副溶血弧菌高通量分子检测方法的建立与基因分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
副溶血弧菌(Vibrio parahaemolyticus,VP)是一种革兰氏阴性嗜盐杆菌,主要存在于近岸海水、海底沉积物和鱼、虾以及贝类等海洋生物中,人类食用了含有该菌的生的或者未煮熟的水产品能引起食物中毒、反应性关节炎和心脏疾病。此外,它还严重危害了水产养殖业的发展。因此,了解副溶血弧菌在水产品中的分布特征以及建立快速、灵敏的检测方法对于食品安全监控具有重要意义。
     本课题主要对副溶血弧菌在水产品中的分布特征、基因分型以及快速检测技术进行了比较深入的研究,主要研究内容和结果如下:
     1.副溶血弧菌多重PCR检测方法的建立及评价
     利用本地BLAST序列比对分析方法挖掘到副溶血弧菌新的种特异性基因,即D型氨基酸脱氢酶小亚基基因(D-amino acid dehydrogenase, small subunit, aadS),根据该基因设计用于PCR检测的特异性引物,并对引物的特异性和灵敏度进行了系统的生物学评价,证实该基因特异性强,灵敏度高,能够作为副溶血弧菌分子检测的靶点。另外,结合毒力因子耐热直接溶血素(tdh)和tdh相关溶血素基因(trh),建立了副溶血弧菌多重PCR检测方法,并对该方法进行了系统评价。该多重PCR方法特异性为100%,基因组DNA检测灵敏度为20 fg/PCR。将该方法应用于55份实际样品(虾,鱼和牡蛎等)的检测,通过与传统国标方法进行比较,发现有一份样品用国标检测为阳性,而该多重PCR方法检测为阴性,其它样品检测结果都与传统方法一致。表明本课题建立的副溶血弧菌多重PCR检测方法具有快速、特异性强和灵敏度高等优点,可用于水产品和临床样本的快速检测,同时可对分离菌株是否具有致病性能够进行初步判断。
     2.基于单碱基延伸标签法的基因芯片检测方法的建立
     在多重PCR基础上建立了基于单碱基延伸标签法(SBE-TAGS)的基因芯片检测方法,并可用于水产品中副溶血弧菌、霍乱弧菌、创伤弧菌、溶藻弧菌、拟态弧菌、哈维氏弧菌和鳗弧菌的同时检测。利用三组多重PCR实验同时扩增7种水产致病弧菌9个特异性检测靶基因。根据aadS, tdh和trh基因的检测结果来判断水产品中是否含有副溶血弧菌及其是否具有致病性;依据col, toxR和vvh基因分别检测溶藻弧菌、拟态弧菌和创伤弧菌;采用empA, vhh1和tcpA基因依次检测鳗弧菌、哈维氏弧菌和霍乱弧菌。纯化后的多重PCR产物进行单碱基延伸反应后被标记上荧光染料Cy3,标记后的产物进行芯片杂交、信号扫描和结果分析。结果表明,该基因芯片检测特异性为100%,检测灵敏度为200 fg/PCR~20 pg/PCR。将该方法应用于55份实际水产样品的检测,发现有18份样品同时含有副溶血弧菌和溶藻弧菌;通过与传统国标方法进行比较,发现除一份样品与传统方法检测结果不同外,其它样品检测结果均为一致。该方法的建立不但可以保障为消费者提供更加安全的水产品,还有利于水产养殖业的健康发展。
     3.副溶血弧菌在水产品中分布特征及多样性分析
     利用国家标准方法和PCR方法相结合的手段,在2006年4月至2009年6月之间,从上海地区水产品批发市场、零售市场以及大型超市合计取样368份。从上海地区215份样品中分离到47株副溶血弧菌,分离率为21%;从进口的153份样品中分离到56株副溶血弧菌,分离率为37%。对分离菌株进行毒力基因PCR检测和尿酶实验测定,发现上海地区副溶血弧菌分离菌株中有2株(2/47,4%)含有tdh基因但不含trh基因,且尿酶实验均为阴性。进口样品中副溶血弧菌分离菌株有4株(4/56,7%)携带tdh基因,其中有一株菌株(1/56,2%)既含有tdh基因,又含有trh基因,尿酶实验也为阳性,其余菌株尿酶均为阴性。经O抗原测定,发现上海地区副溶血弧菌分离菌株O抗原主要为O1和O2,其中O1有14株(14/47,30%),O2有10株(10/47,22%)。进口样品中副溶血弧菌分离株O抗原主要为O10和O2,其中O10有13株(13/56,23%),O2有10株(10/56,18%)。为了了解不同地区分离菌株之间的相关性,将103株副溶血弧菌食品分离菌株和上海地区5株常见的不同血清型的副溶血弧菌临床分离菌株同时经过肠杆菌基因间重复序列PCR(ERIC-PCR)分型,利用数学软件BioNumercis version 5.0根据非加权算术平均数聚类法(UPGMA)对分型结果进行处理和分析,如果按相似性值大于0.70,所有分离菌株被分成44个类群,发现有4株上海地区样品分离株(SJTUF30004, SJTUF30013, SJTUF30025和SJTUF30037)和6株进口样品分离株( SJTUF30083, SJTUF30086, SJTUF30089 ,SJTUF30090,SJTUF30094和SJTUF30102)与临床致病菌株聚在一起,表明这10株分离菌株与临床分离株在基因水平存在较高的相似性,据此推测它们具有潜在的致病可能性。
     4.副溶血弧菌基因分型及菌株相关性分析
     鉴于副溶血弧菌在我国沿海地区引起的食物中毒事件频频发生,因此迫切需要对该菌传染源的感染地点和流行毒力菌株做出快速正确的鉴定和确认。本研究以上海及周边地区流行病学上不相关的56株分离菌株(2006年至2008年)为研究对象,这些菌株同时经过四种基因分型方法进行分析,包括ERIC-PCR、核糖体分型、脉冲场凝胶电泳(PFGE)和gyrB基因序列分析分型。四种分型方法结果通过数据处理软件Bionumeircus version 5.0根据非加权算术平均数聚类法(UPGMA)进行聚类分析和分子进化树的构建,聚类结果显示,每种分型方法得到的结果并不完全一致,而且差异较大。根据相似性值大于0.76,按辛普森方程计算每种方法的分辨率(D值),ERIC-PCR、PFGE、核糖体分型和gyrB基因的序列分型的分辨率依次为0.942、0.907、0.756和0.702。由于核糖体分型的分辨率较低,说明它不太适合用于同一地区副溶血弧菌分离菌株之间的亚种分型。四种方法聚类分析的结果同时发现,两株食品分离菌株F13和QS2均和致病菌株聚成一类,反映出它们和致病菌株之间的亲缘关系较近,具有潜在的致病可能性。通过对56株副溶血弧菌分离株的基因分型研究,发现ERIC-PCR和gyrB基因序列分析联合起来使用,不但具有较高的分辨率(D=0.966),而且还可以快速比较不同来源的副溶血弧菌分离菌株之间的相关性。
Vibrio parahaemolyticus (VP) is a halophilic gram-negative bacterium disseminated in marine and estuarine environments worldwide,especially in fishes, shellfish and other seafood products. It is one of the most important pathogens causing seafood-borne gastroenteritis associated with the consumption of raw or partially cooked seafood. Additionally, V. parahaemolyticus has shown great harm to the development of the aquaculture. Molecular distribution characteristics of Vibrio parahaemolyticus and rapid detection of this organism are of great importance.
