Rg1、Rb1对糖尿病肾病大鼠肾脏保护作用及其对MCP-1蛋白及其mRNA表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病肾病(Diabetic Nephropathy,DN)是指糖尿病(Diabetes mellitus,DM)微血管病变所引起的肾脏结构和功能的改变,是糖尿病常见和严重的远期并发症之一。世界范围内,随着DM发病率的增加DN日益增多,在西方国家DN已成为终末期肾脏病(End sta ge rena l disease,ESRD)的主要原因。在我国DM患病率也不断增高,据估计我国糖尿病患者已超过4000万。我国因DN而发生慢性肾衰竭的人数也逐年上升。
     DN的病理特征包括:早期的肾脏肥大、肾小球和肾小管基底膜增厚及肾小球内高灌注、高跨膜压;病程进展可有肾小球细胞外基质积聚、肾小管间质纤维化。这些特征性病理变化是细胞外基质(Extracellula r Matrix,ECM)在肾小球系膜区以及肾小管间质堆积所致,而ECM的聚集与肾组织内单核/巨噬细胞(Monocytes/macropha ges)的广泛浸润有关。单核细胞趋化蛋白-1(Monocyte Chemoa ttracta nt Protein-1,MCP-1)是单核巨噬细胞特异性的趋化因子,对单核巨噬细胞有很强的趋化激活作用。从Ⅰ型或Ⅱ型DN患者肾组织活检以及DN大鼠肾脏病理学检查中均确认MCP-1是单核巨噬细胞聚集的主要因素。在DM过程中,代谢和血流动力学的变化相互作用,促进DN的发生。其中多重因素都可刺激肾脏固有细胞、间质浸润细胞产生MCP-1。而MCP-1能趋化单核/巨噬细胞,激活粘附分子,诱导溶酶体的释放,活化TGF-βl,促进超氧阴离子和胶原的产生,对DN的进展起了重要作用。
     本实验所用药物是从云南文山三七中提取出的人参皂甙单体Rb1、Rg1,是三七总皂甙(Pana x notoginseng saponins,PNS)的主要活性单体。中医认为,三七性温、味甘、微苦,归肝、胃经,具有化瘀止血、活血定痛、补虚强壮的效果,兼活血补血之功效于一身。其主要活性成分是PNS,其中含20多种达玛烷型皂甙,与人参主要成分一致,即人参二醇型皂甙Rb1(Panaxad iolof saponin Rb1,Rb1)、人参三醇型皂甙Rg1(Panaxad iol of saponin Rg1,Rg1)。Rb1、Rg1具有多种生物学功能,现在的研究主要集中在抗肿瘤、抗氧化、诱导细胞凋亡以及扩张血管、抑制血小板聚集、延长凝血时间、抗炎等方面。
     中医理论认为DN属于中医学的“水肿”、“肾消”和“尿浊”等病症范畴,其病机特点是本虚标实。《内经》云“虚则补之、实则泻之”。虚实夹杂、正邪交争之病在治疗时最应谨慎。正所谓补虚防助邪,祛邪防伤正。三七活血化瘀、补虚强壮,兼活血补血之功效于一身,很切合DN的中医病机,一方面活血化瘀不伤正,一方面补血益气不助邪。另外研究还发现:不管是PNS还是其主要成分单体Rg1、Rb1,都具有明显的肾脏保护作用,对多种肾脏疾病都有减轻作用。
     本文通过整体动物实验和体外细胞实验,应用免疫组织化学法(Immunohistochemistry,IHC)、原位杂交法(In situ hybrid iza tion,ISH)、MTT法以及Western blot等方法从组织、细胞、蛋白质、基因水平进行研究,旨在探讨Rg1、Rb1防治DN的作用机制。
     目的:
     通过建立DN大鼠模型,从整体动物实验研究Rg1、Rb1是否能够有效的改善DN大鼠肾功能、延缓肾脏病理损伤,进而从组织、细胞、蛋白质、基因水平研究Rg1、Rb1对MCP-1表达的影响,以期阐明Rg1、Rb1防治DN的作用机制。
     方法:
     整体实验采用腹腔内一次性注射STZ复制DM大鼠模型。清洁级雄性SD大鼠75只,正常组10只,其余造模成功后随机分组,各组分别给予相应药物或蒸馏水灌胃治疗;
     1.每周测量大鼠体重,于第4、8、12周末分别留尿测24h尿蛋白。12周后处死大鼠,取血清检测生化指标。取肾脏称重,计算肾重/体重比;染色后观察大鼠肾脏病理学变化。同时采用病理评分标准评价各组大鼠肾组织病理改变。
     2.IHC:检测大鼠肾组织中MCP-1蛋白表达情况;
     3.ISH:检测肾组织中MCP-1mRNA的表达情况。
     细胞实验,采用肾小球系膜细胞(Glomerular mesa ngia l cells,GMCs)体外培养。除空白组外,其余各组均用高糖刺激,并应用相应的纯药,检测下列指标。
     1.MTT:检测Rg1、Rb1对高糖刺激12h,24h,48h和60h时GMCs增殖的影响情况。
     2.Western blot:检测Rg1、Rb1对高糖刺激48h时GMCs表达的MCP-1蛋白含量的影响情况。
     结果:
     1.各治疗组大鼠一般情况及肾脏病理损害与模型组相比均有所改善。其中,①体重:与模型组比较各治疗组大鼠体重各周均有所增加,但没有统计学差异。②肾重/体重比:与模型组比,Rb1组大鼠肾重/体重比减轻明显,有极显著性差异(P<0.01);Rg1大、Rg1小也有减轻,有显著性差异(P<0.05)。③24h尿蛋白定量:与模型组比较,第4周、第8周Rg1大、Rg1小及Rb1组明显减轻,有极显著性差异(P<0.01);第12周,Rg1大、Rg及Rb1组有显著性差异(P<0.05)。④血生化:Rg1、Rb1可以降低BUN、Scr与TG,与模型组比较,各治疗组BUN均有极显著性差异(P<0.01),Scr方面Rg1大及Rb1组有极显著性差异(P<0.01),Rg1小组有显著性差异(P<0.05);TG治疗组均有降低趋势,但无统计学差异。Rg1、Rb1均可以减轻DN大鼠肾脏病理损害损伤指数。
     2.Rg1、Rb1可以减少肾组织MCP-1蛋白及其mRNA的表达,与模型组比较,Rg1小、大及Rb1肾组织MCP-1蛋白的表达均显著减少,具有极显著性统计学意义(P<0.01);Rg1小、Rg1大及Rb1组大鼠肾组织MCP-1mRNA表达明显减少,其中Rg1大剂量组与模型组相比有显著差异(P<0.05)。
     3.Rg1、Rb1能够抑制高糖刺激的GMCs增殖,各时相点以Rg1大剂量抑制效果最好。
     4.Rg1、Rb1能够明显抑制高糖刺激的GMCs分泌MCP-1蛋白,其中Rg1大剂量、Rb1大剂量与高糖组相比有极显著性差异(P<0.01)。Rg1小剂量、Rb1小剂量与高糖组相比有降低,但无统计学意义。
     结论:
     1.初步的药效学试验发现:Rg1、Rb1对DN大鼠的肾脏损伤有肯定的改善作用。
     ⑴Rg1、Rb1能显著改善DN大鼠的一般状况;能降低DN大鼠肾重/体重比;调整血脂,减轻24h尿蛋白排泄量,改善肾功能。
