by the treatment of a freeze-dry and hydration process.Bull.Chem.Soc.,1997,70(6):1289-1295
    [83]Lee K K,Cassler E L,Marehefli M,et al.Pressure-dependent phase transitions in hydrogels.Chem.Eng.Sci.,1990,45(3):766-767
    [84]Haraguehi K,Takehisa T,Nanoeomposite hydrogels:a unique organic-inorganic network strueture with extraordinary meclmaieal ahd swelling/deswelling properties.Ady.Mater.,2002,14:1120-1124.
    [85]Freitas R,Cussler E L,Temperature sensitive gels as extraction solvents.Chem.Eng.Sci.,1987,42:97-99.
    [86]金曼蓉,吴长发,张桂英.聚N-烷基丙烯酞胺类凝胶及其温敏特性.高分 子学报,1995,3(3):321-326.
    [87]Feil H,Bae Y H,Kim S W.Moleeular separation by thennosensitive hydrogel membranes.Membrane Sci.,1991,64:283-385.
    [88]Bae Y H,Okano T,Hsu R,et al.Thermo-sensitive polymers as on-off switehes for drug release.Maeromol.Chem.RaPid Commun.,1987,8:481-486.
    [89]Dong L C,Hofflnan A S.A novel approach of preparation of pH-sensitive hydrogels oft enteric drug delivery.J.Controlled Release,1991,15:141-143.
    [90]Heung S S,Kim S Y,Lee Y M.Indomethacin release ebehaviors from pH and Thermoresponsive poly(vinyl alcohol)and poly(aerylic acid)IPN hydrogels for site-specific durg delivery.J.AppI.Polym.Sci.,1997,65:685-693.
    [91]Yamada N.Thermo-responsive polymeric surafees;control of attachment and detachmet of cultured cells.Makromol.Chem.Rpaid Commun.,1990,11:571-576.
    [92]Yamazaki M,TsIucllida M,Takezawa T et al.A novel method to prepare size-regulated spheroids composed of human dermal fibroblasts.Biotech.Bioeng.,1994,44:38-41.
    [93]Liu F,Tao G,Zhuo R.Synthesis of thermal phase separating reactive polymers and their applications in immobilized enzymes.Polym.,1993,25(6):561-567
    [94]Ajayan P M,Ebbesen T W,Nanometre-size tubes of carbon.Rep.Prog.Phys.,1997,60:1025-1062.
    [95]Balasubramanian K,Burghard M,Biosensors based on carbon nanotubes.Anal Bioanal Chem,2006,385(3):1618-2642.
    [96]Smart S K,Cassady A I,Lu G Q,et al.The Biocompatibility of.Carbon Nanotubes.Carbon,2006,44(6):1034-1047
    [97]Bianco A,Kostarelos K,Prato M,Applications of carbon nanotubes in drug delivery.Curr Opin Chem Biol,2005,9(6):674-679.
    [98]曹春华,李家麟,贾志杰等.用二胺在碳纳米管上引入胺基团的研究.新型炭材料,2004,19(2):137-140.
    [99]晋卫军,孙旭峰,王煜,碳纳米管溶解性及其化学修饰.新型炭材料,2004,19(4):312-318.
    [100]Yang M,Yang Y,Yang H,et al,Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanopartieles with polyelectrolyte for the fabrication of biosensors.Biomaterials,2006,27(2):246-255.
    [101]Liu Y,Tang J,Chen X,et al,Decoration of carbon nanotubes with chitosan. Carbon,2005,43(15):3178-3180.
    [102]Spinks G.M,Shin S R,Wallace G.G.,Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion.Sensor Actuat B,2006,115:678-684.
    [103]Li J,Liu Q,Liu Y,et al,DNA biosensor based on chitosan film doped with carbon nanotubes.Anal.Biochem.,2005,346(1):107-114.
    [104]Shieh Y T,Yang Y F,Significant improvements in mechanical property and water stability of chitosan by carbon nanotubes.Eur.Polym.,2006,42(12):3162-3170.
    [105]Li J,Grennberg H,Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes.Chemistry,2006,12(14):3869-3875.
    [106]Zhu S,Zhang H,Bai R,Microwave accelerated dissolution of MWCNT in aniline.Mater.Lett.,2007,61(1):16-18.
    [107]Xing R,Liu S,Yu H H,Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro.Carbohyd Res.,2004,339:2515-2519.
    [108]杨连利,梁国正.水凝胶在医学领域的热点研究及应用.材料导报,2007,21,112-115.
    [109]Tong X,Zheng J J,Lu Y C,Zhang Z F,Cheng H M.Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol)hybrid hydrogeis.Mater Lett.,2007,61(8),1704-1706.