     The major contributions of the research were described as follows:
     1. Establishment and evaluation of multiplex PCR for the detection of Vibrio parahaemolyticus
     One new species-specific target gene (aadS), encoding D-amino acid dehydrogenase, small subunit of Vibrio parahaemolyticus was obtained by bioinformatics analysis, and primers were designed for target gene PCR detection. Because its pathogenicity was strongly correlated to two well-characterized hemolysins, the thermostable direct hemolysin (tdh) and the tdh-related hemolysin (trh), multiplex PCR were established and evaluated based on the target genes aadS, tdhand trh. The detection specificity of this method was 100%, with the sensitivity for pure genomic DNA at 20 fg per reaction. Application of the method was involved in detecting 55 naturally contaminated seafood samples (shrimp, fish, and oysters) compared with conventional assays (microbiological and biochemical tests). It turned out that only one sample was identified negative by the multiplex PCR assay but positive by the conventional method. Therefore, the multiplex PCR method established in this study is accurate, sensitive, specific and applicable for the detection of V. parahaemolyticus. It can be a supplement of conventional method to be applied to seafood detection and clinical analysis to increase detection efficiency and determine pathogenicity of the isolates.
     2. Development of a single base extension-tag microarray for the detection of pathogenic Vibrio species in seafood
     A single base extension-tag array on glass slides (SBE-TAGS) microarray based on the multiplex PCR was established to detect the seven leading seafood-borne pathogens, including Vibrio parahaemolyticus, V. cholerae, V. vulnificus, V. mimicus, V. alginolyticus, V. anguillarum, and V. harveyi. Three multiplex PCR systems were developed to specifically target the following species with individual gene markers, which are aadS, tdh, and trh for V. parahaemolyticus; col, toxR, and vvh for V. alginolyticus, V. mimicus and V. vulnificus; and empA, vhh1, and tcpA for V. anguillarum, V. harveyi and V. cholera respectively. The purified PCR products were used as template DNA for single base extension-tag reactions, labeled with Cy3 fluorescent dye and hybridized to DNA microarrays. The detection specificity of this microarray method was 100%, with the sensitivity for pure genomic DNA at 200 fg to 2 pg per reaction. Application of the DNA microarray methodology to 55 naturally contaminated seafood samples (shrimp, fish, and oysters) revealed the presence of V. parahaemolyticus at 50.9% and V. alginolyticus at 32.7%, of all samples, there were 18 samples which contained V. parahaemolyticus and V. alginolyticus. This corresponds with traditional assays (microbiological and biochemical tests) except one sample which was identified as negative in V. parahaemolyticus by the microarray assay but as positive by the conventional method. Therefore, a combination of multiplex PCR with DNA microarray hybridization based on SBE-TAGS ensures rapid and accurate detection of pathogenic Vibrio species in seafood, thereby providing safer seafood products for consumers at a low financial burden to the aquaculture industry.