     ⑵Rg1、Rb1能减轻DN大鼠肾脏病理学改变,减轻肾小球系膜区增宽、系膜细胞增生,肾小管管腔扩张、小管上皮细胞胞质减少、细胞萎缩或空泡变性以及减轻肾小球和肾间质纤维化等。
     2.进一步的机理研究发现:Rg1、Rb1防治DN大鼠肾脏损伤的机理可能主要在于以下两个方面:
     ⑴Rg1、Rb1能够下调肾组织MCP-1蛋白及mRNA的表达。
     ⑵Rg1、Rb1能够不同程度的抑制高糖刺激下的GMCs的增殖和MCP-1蛋白的表达。
     总之,Rg1、Rb1可以改善DN大鼠肾功能,减轻DN肾脏病理损伤。抑制GMCs的增殖和MCP-1蛋白的表达;下调肾组织MCP-1蛋白及mRNA的表达可能是Rg1、Rb1防治DN的机理之一。
Diabetic nephropathy (DN) is an important microvascular complication of diabetic mellitus (DM) which caused the injury of the renal. As DM is growing quickly in the world wide rage, DN has been the first reason result in end-stage renal disease (ESRD) in the western country. The prevalence of DM is also growing fast in our country, according to one estimate there are more than 40,000,000 DM patients, so the ESRD induced by DN is growing continuously.
     There are characteristic pathological changes in the early stages of DN, such as the hypertrophy of kidney, the thickening of glomerular and tubular basement, the high perfusion and cross membrane pressure in the glomerulus. As DN progresses, there will be extracellular matrix accumulation , such as glomerulosclerosis and interstitial fibrosis.A central concept in understanding the pathogenesis of DN is that it results from a series of specific progressive renal pathological changes that have their onset early in the course of diabetes. These changes develop during along silent period, before features of clinical renal disease-including proteinuria, hypertension, and declining glomerular filtration rate (GFR)-are evident. Central to the nephropathological changes is the accumulation of extracellular matrix,leading to expansion of glomerular mesangial regions at the expense of filtration surface area, and thickening of the glomerular and tubular basement membranes.
     Evidence is accumulating that macrophages and their products play a significant role in those pathological changes. Increased glomerular macrophages have been observed in rats with experimental diabetes, as well as in biopsy samples of kidney from DM patients. There are associations prove that macrophages accumulate in kidney glomerulus and interstitium of patients with diabetic nephropathy is due to monocyte chemoattractant protein-1 (MCP-1), which is a chemokine produced by both tubular epithelial and glomerular mesangial cells (GMCs). The prolonged hyperglycemia, excessive production of Advanced Glycation End Products, overactivation of Protein kinase C, vasoactive substances like Angiotensin II and increased kidney chemokine production all can induce the production of MCP-1, and then the MCP-1 will recruiting and activating monocytes/macrophages from the circulation to kidney, activating the adhesion molecules and induceing the release of lysosomes, inducing TGF- P 1 and promoting the generation of superoxide anion and Collagens, thus play a key role in the progress of DN.