    [110]许明,赵家森,陈莉.碳纳米管对智能凝胶性能影响的研究.天津工业大学学报,2006,25(1)1-3.
    [111]蔡鹰,黄家康.CN 02271486.3水压式凝胶强度测定仪,2003
    [112]张艳群,哈鸿飞.氯化钠相转变K-型卡拉胶,聚N-异丙基丙烯酰胺共混凝胶的辐射合成及性质研究.高分子学报,2001,(4):485-488
    [113]Park T G.TemPerature modulated Protein Releaser fom PH/temperature sensitive hydrogels.Bio.Mater.,1999,20:517-521.
    [114]Sassi A P,Shwa A J,Hna S M.Partitioning of Proteins and small Biomoleules In Temperature-and-pH- sensitive hydrogels:Polym.,1996,7(11):2151-2164.
    [115]Liu F,Zhuo R X.Synthesis Of thermal Phase Separating Reaetive Polymers and Their Applieation Sinimmobilized enzymes.Polym.J.,1993,25:561-563.
    [116]Gutowska A,Bark J S,Kwon I C,Bae Y H,Cha Y,Kim S W.Squeezing hydrogels for controlled oral drug delivery.J.Controlled Release,1977, 48:141-148
    [117]Liu F,Zhuo R X.A Convenient Method For The Preparation of temperature-sensitive Hydrogels And their use For Enzyme immobilization.Bioteehnol.Appl.Bioehem.,1993,18:57-q55.
    [118]Kabra B G.Synthesis of fast response,temperature-sensitive poly(N-isopropyl acrylamide)gel.Polym.Commun.,1991,32(11):322-323
    [119]顾雪蓉,朱育平.凝胶化学.北京,化学工业出版社,2005,128-132
    [120]Alfrey J T,Gumee E F,Lloyd W G.Fabrication of thermoplastic.polym.J.Polym.Sci.Part C,1966,12:249-253
    [121]Satomatsuo E,Tanaka T.Theoretical analysis of closed-circuit grinding system based on comminution kinetics.J.Chem.Phy.,1988,89:1695-1699
    [122]Franson N M,Peppas N A.Influence of copolymer composition on non-Fickian Water transport through glassy copolymers.J.appl.Polym.Sci.,1983,28,1299-1310.
    [123]Korsemeyer N M,Merrwall E M,Peppas N A.Solute and penetrant diuffsion in Swellable Polymers.Ⅱ.Verification of theoretical models.J.Polym.Sci.,1986,24,409-434.
    [124]Lemieux P,Vinogradov S V,Gebhart C L,et al.Block and graft copolymers and Nanogel copolymer networks for DNA delivery into cell.J.Drug Targeting,2000,8(2):91-105
    [125]张高奇,周美华,马敬红等.顺1,4-聚丁二烯凝胶的制备及溶胀特性研究.东华大学学报(自然科学版),2004,30(2):20-23.
    [126]Chiu H C,Hsiue G H,Lee Y P.Synthesis and eharaeterization of PH-sensitive dextran hydrogels as a potential colon-specific drug delivery system.J.Biomater.Sci.Polym.Ed.,1999,10:591-608.
    [127]Peppas N A,Klier J.Controlled release by using poly(methaerylie acid-g-ethyleneglyeol)hydrogels.J.Controlled Release,1991,16:203-214.
    [128]QiuY,Park K.Enviromnent-sensitive hydrogels for drug delivery.Ady.Drug Deliv.Rev.,2001,53:321-339.
    [129]Miyata T,Uragami T,Nakmaae K.Biomoleeule-sensitive hydrogel.Ady.Drug Deliv.Rev.,2002,54:79-98.
    [130]罗宣干,卓仁禧,李满庆.5-氟尿嚓睫的D-氨基葡萄糖衍生物的合成及其抗肿瘤活性的研究.高等学校化学学报,1996,17(9):1416-1420.
    [131]Tasis D,Tagmatarchis N,Georgakilas V,Prato M.Soluble carbon nanotubes. Chem Eur J,2003,(9):4000-4008
    [132]Tasis D,Tagmatarchis N,Bianco A,et al.Chemistry of carbon nanotubes.Chem Rev,2006,106(3):1105-1136
    [133]刘艳飞,黄可龙,彭东明.甲磺酸帕珠沙星的合成工艺改进.中国药物化学杂志,2005,6,344-350
    [134]刘艳飞,刘素琴,彭东明,颜文斌,黄可龙.聚[碳酸(亚丁酯-co-ε-己内酯)酯]的制备及其载药微球性能的研究.化学学报,2007,65(19):2175-2180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700