     3. Distribution characteristics and diversity of V. parahaemolyticus in seafood
     There were 368 seafood samples including 215 from Shanghai area and 153 from the other countries, which were taken from the wholesale markets, retail markets and the supermarkets in Shanghai area between April 2006 and June 2009. V. parahaemolyticus was isolated by combining the method of national standard with PCR. There were 47 V. parahaemolyticus strains which were isolated from Shanghi area samples, and the isolation rate was 21%. There were 56 V. parahaemolyticus strains which were isolated from the samples which originly came from the other countries, and isolation rate was 37%. The V. parahaemolyticus isolates from Shanghai area with the hemolysin genes were low, and only two isolates (2/47,4%) carried the the thermostable direct hemolysin (tdh) without the tdh-related hemolysin (trh), and the urease experiment was negative for all of the isolates from Shanghai area. The isolates from the other countries with the hemolysin genes were also low, and there were only four isolates (4/56,7%) with tdh gene and only one isolate from above four isolates carried both tdh gene and trh gene with positive result for the urease experiment. Serotypes of all the isolates were measured by agglutination using a commercial kit of O-Antigen according to the manufacturer’s specifications, fourteen isolates from Shanghai area consisted of O1 (14/47, 30%), ten isolates consisted of O2 (10/47, 22%). On the other hand, thirteen isolates from the other countries consisted of O10 (14/56, 23%), and ten isolates consisted of O2 (10/56, 18%). All 103 isolates from the seafood samples and 5 major clinial isolates were typed by enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and there were 44 patterns possessed by applying the cluster analysis of genetic profiles from ERIC-PCR typing to all strains based on the similarity value of more than 70% using BioNumerics version 5.0 by the unweighted-pair group method using average linkages. Genetic profiles of cluster analysis from ERIC-PCR clearly showed that four isolates (SJTUF30004, SJTUF30013, SJTUF30025 and SJTUF30037) from Shanghai area and six isolates (SJTUF30083, SJTUF30086, SJTUF30089 ,SJTUF30090,SJTUF30094 and SJTUF30102) from the other countries that originated from seafood were clustered together which demonstrated that they were potentially pathogenic.
     4. Genetyping and the relatedness among the V. parahaemolyticus isolates
     The outbreaks of Vibrio parahaemolyticus gastroenteritis in China highlight the need for strain characterization and differentiation of this pathogenic species. A total of 56 epidemiologically-unrelated strains of V. parahaemolyticus were isolated from clinical samples, seafood and various environmental sites in the middle-east coastline of China between 2006 and 2008. The isolates were characterized using four various molecular typing methods, including ribotyping, enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), pulsed-field gel electrophoresis (PFGE), and sequence analysis of the gyrB gene. Genetic profiles of cluster analysis from these molecular typing tests clearly by the unweighted-pair group method using average linkages showed that there were differences in potential pathogenicity among isolates from seafood and its environments. Genetic characterization of two isolates (F13 and QS2) that originated from seafood demonstrated that they were potentially pathogenic. Discriminatory indices of four typing methods for the 56 V. parahaemolyticus isolates were differentiated by Simpson's Index of Diversity based on the similarity value more than 0.76. The discriminatory index of ERIC–PCR typing was maximal (D﹦0.942), while that of sequence analysis of the gyrB gene was minimal (D﹦0.702), and the discriminatory index of PFGE and ribotyping was 0.907 and 0.756. Therefore, ribotyping exhibited a discriminatory ability much lower than PFGE and ERIC-PCR, and may have limited application in V. parahaemolyticus subtyping and outbreak investigation. In conclusion, our results suggest that ERIC-PCR used in conjunction with gyrB sequence analysis would provide a reliable and accurate typing strategy for V. parahaemolyticus. This combination of techniques exhibits an excellent discrimination (D=0.966) and can be used as a rapid means of comparing V. parahaemolyticus isolates for epidemiological investigations.
引文
[1]李小春,浙南部沿海地区细菌性食物中毒病原检测研究分析[J].中国预防医学杂志2004, 5 (5), 370-373.
    [2]刘秀梅;陈艳;樊永祥, et al., 2003年中国食源性疾病暴发的监测资料分析[J].卫生研究2006, (02), 201-204.
    [3]毛雪丹;胡俊峰;刘秀梅, 2003-2007年中国1060起细菌性食源性疾病流行病学特征分析[J].中国食品卫生杂志2010, (03), 224-228.
    [4] Twedt, R. M.; Novelli, R. M., Modified selective and differential isolation medium for Vibrio parahaemolyticus[J]. Appl Microbiol 1971, 22 (4), 593-599.
    [5] Sakazaki, R.; Iwanami, S.; Fukumi, H., Studies on the Enteropathogenic, Facultatively Halophilic Bacteria, Vibrio Parahaemolyticus. I. Morphological, Cultural and Biochemical Properties and Its Taxonomical Position[J]. Jpn J Med Sci Biol 1963, 16, 161-188.
    [6] Sakazaki, R.; Iwanami, S.; Tamura, K., Studies on the enteropathogenic, facultatively halophilic bacterium, Vibrio parahaemolyticus. II. Serological characteristics[J]. Jpn J Med Sci Biol 1968, 21 (5), 313-324.
    [7] Martinez-Urtaza, J.; Lozano-Leon, A.; Vina-Feas, A., et al., Differences in the API 20E biochemical patterns of clinical and environmental Vibrio parahaemolyticus isolates[J]. Fems Microbiology Letters 2006, 255 (1), 75-81.
    [8] Yue, X.; Liu, B.; Xiang, J., et al., Identification and characterization of the pathogenic effect of a Vibrio parahaemolyticus-related bacterium isolated from clam Meretrix meretrix with mass mortality[J]. Journal of Invertebrate Pathology 2010, 103 (2), 109-115.
    [9] Nishibuchi, M.; Kaper, J. B., Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium[J]. Infect Immun 1995, 63 (6), 2093-2099.
    [10] Makino, K.; Oshima, K.; Kurokawa, K., et al., Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae[J]. Lancet 2003, 361 (9359), 743-749.
    [11] Heidelberg, J. F.; Eisen, J. A.; Nelson, W. C., et al., DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae[J]. Nature 2000, 406 (6795), 477-483.