     There are clinical findings that urinary MCP-1 levels were significantly elevated in patients with diabetic nephrotic syndrome. And urinary MCP-1 excretion is proportional to the number of MCP-1 positive cells in the renal biopsy specimens. And patients used HMG-coA reducing enzyme inhibitor, angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor (ARB), and euglycemic agent like rosiglitazone all can reduce the levels of urinary MCP-1 and albuminuria excretion. The present study demonstrated that up-regulation of locally produced MCP-1 involved in advanced renal lesions in DN patients possibly through macrophages recruitment.
     The ginsenoside Rbl and Rgl used in this experiment are extracted from the yunna wenshan notoginseng radix, which are the principal active monomers in Panaxnotoginoside (PNS). Notoginseng is the radix of Araliaceae perennial herb Panax notoginseng ( Burk) F. H. Chen (PNG). The characteristic of PNG according to Chinese medicine is warm, sweet flavor, mini-bitter and entering liver, stomach meridians, with the effect of stop bleeding by removing stasis and arrest pain by promoting blood circulation, reinforcing deficiency and invigorating. With the two effects of promoting blood flow and nourish blood. The ginsenoside Rbl and Rgl are the major active components of PNS and ginseng, interestingly the content of the former is higher than the latter. Rbl, Rgl have many biological functions, the study of their pharmacologic action is range from expanding blood vessel, inhibiting platelet agglutination, prolonging coag time, anti-inflammatory, antioxygen, and to Inducing apoptosis. According to Chinese medicine theory, the change occur in DN is due to blood stasis and zheng qi deficiency, thus medicine with the effects of invigorating blood circulation and reinforcing deficiency have great effect. Notoginseng, radix with the advantage of nourishing the blood without aggravating haemostasis and promoting blood flow without injuring blood is very suitable for DN. The animal experiment and clinical research also indicate that either PNS or its key components Rgl and Rbl all have renal protective effect.
     In this thesis we investigate the mechanism of Rbl and Rgl in relief DN from levels of tissue, cell, protein and gene.
     Objective:
     In order to investigate the mechanism of Rbl and Rgl in relief DN from levels of organ, tissue, cell, protein and gene, we established DN rat model and high glucose cell model then observed the efficiency of Rbl and Rgl in influence MCP-1 gene and protein's expression.
     Methods:
     Diabetes induced in SD rats by intraperitoneal injection of streptozotocin (STZ) was used in vivo experiments. 75 SD rats were used in the study, 10 of the rats in normal group except that all the other were injected by STZ, after that the mice whose blood glucose were over 16.7mmol/l and urinary glucose were always over ++++ were recognized as DM animal model. After randomly divided into 5 groups, model group, irbesartan group, Rgl high dose group, Rgl low dose group and Rbl middle dose group, each group were treated accordingly.
     1. The urine were collected respectively at the end of the 4, 8, 12th week, and24-hour urinary protein were determined by coomassie briliant blue method.12 weeks after intraperitoneal injection of streptozotocin (STZ), all the ratswere sacrificed, the serum was collected for serum biochemical indexesdetermination, such as blood urea nitrogen (BUN), serum creatinine (Scr)and Triglyceride(TG). Kidneys were taken for pathological examination(HE, HE-PASM, and Mallory).
     2. Immunohistochemistry was used to examine the kidney's expression of
     MCP-1 protein. 3. In situ Hybridization was used to examine the kidney's expression of MCP-lmRNA.
     In the vitro study, we investigated the influence of Rbl and Rgl in GMCs' proliferation and expression of MCP-1 protein stimulated by high glucose. The cells were divided into control group, high glucose group, irbesartan group, and Rgl high dose group, Rgl low dose group and Rbl high dose group, Rbl low dose group.
     1. The rat mesangial cells were cultured successfully in vitro. High glucosewas used to induce proliferation of mesangial cells. Changes of mesangial cells'proliferation were detected by MTT reduction assay at 12 hours, 24 hours, 48hours and 60 hours.
     2. Western-blot was used to detecting the expression of MCP-1 protein in theintracytoplasm of GMCs stimulated by high glucose.
     Result:
     1. Compared with model group, the body weight increased in all the othergroups, but there is no significant statistics difference; The kidney weight/body weight ratio of Rbl group were significantly decreased(P<0.01), Rgl high andlow dose group were also decreased (P<0.05); the Urine protein of Rgl high and low dose group and Rbl group were significantly decreased (P<0.01) at the end of the 4 and 8 week, and alsodecreased (P<0.05) at the end of the 12 week. And Rgl, Rbl also decreasethe biochemical parameters such as BUN, Scr and TG. Compared withmodel group, the BUN of all the other groups were significantly decreased(P<0.01); Scr of Rgl high dose and Rbl group were significantly decreased(P<0.01), and the Rgl low dose group were also decreased (P<0.05); the TGof all the other groups were decreased, but there is no significant statisticsdifference.
     2. The severe pathological changes of kidney structure in rats with DN wereobserved, while the Ginsenoside-Rgl, Rbl groups were obviously lessened.
     3. The expression of MCP-imRNA and protein in the normal group is lowwhile markedly increased in the model group. In compare with model group,the expression of MCP-1 protein of Ginsenoside-Rgl, Rbl groups showedsignificant decrease (P<0.01); And the expression of MCP-lmRNA of Ginsenoside-Rgl, Rbl groups all showed decrease, but only the Rgl high dose group showed statistics difference (P<0.05),
     4. Rgl and Rbl both have the inhibiting effect on the proliferation of GMCsstimulated by high glucose, while the Rgl high dose group is the best.
     5. Rgl and Rbl can significantly decrease the over production of MCP-1protein in high glucose stimulated GMCs and with the dose dependenteffect.
     Conclusion:
     1. Pharmacodynamic Study found that Rg1, Rb1 may regulate the serum biochemical indexes, reduce the urine protein excretion, and alleviate severe pathological changes of kidney in rats with DN.
     2. Further study found that Rg1, Rb1 can reduce proliferation of GMCs, anddecrease the over expression of MCP-1 protein and mRNA in both renaltissue and the high glucose stimulated GMCs in vitro. This maybe one ofthe mechanisms in retarding DN renal injury by Rgl, Rbl.
引文
1. Mauer M, Drummond K; The lnternational Diabetic Nephropathy stud y Group.The early natural histo ry of nephropathy in type 1 dia betes : II. Early renalstructural cha nges in type 1 dia betes. Diabetes,2002,51(7):1580 -1587
    2. Remuzzi G, Schie ppati A, Ruggenenti P. NephroPathy in patients with type 2dia betes . N Engl J Med. 2002,346(15):1145-1151
    3. 国家“九五”攻关计划糖尿病研究协作组.中国12 个地区中老年人糖尿病患病率调查[J].中华内分泌代谢杂志, 2002,18(4):280
    4. Usui HK, Shika ta K, Sasaki M, et al. Macropha ge scavenger receptor-adeficientmice are resista nt aga inst dia betic nephropathy through ameliora tionof microinfla mma tion. Diabetes.2007 ,56(2):363- 372
    5. Wada T, Yokoya ma H, Matsushima K, et al. Monocyte chemoa ttracta nt protein-1: does it pla y a role in dia betic nephropathy? Nephrol DialTranspla nt.2003,18(3):457-459
    6. Ichinose K, Kawasa ki E, Eguchi K. Recent advancement of understa nd ingpathogenesis of type 1 dia betes and potential releva nce to dia beticnephropathy. Am J Nephrol. 2007,27(6):554-564
    7. Wang J, Adelson DL, Yilma z A, et al. Genomic organiza tion, annota tion, andliga nd-receptor inferences of chicken chemok ines and chemok ine receptorgenes based on comparative genomics. BMC Genomics. 2005,24;6(1):45
    8. Charo IF, Ransohoff RM. The ma ny roles of chemok ines and chemok inereceptors in infla mma tion. N Engl J Med.2006 ,354(6):610-21
    9. Arefieva TI, Kukhtina NB, Antonova OA, et al. MCP-1-stimula ted chemota xisof monocytic and endothelial cells is dependent on activa tion of differentsignaling cascades . Cytokine,2005,31(6):439- 446
    10. Arndt PG, Suzuki N, Avdi NJ, et al. Lipopolysaccha ride-ind uced c-Jun NH2-terminal kinase activa tion in huma n neutrophils:role of phospha tid ylinositol 3-Kinase and Syk-med iated pathwa ys. J Biol Chem. 2004,279(12):10883-10891
    11. Ahamed J, Haribabu B, Ali H. Cutting edge: Differential regula tion ofchemoa ttracta nt receptor-ind uced degranula tion and chemok ine production byreceptor phosphoryla tion. J Immunol. 2001,167(7):3559-3563
    12. Yang OO, Garcia-Zepeda EA, Walker BD, et al. Monocyte chemoa ttracta ntprotein-2 (CC chemok ineliga nd 8) inhibits replica tion of huma nimmunodeficiency virus type 1 via CC chemok ine receptor 5. J Infect Dis.2002,15;185(8):1174-8
    13. Ong VH, Eva ns LA, Shiwen X, Monocyte chemoa ttracta nt protein 3 as amed ia tor of fibrosis: Overexpression in systemic sclerosis and the type 1 tightskinmouse. Arthritis Rheum. 2003,48(7):1979-1991