    [12] Hiyoshi, H.; Kodama, T.; Iida, T., et al., Contribution of Vibrio parahaemolyticus Virulence Factors to Cytotoxicity, Enterotoxicity, and Lethality in Mice[J]. Infection and Immunity 2010, 78 (4), 1772-1780.
    [13] Sakurai, J.; Matsuzaki, A.; Miwatani, T., Purification and characterization of thermostable direct hemolysin of Vibrio parahaemolyticus[J]. Infect Immun 1973, 8 (5), 775-780.
    [14] Nishibuchi, M.; Kaper, J. B., Nucleotide sequence of the thermostable direct hemolysin gene ofVibrio parahaemolyticus[J]. Journal of Bacteriology 1985, 162 (2), 558-564.
    [15] Okuda, J.; Nishibuchi, M., Manifestation of the Kanagawa phenomenon, the virulence-associated phenotype, of Vibrio parahaemolyticus depends on a particular single base change in the promoter of the thermostable direct haemolysin gene[J]. Mol Microbiol 1998, 30 (3), 499-511.
    [16] Honda, T.; Ni, Y. X.; Miwatani, T., Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin[J]. Infect Immun 1988, 56 (4), 961-965.
    [17] Honda, T.; Ni, Y.; Miwatani, T., Purification of a TDH-related hemolysin produced by a Kanagawa phenomenon-negative clinical isolate of Vibrio parahaemolyticus 06: K46[J]. Fems Microbiology Letters 1989, 48 (2), 241-245.
    [18] Iida, T.; Park, K. S.; Suthienkul, O., et al., Close proximity of the tdh, trh and ure genes on the chromosome of Vibrio parahaemolyticus[J]. Microbiology 1998, 144 ( Pt 9), 2517-2523.
    [19] Nishibuchi, M.; Taniguchi, T.; Misawa, T., et al., Cloning and nucleotide sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of Vibrio parahaemolyticus[J]. Infect Immun 1989, 57 (9), 2691-2697.
    [20] Kishishita, M.; Matsuoka, N.; Kumagai, K., et al., Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus[J]. Appl Environ Microbiol 1992, 58 (8), 2449-2457.
    [21] Yanagase, Y.; Inoue, K.; Ozaki, M., et al., Hemolysins and related enzymes of Vibrio parahaemolyticus. I. Identification and partial purification of enzymes[J]. Biken J 1970, 13 (2), 77-92.
    [22] Shinoda, S.; Matsuoka, H.; Tsuchie, T., et al., Purification and characterization of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene[J]. J Gen Microbiol 1991, 137 (12), 2705-2711.
    [23] Taniguchi, H.; Ohta, H.; Ogawa, M., et al., Cloning and expression in Escherichia coli of Vibrio parahaemolyticus thermostable direct hemolysin and thermolabile hemolysin genes[J]. Journal of Bacteriology 1985, 162 (2), 510-515.
    [24] Taniguchi, H.; Hirano, H.; Kubomura, S., et al., Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus[J]. Microb Pathog 1986, 1 (5), 425-432.
    [25] Bej, A. K.; Patterson, D. P.; Brasher, C. W., et al., Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh[J]. J Microbiol Methods 1999, 36 (3), 215-225.
    [26] Gooch, J. A.; DePaola, A.; Kaysner, C. A., et al., Evaluation of two direct plating methods using nonradioactive probes for enumeration of Vibrio parahaemolyticus in oysters[J]. Appl Environ Microbiol 2001, 67 (2), 721-724.
    [27] McCarthy, S. A.; DePaola, A.; Cook, D. W., et al., Evaluation of alkaline phosphatase- and digoxigenin-labelled probes for detection of the thermolabile hemolysin (tlh) gene of Vibrio parahaemolyticus[J]. Letters in Applied Microbiology 1999, 28 (1), 66-70.
    [28] Ellison, R. K.; Malnati, E.; Depaola, A., et al., Populations of Vibrio parahaemolyticus in retail oysters from Florida using two methods[J]. J Food Prot 2001, 64 (5), 682-688.
    [29] Zen-Yoji, H.; Le Clair, R. A.; Ota, K., et al., Comparison of Vibrio parahaemolyticus cultures isolated in the United States with those isolated in Japan[J]. J Infect Dis 1973, 127 (3), 237-241.
    [30] Osawa, R.; Okitsu, T.; Morozumi, H., et al., Occurrence of urease-positive Vibrio parahaemolyticus in Kanagawa, Japan, with specific reference to presence of thermostable direct hemolysin (TDH) and the TDH-related-hemolysin genes[J]. Appl Environ Microbiol 1996, 62 (2), 725-727.
    [31] Nicholson, E. B.; Concaugh, E. A.; Foxall, P. A., et al., Proteus mirabilis urease: transcriptional regulation by UreR[J]. Journal of Bacteriology 1993, 175 (2), 465-473.
    [32] Okuda, J.; Ishibashi, M.; Abbott, S. L., et al., Analysis of the thermostable direct hemolysin (tdh) gene and the tdh-related hemolysin (trh) genes in urease-positive strains of Vibrio parahaemolyticus isolated on the West Coast of the United States[J]. Journal of Clinical Microbiology 1997, 35 (8), 1965-1971.
    [33] Iida, T.; Suthienkul, O.; Park, K. S., et al., Evidence for genetic linkage between the ure and trh genes in Vibrio parahaemolyticus[J]. Journal of Medical Microbiology 1997, 46 (8), 639-645.
    [34] Ofek, I.; Sharon, N., Adhesins as lectins: specificity and role in infection[J]. Curr Top Microbiol Immunol 1990, 151, 91-113.
    [35] Levett, P. N.; Daniel, R. R., Adhesion of vibrios and aeromonads to isolated rabbit brush borders[J]. J Gen Microbiol 1981, 125 (1), 167-172.
    [36] Yamamoto, T.; Yokota, T., Adherence targets of Vibrio parahaemolyticus in human small intestines[J]. Infect Immun 1989, 57 (8), 2410-2419.
    [37] Nakasone, N.; Iwanaga, M., Pili of a Vibrio parahaemolyticus strain as a possible colonization factor[J]. Infect Immun 1990, 58 (1), 61-69.
    [38] Chakrabarti, M. K.; Sinha, A. K.; Biswas, T., Adherence of Vibrio parahaemolyticus to rabbit intestinal epithelial cells in vitro[J]. Fems Microbiology Letters 1991, 68 (1), 113-117.
    [39] Chakrabarti, M. K.; Bhattacharya, J.; Sinha, A. K., et al., Role of outer membrane proteins on the adherence of Vibrio parahaemolyticus to rabbit intestinal epithelial cell in vitro[J]. Zentralbl Bakteriol 1995, 282 (4), 436-441.
    [40] Clarke, S. C.; Haigh, R. D.; Freestone, P. P., et al., Virulence of enteropathogenic Escherichia coli, a global pathogen[J]. Clin Microbiol Rev 2003, 16 (3), 365-378.
    [41] Sperandio, V.; Mellies, J. L.; Nguyen, W., et al., Quorum sensing controls expression of the typeIII secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli[J]. Proc Natl Acad Sci U S A 1999, 96 (26), 15196-15201.
    [42] Qadri, F.; Alam, M. S.; Nishibuchi, M., et al., Adaptive and inflammatory immune responses in patients infected with strains of Vibrio parahaemolyticus[J]. J Infect Dis 2003, 187 (7), 1085-1096.
    [43] Steele-Mortimer, O.; Brumell, J. H.; Knodler, L. A., et al., The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells[J]. Cellular Microbiology 2002, 4 (1), 43-54.
    [44] Yamamoto, S.; Akiyama, T.; Okujo, N., et al., Demonstration of a ferric vibrioferrin-binding protein in the outer membrane of Vibrio parahaemolyticus[J]. Microbiology and Immunology 1995, 39 (10), 759-766.
    [45] Wang, X. H.; Oon, H. L.; Ho, G. W., et al., Internalization and cytotoxicity are important virulence mechanisms in Vibrio-fish epithelial cell interactions[J]. Microbiology 1998, 144 ( Pt 11), 2987-3002.
    [46] Lee, C. Y.; Cheng, M. F.; Yu, M. S., et al., Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus[J]. Fems Microbiology Letters 2002, 209 (1), 31-37.
    [47] Lee, C. Y.; Su, S. C.; Liaw, R. B., Molecular analysis of an extracellular protease gene from Vibrio parahaemolyticus[J]. Microbiology 1995, 141 ( Pt 10), 2569-2576.
    [48] Yu, M. S.; Lee, C. Y., Expression and characterization of the prtV gene encoding a collagenase from Vibrio parahaemolyticus in Escherichia coli[J]. Microbiology 1999, 145 (1), 143-150.
    [49] Sakaguchi, O.; Suzuki, M.; Tamura, J., et al., Isolation and toxicity of O antigen-lipopolysaccharide of Vibrio parahaemolyticus K minus strains[J]. Nippon Saikingaku Zasshi 1968, 23 (9), 715-720.
    [50] Hisatsune, K., A study on chemical and immunochemical properties and chemotaxonomy of lipopolysaccharides of Vibrionaceae, in particular Vibrio cholerae and V. parahaemolyticus[J]. Nippon Saikingaku Zasshi 1998, 53 (2), 381-405.
    [51] Hisatsune, K.; Iguchi, T.; Haishima, Y., et al., Lipopolysaccharide isolated from a new O-antigenic form (O13) of Vibrio parahaemolyticus[J]. Microbiology and Immunology 1993, 37 (2), 143-147.
    [52] Schmiel, D. H.; Miller, V. L., Bacterial phospholipases and pathogenesis[J]. Microbes Infect 1999, 1 (13), 1103-1112.
    [53] Testa, J.; Daniel, L. W.; Kreger, A. S., Extracellular phospholipase A2 and lysophospholipase produced by Vibrio vulnificus[J]. Infect Immun 1984, 45 (2), 458-463.
    [54] Sakazaki, R.; Tamura, K.; Kato, T., et al., Studies on the enteropathogenic, facultatively halophilic bacterium, Vibrio parahaemolyticus. 3. Enteropathogenicity[J]. Jpn J Med Sci Biol 1968, 21(5), 325-331.
    [55] Chen, Y.; Dai, J.; Morris, J. G., Jr., et al., Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6[J]. BMC Microbiology 2010, 10:274,1-10.
    [56] Okuda, J.; Ishibashi, M.; Hayakawa, E., et al., Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan[J]. Journal of Clinical Microbiology 1997, 35 (12), 3150-3155.
    [57] Matsumoto, C.; Okuda, J.; Ishibashi, M., et al., Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses[J]. Journal of Clinical Microbiology 2000, 38 (2), 578-585.
    [58] Nair, G. B.; Ramamurthy, T.; Bhattacharya, S. K., et al., Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants[J]. Clin Microbiol Rev 2007, 20 (1), 39-48.
    [59] Myers, M. L.; Panicker, G.; Bej, A. K., PCR detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 pathogen in pure cultures and seeded waters from the Gulf of Mexico[J]. Appl Environ Microbiol 2003, 69 (4), 2194-2200.