    14. Wain JH, Kirby JA, Ali S. Leucocyte chemota xis: Exa mina tion of mitogenactivated protein kinase and phosphoinositide 3-kinase activa tion by MonocyteChemoa ttracta nt Proteins-1, -2, -3 and -4. Clin Exp Immunol.2002 ,127(3):436-44
    15. Sara fi MN, Garcia-Zepeda EA, MacLea n JA, et al. Murine monocytechemoa ttracta nt protein (MCP)-5: a novel CC chemok ine that is a structuraland functional homologue of huma n MCP-1. J Exp Med.1997 ,185(1):99-109
    16. 鲍荣辉,刘先哲.单核细胞趋化蛋白研究进展[J].医学研究杂志,2006,35(4): 58-60
    17. Murdoch C, Finn A. Chemok ine receptors and their role in infla mma tion andinfectious diseases . J Blood,2000,95(10):3032-3043
    18. Charo IF, Peters W. Chemok ine receptor 2 (CCR2) in atherosclerosis, infectiousdiseases, and regula tion of T-cell polariza tion. Microcircula tion. 2003,10(3-4):259-64
    19. Johnson Z, Power CA, Weiss C, et al. Chemok ine inhibition--why, when, where ,which and how? Biochem Soc Trans. 2004,32(Pt 2):366-77
    20. Sama ntha J. Allen, Susa n E. Chemok ine: Receptor Structure, Interactions, andAntagonism. Annual Review of Immunology. 2007,25(1):787-820
    21. Sha hrara S, Amin MA, Woods JM, et al. Chemok ine receptor expression and invivo signaling pathwa ys in the joints of rats with adjuva nt-ind uced arthritis.Arthritis Rheum. 2003 ,48(12):3568-3583
    22. Wada T, Furuichi K, Sakai N, et al. Up-regula tion of monocyte chemoa ttracta ntprotein-1 in tubulointerstitial lesions of huma n dia betic nephropathy. Kid neyInt.2000 ,58(4):1492- 1499
    23. Ninichuk V, Khandoga, AG, Segerer, S, et al. The Role of InterstitialMacropha ges in Nephropa thy of Type 2 Diabetic db/db Mice. Am. J. Pathol.2007,170:1267-1276
    24. 余堂宏,贾汝汉,陈键,等.霉酚酸酯对2 型糖尿病大鼠肾脏单核细胞趋化蛋白-1 表达的影响[J].中国中西医结合肾脏病杂志,2005,6(4):192-196
    25. 闫振成,祝之明,张建国.糖尿病肾病患者尿MCP-1 的变化及ACEI 及AngⅡ受体拮抗剂对其影响[J].第三军医大学学报,2003,25(15):1377-1380
    26. Awad AS,Hua ng L,Ye H,et al. Adenosine A2A receptor activa tion attenua tesinfla mma tion and injury in dia betic nephropathy.Am J Physiol RenalPhysiol,2006,290(4):F828- F837
    27. Tashiro K, Koya nagi I, Saitoh A, et al.Urina rylevels of monocytechemoa ttracta nt protein-1 (MCP-1) and Interleukin-8 (IL-8), and Renal injurein Patients with Type 2 Diabetic . Nephropa thy.Clin Lab Anal,2002,16 (1):1-4
    28. Takeba yashi K, Matsumoto S, Aso Y, et al. Aldosterone blockade attenua tesurina ry monocyte chemoa ttracta nt protein-1 and oxida tive stress in patientswith type 2 dia betes complica ted by dia betic nephropathy. J Clin EndocrinolMeta b.2006,91(6):2214- 2217
    29. Maus U, Henning S, Wenschuh H, et al. Role of endothelial MCP-1 inmonocyte adhesion to infla med huma n endothelium under physiological flow.Am J Physiol Heart Circ Physiol. 2002,283(6):H2584-2591
    30. Vied t C, Dechend R, Fei J, et al. MCP-1 ind uces infla mma tory activa tion ofhuma n tubular epithelial cells: involvement of the tra nscription factors, nuclearfactor-kappa B and activa ting protein-1. J Am Soc Nephrol. 2002,13(6):1534-47
    31. Morri T,Fujita H,Narita T,et al.Associa tion of monocyte chemoa ttracta ntprotein-1 with renal tubula r dama ge in dia betic nephropathy.DiabetesComplica tion,2003,17 (1):11-15
    32. Ruiz-Ortega M, Lorenzo O, Egido J. Angiotensin III increases MCP-1 andactiva tes NF-kappaB and AP-1 in cultured mesa ngial and mononuclearcells .Kid ney Int, 2000,57:2285-2298
    33. Christia ne V, Stepha n RO. Monocyte chemoa ttracta nt protein-1 (MCP-1) inthe kid ney: does it more than simply attract monocytes? Nephrol DialTranspla nt. 2002,17(12):2043–2047
    34. Chow F, Ozols E, Nikolic-Pa terson DJ, et al. Macropha ges in mouse type 2dia betic nephropathy: correla tion with dia betic state and progressive renalinjury. Kid ney Int.2004 ,65(1):116-128