    [60] Obata, H.; Kai, A.; Sekiguchi, K., et al., Detection of the trh gene in Vibrio parahaemolyticus isolated from overseas travellers' diarrhea and their biochemical characteristics[J]. Kansenshogaku Zasshi 1996, 70 (8), 815-820.
    [61] Suthienkul, O.; Iida, T.; Park, K. S., et al., Restriction fragment length polymorphism of the tdh and trh genes in clinical Vibrio parahaemolyticus strains[J]. Journal of Clinical Microbiology 1996, 34 (5), 1293-1295.
    [62] Yamamoto, K.; Honda, T.; Miwatani, T., et al., Enzyme-labeled oligonucleotide probes for detection of the genes for thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) of Vibrio parahaemolyticus[J]. Can J Microbiol 1992, 38 (5), 410-416.
    [63] Lee, C. Y.; Panicker, G.; Bej, A. K., Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink (TM) NH microwell plate sandwich hybridization[J]. Journal of Microbiological Methods 2003, 53 (2), 199-209.
    [64] Blackstone, G. M.; Nordstrom, J. L.; Vickery, M. C., et al., Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR[J]. J Microbiol Methods 2003, 53 (2), 149-155.
    [65] Venkateswaran, K.; Dohmoto, N.; Harayama, S., Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp[J]. Appl Environ Microbiol 1998, 64 (2), 681-687.
    [66] Hill, W. E., The polymerase chain reaction: applications for the detection of foodborne pathogens[J]. Crit Rev Food Sci Nutr 1996, 36 (1-2), 123-173.
    [67] Kim, Y. B.; Okuda, J.; Matsumoto, C., et al., Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene[J]. Journal of Clinical Microbiology 1999, 37 (4), 1173-1177.
    [68] Terai, A.; Shirai, H.; Yoshida, O., et al., Nucleotide sequence of the thermostable direct hemolysin gene (tdh gene) of Vibrio mimicus and its evolutionary relationship with the tdh genes of Vibrio parahaemolyticus[J]. Fems Microbiology Letters 1990, 59 (3), 319-323.
    [69] Shirai, H.; Ito, H.; Hirayama, T., et al., Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis[J]. Infect Immun 1990, 58 (11), 3568-3573.
    [70] Lee, C. Y.; Pan, S. F.; Chen, C. H., Sequence of a cloned pR72H fragment and its use for detection of Vibrio parahaemolyticus in shellfish with the PCR[J]. Appl Environ Microbiol 1995, 61 (4), 1311-1317.
    [71] Lin, Z.; Kumagai, K.; Baba, K., et al., Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene[J]. Journal of Bacteriology 1993, 175 (12), 3844-3855.
    [72] Tyagi, S.; Kramer, F. R., Molecular beacons: probes that fluoresce upon hybridization[J]. Nat Biotechnol 1996, 14 (3), 303-308.
    [73] Hoorfar, J.; Malorny, B.; Abdulmawjood, A., et al., Practical considerations in design of internal amplification controls for diagnostic PCR assays[J]. Journal of Clinical Microbiology 2004, 42 (5), 1863-1868.
    [74] Notomi, T.; Okayama, H.; Masubuchi, H., et al., Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res 2000, 28 (12), E63.
    [75] Nagamine, K.; Hase, T.; Notomi, T., Accelerated reaction by loop-mediated isothermal amplification using loop primers[J]. Mol Cell Probes 2002, 16 (3), 223-229.
    [76] Song, T.; Toma, C.; Nakasone, N., et al., Sensitive and rapid detection of Shigella and enteroinvasive Escherichia coli by a loop-mediated isothermal amplification method[J]. Fems Microbiology Letters 2005, 243 (1), 259-263.
    [77] Hara-Kudo, Y.; Yoshino, M.; Kojima, T., et al., Loop-mediated isothermal amplification for the rapid detection of Salmonella[J]. Fems Microbiology Letters 2005, 253 (1), 155-161.
    [78] Hara-Kudo, Y.; Nemoto, J.; Ohtsuka, K., et al., Sensitive and rapid detection of Vero toxin-producing Escherichia coli using loop-mediated isothermal amplification[J]. Journal of Medical Microbiology 2007, 56 (Pt 3), 398-406.
    [79] Iwamoto, T.; Sonobe, T.; Hayashi, K., Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples[J]. Journal of Clinical Microbiology 2003, 41 (6), 2616-2622.
    [80] Yamazaki, W.; Ishibashi, M.; Kawahara, R., et al., Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus[J]. BMC Microbiology 2008, 8, 163.
    [81] Yamazaki, W.; Kumeda, Y.; Misawa, N., et al., Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of the tdh and trh genes of Vibrio parahaemolyticus and related Vibrio species[J]. Appl Environ Microbiol 2010, 76 (3), 820-828.
    [82] MLakar, V.; Glavac, D., DNA microarrays and their use in dermatology[J]. Acta Dermatovenerol Alp Panonica Adriat 2007, 16 (1), 7-12.
    [83] Yu, C.; Sun, J.; Zheng, L., et al., Genomic analysis of gene expression of Staphylococcus aureus[J]. Methods Mol Biol 2007, 391, 169-178.
    [84] Shomaker, T. S.; Ward, K., Microarray technology in biomedical research[J]. Hawaii Med J 2006, 65 (9), 253-256.
    [85] Wang, Q.; Wang, M.; Kong, F., et al., Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes[J]. J Microbiol Methods 2007, 68 (1), 128-136.