    35. Sha nmuga m N, Redd y MA, Guha M, et al. High glucose-ind uced expression ofproinfla mma tory cytok ine and chemok ine genes in monocytic cells. Diabetes.2003,52(5):1256- 1264
    36. Wu Y, Wu G, Qi X,et al. Protein kinase C beta inhibitor LY333531 attenua tesintercellular adhesion molecule-1 and monocyte chemotactic protein-1expression in the kid ney in dia betic rats.J Pharmacol Sci. 2006 ,101(4):335-43
    37. McClella n WM, Fla nders WD. Risk factors for progressive chronic kid neydisease. J Am Soc Nephrol.2003,14(7 Suppl 2):S65-70
    38. Hartner A, Veelken R, Wittma nn M, et al. Effects of dia betes and hypertensionon macropha ge infiltration and ma trix expansion in the rat kid ney.BMCNephrol,2005,6(1):6
    39. Ruiz-Ortega M, Bustos C, Hemadez-Presa MA, et al. Angiotensin IIparticipates in monnuclear cell recruitment in experimental immune complexnephritis through nuclea r Factor-kappa B activa tion and monocytechemoa ttracta nt protein-1 synthesis. Immunol,1998,161(1): 430-439
    40. Gruden G, Setti G, Hayward A, et al. Mecha nical Stretch Induces MonocyteChemoa ttracta nt Activity via an NF-κB-Dependent MonocyteChemoa ttracta nt Protein-1-Med iated Pathwa y in Huma n Mesa ngial Cells:Inhibition by Rosiglita zone . J Am Soc Nephrol.2005,16(3):688-696
    41. Takaya K,Koya D,Isono M,et al.Involvement of ERK pathwa y in albumininduced MCP-1 expression in mouse proximal tubular cells.Am J Physiol RenalPhysiol,2003,284(5):F1037-F1045
    42. Wang SN,LaPage J,Hirschberg R. Role of glomerular ultra filtration of growthfactors in progressive interstitial fibrosis in dia betic nephropathy. Kid neyInt,2000,57:1002-1014
    43. Sengul S, Zwizinski C, Simon EE, et al. Endocytosis of light cha ins ind ucescytok ines through activa tion of NF-kappaB in huma n proximal tubule cells.Kid ney Int,2002,62(6):1977-1988
    44. 杨国卿.不同尿白蛋白水平的糖尿病患者单核细胞趋化蛋白-1 和尿N-乙酰β-D-氨基葡萄糖苷酶的含量变化及其临床意义[J].临床内科杂志,2006 ,23(3):186-188
    45. Banba N, Nakamura T, Matsumura M, et al. Possible rela tionship of monocytechemoa ttracta nt Protein-1 with dia betic nephropathy. Kid ney Int.2000,58(2):684-690
    46. Han KH, Han KO, Green SR. Expression of the monocyte chemoa ttracta ntprotein-1 receptor CCR2 is increased in hypercholesterolemia. Differentialeffects of plasma lipoproteins on monocyte function. J Lipid Res,1999,40:1053 -1063
    47. Hagiwa ra S, Makita Y, Gu L, et al. Eicosa pentaenoic acid ameliora tes dia beticnephropathy of type 2 dia betic KKAy/Ta mice: involvement of MCP-1suppression and decreased ERK1/2 and p38 phosphoryla tion. Nephrol DialTranspla nt,2006,1(3):605- 615
    48. Edward G, Lynn, Yaw L, et al. Very low-density lipoprotein stimula tes theexpression of monocyte chemoa ttracta nt protein-1 in mesa ngial cells. Kid neyInt. 2000,57(4):1472-1483
    49. Yama gishi S,Inagaki Y,Okamotob T, et al. Adva nced glyca tion end productinduced apoptosis and overexpression of vascular endothelial growth factorand monocyte chemoa ttracta nt protein-1 in huma n-cultured mesa ngialcells.BIOLOGICAL CHEMISTRY,2002,277(23):20309-20315
    50. Matsui T, Yama gishi S, Ueda S, Telmisa rtan, an angiotensin II type 1 receptorblocker, inhibits advanced glyca tion end-prod uct (AGE)-ind uced monocytechemoa ttracta nt protein-1 expression in mesa ngial cells throughdownregula tion of receptor for AGEs via peroxisome prolifera tor-activa tedreceptor-ga mma activa tion.J Int Med Res.2007 ,35(4):482-489
    51. Matsui T, Yama gishi S, Nakamura K, et al. Nifed ipine, a calcium-cha nnelblocker, inhibits advanced glyca tion end-prod uct-ind uced expression ofmonocyte chemoa ttracta nt protein-1 in huma n cultured mesa ngial cells. J IntMed Res. 2007,35(1):107-112
    52. Hattori Y,Suzuki M,Hattori S,et al.Vascular smooth muscle cell activa tion byglyca ted albumin (Amadori adducts).Hypertension,2002,39:22-28