    [86] Yoo, S. M.; Lee, S. Y.; Chang, K. H., et al., High-throughput identification of clinically important bacterial pathogens using DNA microarray[J]. Mol Cell Probes 2009, 23 (3-4), 171-177.
    [87] Chandler, D. P.; Brown, J.; Call, D. R., et al., Automated immunomagnetic separation and microarray detection of E. coli O157:H7 from poultry carcass rinse[J]. International Journal of Food Microbiology 2001, 70 (1-2), 143-154.
    [88] Panicker, G.; Call, D. R.; Krug, M. J., et al., Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays[J]. Appl Environ Microbiol 2004, 70 (12), 7436-7444.
    [89] Williams, J. G.; Kubelik, A. R.; Livak, K. J., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res 1990, 18 (22), 6531-6535.
    [90] Ryang, D. W.; Cho, S. W.; Shin, M. G., et al., Molecular typing of Vibrio vulnificus isolates by random amplified polymorphic DNA (RAPD) analysis[J]. Jpn J Med Sci Biol 1997, 50 (3), 113-121.
    [91] Wong, H. C.; Liu, C. C.; Pan, T. M., et al., Molecular typing of Vibrio parahaemolyticus isolates, obtained from patients involved in food poisoning outbreaks in Taiwan, by random amplified polymorphic DNA analysis[J]. Journal of Clinical Microbiology 1999, 37 (6), 1809-1812.
    [92] Chiou, C. S.; Wei, H. L.; Yang, L. C., Comparison of pulsed-field gel electrophoresis and coagulase gene restriction profile analysis techniques in the molecular typing of Staphylococcus aureus[J]. Journal of Clinical Microbiology 2000, 38 (6), 2186-2190.
    [93] Trindade, P. A.; McCulloch, J. A.; Oliveira, G. A., et al., Molecular techniques for MRSA typing: current issues and perspectives[J]. Braz J Infect Dis 2003, 7 (1), 32-43.
    [94] Marshall, S.; Clark, C. G.; Wang, G., et al., Comparison of molecular methods for typing Vibrioparahaemolyticus[J]. Journal of Clinical Microbiology 1999, 37 (8), 2473-2478.
    [95] Versalovic, J.; Koeuth, T.; Lupski, J. R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes[J]. Nucleic Acids Res 1991, 19 (24), 6823-6831.
    [96] Khan, A. A.; McCarthy, S.; Wang, R. F., et al., Characterization of United States outbreak isolates of Vibrio parahaemolyticus using enterobacterial repetitive intergenic consensus (ERIC) PCR and development of a rapid PCR method for detection of O3:K6 isolates[J]. Fems Microbiology Letters 2002, 206 (2), 209-214.
    [97] Wong, H. C.; Lin, C. H., Evaluation of typing of vibrio parahaemolyticus by three PCR methods using specific primers[J]. Journal of Clinical Microbiology 2001, 39 (12), 4233-4240.
    [98] Wong, H. C.; Ho, C. Y.; Kuo, L. P., et al., Ribotyping of Vibrio parahaemolyticus isolates obtained from food poisoning outbreaks in Taiwan[J]. Microbiology and Immunology 1999, 43 (7), 631-636.
    [99] Wong, H. C.; Lu, K. T.; Pan, T. M., et al., Subspecies typing of Vibrio parahaemolyticus by pulsed-field gel electrophoresis[J]. Journal of Clinical Microbiology 1996, 34 (6), 1535-1539.
    [100] Chowdhury, N. R.; Stine, O. C.; Morris, J. G., et al., Assessment of evolution of pandemic Vibrio parahaemolyticus by multilocus sequence typing[J]. Journal of Clinical Microbiology 2004, 42 (3), 1280-1282.
    [101] Gonzalez-Escalona, N.; Martinez-Urtaza, J.; Romero, J., et al., Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing[J]. Journal of Bacteriology 2008, 190 (8), 2831-2840.
    [102] Kimura, B.; Sekine, Y.; Takahashi, H., et al., Multiple-locus variable-number of tandem-repeats analysis distinguishes Vibrio parahaemolyticus pandemic O3: K6 strains[J]. Journal of Microbiological Methods 2008, 72 (3), 313-320.
    [103] Harth-Chu, E.; Espejo, R. T.; Christen, R., et al., Multiple-locus variable-number tandem-repeat analysis for clonal identification of Vibrio parahaemolyticus isolates by using capillary electrophoresis[J]. Appl Environ Microbiol 2009, 75 (12), 4079-4088.
    [104] DePaola, A.; Hopkins, L. H.; Peeler, J. T., et al., Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters[J]. Appl Environ Microbiol 1990, 56 (8), 2299-2302.
    [105] Tuyet, D. T.; Thiem, V. D.; Von Seidlein, L., et al., Clinical, epidemiological, and socioeconomic analysis of an outbreak of Vibrio parahaemolyticus in Khanh Hoa Province, Vietnam[J]. J Infect Dis 2002, 186 (11), 1615-1620.
    [106] Alam, M. J.; Tomochika, K. I.; Miyoshi, S. I., et al., Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan[J]. Fems Microbiology Letters 2002, 208 (1), 83-87.
    [107] McLaughlin, J. B.; DePaola, A.; Bopp, C. A., et al., Outbreak of Vibrio parahaemolyticusgastroenteritis associated with Alaskan oysters[J]. N Engl J Med 2005, 353 (14), 1463-1470.
    [108] Martinez-Urtaza, J.; Simental, L.; Velasco, D., et al., Pandemic Vibrio parahaemolyticus O3:K6, Europe[J]. Emerging Infectious Diseases 2005, 11 (8), 1319-1320.