    53. Gu L,Hagiwa ra S,Fan Q,et al. Role of receptor for advanced glyca tion endproductsand signa lling events in advanced glyca tion end-prod uct-ind ucedmonocyte chemoa ttracta nt protein-1 expression in differentia ted mousepodocytes.Nephrol Dial Transpla nt,2006,21(2):299-313
    54. Kato S, Luyck x VA, Ots M, et al. Renin-a ngiotensin blockade lowers MCP-1expression in dia betic rats. Kid ney Int. 1999,56(3):1037-48
    55. Lee FT, Cao Z, Long DM, et al. Interactions between Angiotensin II and NF-κB–Dependent Pathwa ys in Modula ting Macropha ge Infiltration in ExperimentalDiabetic Nephropa thy. J Am Soc Nephrol. 2004,15(8): 2139-2151
    56. Kashiwa gi M, Masuta ni K, Shinoza ki M, et al. MCP-1 and RANTES areexpressed in renal cortex of rats chronica lly trea ted with nitric oxide synthaseinhibitor.Involvement in macropha ge and monocyte recruitment.Nephron,2002,92(1):163-173
    57. Tanifuji C, Suzuki Y, Geot WM, et al. Reactive oxygen species-med ia tedsigna ling pathwa ys in angiotensin II-ind uced MCP-1 expression of proximaltubula r cells.Antioxid Redox Signal.2005 ,7(9-10):1261-1268
    58. Wolf G, Wenzel UO. Angiotensin II and Cell Cycle Regula tion.Hypertension.2004 ,43(4):693-698
    59. Berthold A, Ralph T, Bernhard A, ACE Inhibitors Improve DiabeticNephropa thy Through Suppression of Renal MCP-1. DiabetesCare.2003,26(8):2421–2425
    60. 魏倩萍,邓华聪,赵劼.亚硒酸钠对大鼠肾小球系膜细胞HBZY-1 单核细胞趋化蛋白-1mRNA 表达的影响[J].第三军医大学学报,2005,7(15):1446-1449
    61. 李艳波,邓华聪,郑丹,等.硒对人脐静脉内皮细胞ECV-304 单核细胞趋化蛋白-1 表达的影响[J].中国地方病学杂志, 2003,22(3): 221-222
    62. Granda lia no G, Valente AJ, Rozek MM, et al. Gamma interferon stimula tesmonocyte chemotactic protein (MCP-1) in huma n mesa ngial cells. J Lab ClinMed,1994,123:282-289
    63. Goppelt-Struebe M, Stroebel M. Synergistic ind uction of monocytechemoa ttracta nt protein (MCP-1) by pla telet-de-rived growth factor andinterleukin-1.FEBS Lett,1995,374 (3):375-378
    64. Park SK, Yang WS, Han NJ, et al. Dexa methasone regula tes AP-1 to repressTNF-alpha ind uced MCP-1 production in huma n glomerular endothelial cells.Nephrol Dial Transpla nt. 2004,19(2):312- 319
    65. Schneider A, Panzer U, Za hner G.et al. Monocyte chemoa ttracta nt protein-1med ia tes colla gen deposition in experimental glomerulonephritis bytra nsforming growth factor-β. Kid ney Int.1999,56(1):135-144
    66. Coletta I, Soldo, Polentara tti N, et al. Selective ind uction of MCP-1 in huma nmesa ngial cells by the IL-6/IL-6R complex. Exp Nephrol,2000,8:37-43
    67. Marumo T, Schini-Kerth VB, Busse R. Vascular endothelial growth factoractiva tes nuclear factor-kappa B and ind uces monocyte chemoa ttracta nt protein-1 in bovine retinal endothelial cells. Diabetes. 1999,48(5):1131-1137
    68. Chow FY, Nikolic-Pa terson DJ , Ozols E, et al. Monocyte chemoa ttracta ntprotein-1 promotes the development of dia betic renal injury in streptozotocintreated mice. Kid ney Int.2006 ,69(1):73-80
    69. Wada T, Furuichi K, Sakai N, et al. Gene thera py via blockade of monocytechemoa ttracta nt protein-1 for renal fibrosis. J Am Soc Nephrol.2004,15(4):940-948
    70. Kana mori H, Matsubara T, Mima A, Inhibition of MCP-1/CCR2 pathwa yameliora tes the development of dia betic nephropathy. Biochem Biophys ResCommun. 2007,360(4):772-777
    71. Kita gawa K, Wada T, Furuichi K. Blockade of CCR2 Ameliorates ProgressiveFibrosis in Kid ney.Am J Pathol.2004,165(1):237 –246
    72. Sengul S, Zwizinski C, Simon EE, et al. Endocytosis of light cha ins ind ucescytok ines through activa tion of NF-kappaB in huma n proximal tubulecells.Kid ney Int,2002,62(6):1977-1988
    73. Sakai N, Wada T, Furuichi K, et al. Involvement of extracellula r signa lregulated kinase and p38 in huma n dia betic nephropathy.Am J Kid neyDis ,2005,45(1):54-65
    74. Aoya ma I, Shimokata K, Niwa T. An oral adsorbent downregula tes renalexpression of genes that promote interstitial infla mma tion and fibrosis india betic rats. Nephron.2002,92(3):635-651
    75. Zha ng Z, Yuan W, Sun L, 1, 25-Dihyd roxyvita min D3 targeting of NF-kappaBsuppresses high glucose-ind uced MCP-1 expression in mesa ngial cells. Kid neyInt.2007 ,72(2):193-201
    76. Han SY, Kim CH, Kim HS, et al. Spironolactone prevents dia beticnephropathy through an anti-infla mma tory mecha nism in type 2 dia betic rats. JAm Soc Nephrol. 2006,17(5):1362-1372
    77. Takeba yashi K, Matsumoto S, Aso Y, et al. Aldosterone blockade attenua tesurina ry monocyte chemoa ttracta nt protein-1 and oxida tive stress in patientswith type 2 dia betes complica ted by dia betic nephropathy. J Clin EndocrinolMetab.2006 ,91(6):2214-2217
    1. Mauer M, Drummond K; The lnternational Diabetic Nephropathy stud y Group.The early natural histo ry of nephropathy in type 1 dia betes: II. Early renalstructural cha nges in type 1 dia betes. Diabetes ,2002,51(7):1580-1587
    2. Remuzzi G, Schie ppati A, Ruggenenti P. NephroPathy in patients with type 2dia betes . N Engl J Med. 2002,346(15):1145-1151
    3. 罗辉.人参皂甙的生物特性及其临床应用的研究[J].井冈山学院学报(自然科学),2006,27(8):79-82
    4. 苏白海,李孜,樊均明,等.三七总皂甙对单侧输尿管梗阻后大鼠肾间质纤维化的防治作用[J].四川大学学报(医学版),2005,36(3): 368-371
    5. 张国强,叶任高,孔庆瑜,等.三七总甙诱导间质纤维化人肾成纤维细胞凋亡及其分子机理初探[J].中华肾病杂志, 1998,14(2):93~95
    6. 韦颖,樊均明,潘丽萍.三七总甙对人肾成纤维细胞的影响[J].中国中西医结合杂志, 2002,22(1): 47-49
    7. 王宓,樊均明,刘欣颖,等.三七总皂甙对IL-1α诱导大鼠肾小管细胞转分化的影响[J].中国中西医结合杂志, 2004,24(8):722-725
    8. 柯昌兴,郝丽娜,陈剑珩,等.人参皂甙Rg1 对梗阻肾的保护作用.临床泌尿学杂志[J],2005,20(4): 228~230
    9. 黄晓光,邵珊,李荣山.人参皂甙Rb1 对大鼠急性肾小管损伤的保护作用[J].临床医药实践杂志, 2006,15(8): 597-581
    10. 赵宗江,刘昆,杨美娟,等.三七总皂苷对阿霉素肾病大鼠肾组织ET-1 蛋白及表达的影响[J].北京中医药大学学报, 2007,30(4): 226-228
    11. 梁海荣,唐焕文,罗浩,等.链脲佐菌素诱导糖尿病大鼠肾病模型的建立[J].应用预防医学, 2006,12(3):133-135
    12. Gilbert BE,Cooper ME.The tubulointerstitium in Progressive dia betic kid neydisease: more than an aftermath of glomerula r in Jury? Kid ney Int,1999,56(5):627-37
    13. Phillips AO ,Stead ma n R.Diabetic ne phropathy: the central role of renalProximal tubu1a r cells in tubulointerstitial injury. Histol Histopathol,2002,17(1):247 -252
    14. Nanga t UM.Mecha nisms of tubulointerstitial injury in the kid ney: finalcommon Pathwa ys to end sta ge renal failure. Intern. Med.2004,43(1):9-17
    15. Katherine R Tuttle , Linking metabolism and immuno1ogy:Diabeticne phropathy is an infla mma tory diseas e. J Am Soc Nephrol,2005,16(6):1537-1538
    16. Shika ta K,Makino H.Role of macropha ges in the pathogenesis of dia beticnephropathy. Contrib Nephrol,2001,134:46–54
    17. Sha nmuga m N, Redd y MA, Guha M, et al. High glucose-ind uced expression ofproinfla mma tory cytok ine and chemok ine genes in monocytic cells. Diabetes.2003,52(5):1256-1264
    18. Awad AS,Hua ng L,Ye H,et al. Adenosine A2A receptor activa tion attenua tesinfla mma tion and injury in dia betic nephropathy.Am J Physiol RenalPhysiol,2006,290(4):F828-F837
    19. 闫振成,祝之明,张建国.糖尿病肾病患者尿MCP-1 的变化及ACEI 及AngⅡ受体拮抗剂对其影响[J].第三军医大学学报,2003,25(15):1377-1380
    20. Fried ma n DJ, Rennke HG, Csizmad ia E, et al. The vascular ectonucleotidaseENTPD1 is a novel renoprotective factor in dia betic nephropathy. Diabetes.2007,56(9):2371-2379
    21. Chow F, Ozols E, Nikolic-Pa terson DJ, et al. Macropha ges in mouse type 2dia betic nephropathy: correla tion with dia betic state and progressive renalinjury. Kid ney Int.2004 ,65(1):116-128
    22. Wu Y, Wu G, Qi X,et al. Protein kinase C beta inhibitor LY333531 attenua tesintercellular adhesion molecule-1 and monocyte chemotactic protein-1expression in the kid ney in dia betic rats.J Pharmacol Sci. 2006,101(4):335-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700