    [109] Takahashi, H.; Iwade, Y.; Konuma, H., et al., Development of a quantitative real-time PCR method for estimation of the total number of Vibrio parahaemolyticus in contaminated shellfish and seawater[J]. J Food Prot 2005, 68 (5), 1083-1088.
    [110] Su, S. C.; Lee, C. Y., Characterization of haemolysis of the Vibrio parahaemolyticus no.93[J]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 1997, 30 (1), 32-42.
    [111] Panicker, G.; Call, D. R.; Krug, M. J., et al., Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays[J]. Applied and Environmental Microbiology 2004, 70 (12), 7436-7444.
    [112] Suo, B.; He, Y.; Tu, S. I., et al., A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products[J]. Foodborne Pathog Dis 2010, 7 (6), 619-628.
    [113] Kim, H. J.; Park, S. H.; Lee, T. H., et al., Identification of Salmonella enterica serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella serovars[J]. Journal of Food Protection 2006, 69 (7), 1653-1661.
    [114] Nishibuchi, M., Origin of the pathogenic vibrios in the environment: inference from the studies on the molecular genetics of Vibrio cholerae and Vibrio parahaemolyticus[J]. Nippon Saikingaku Zasshi 1996, 51 (3), 823-832.
    [115] Honda, T.; Abad-Lapuebla, M. A.; Ni, Y. X., et al., Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus[J]. J Gen Microbiol 1991, 137 (2), 253-259.
    [116] Tada, J.; Ohashi, T.; Nishimura, N., et al., Detection of the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus by polymerase chain reaction[J]. Mol Cell Probes 1992, 6 (6), 477-487.
    [117] Nishibuchi, M.; Ishibashi, M.; Takeda, Y., et al., Detection of the thermostable direct hemolysin gene and related DNA sequences in Vibrio parahaemolyticus and other vibrio species by the DNA colony hybridization test[J]. Infect Immun 1985, 49 (3), 481-486.
    [118] Rosec, J. P.; Simon, M.; Causse, V., et al., Detection of total and pathogenic Vibrio parahaemolyticus in shellfish: Comparison of PCR protocols using pR72H or toxR targets with a culture method[J]. International Journal of Food Microbiology 2009, 129 (2), 136-145.
    [119] Bauer, A.; Rorvik, L. M., A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus[J]. Letters in Applied Microbiology 2007, 45 (4), 371-375.
    [120] Croci, L.; Suffredini, E.; Cozzi, L., et al., Evaluation of different polymerase chain reaction methods for the identification of Vibrio parahaemolyticus strains isolated by cultural methods[J]. J AOAC Int 2007, 90 (6), 1588-1597.
    [121] Ou, H. Y.; Ju, C. T.; Thong, K. L., et al., Translational genomics to develop a Salmonella enterica serovar Paratyphi A multiplex polymerase chain reaction assay[J]. J Mol Diagn 2007, 9 (5), 624-630.
    [122] Oggioni, M. R.; Pozzi, G., Comparative genomics for identification of clone-specific sequence blocks in Streptococcus pneumoniae[J]. Fems Microbiology Letters 2001, 200 (2), 137-143.
    [123] Zhu, D. S.; Zhou, M.; Fan, Y. L., et al., Identification of New Target Sequences for Pcr Detection of Vibrio Parahaemolyticus by Genome Comparison[J]. Journal of Rapid Methods and Automation in Microbiology 2009, 17 (1), 67-79.
    [124] Yu, S. J.; Chen, W. Y.; Wang, D. P., et al., Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis[J]. Fems Microbiology Letters 2010, 307 (1), 65-71.
    [125] Kalia, A.; Rattan, A.; Chopra, P., A method for extraction of high-quality and high-quantity genomic DNA generally applicable to pathogenic bacteria[J]. Analytical Biochemistry 1999, 275 (1), 1-5.
    [126] Gonzalez, S. F.; Krug, M. J.; Nielsen, M. E., et al., Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray[J]. Journal of Clinical Microbiology 2004, 42 (4), 1414-1419.
    [127] Liu, Z. M.; Shi, X. M.; Pan, F., Species-specific diagnostic marker for rapid identification of Staphylococcus aureus[J]. Diagnostic Microbiology and Infectious Disease 2007, 59 (4), 379-382.
    [128] Liu, D. Y.; Ainsworth, A. J.; Austin, F. W., et al., Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes[J]. International Journal of Food Microbiology 2004, 91 (3), 297-304.
    [129] Martinez-Picado, J.; Blanch, A. R.; Jofre, J., Rapid detection and identification of Vibrio anguillarum by using a specific oligonucleotide probe complementary to 16S rRNA[J]. Appl Environ Microbiol 1994, 60 (2), 732-737.
    [130] Luan, X. Y.; Chen, J. X.; Zhang, X. H., et al., Comparison of different primers for rapid detection of Vibrio parahaemolyticus using the polymerase chain reaction[J]. Letters in Applied Microbiology 2007, 44 (3), 242-247.
    [131] Chen, J.; Zhang, L.; Paoli, G. C., et al., A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis[J]. International Journal of Food Microbiology 2010, 137 (2-3), 168-174.
    [132] Lozano-Leon, A.; Torres, J.; Osorio, C. R., et al., Identification of tdh-positive Vibrioparahaemolyticus from an outbreak associated with raw oyster consumption in Spain[J]. Fems Microbiology Letters 2003, 226 (2), 281-284.
    [133] Kaysner, C. A.; Abeyta, C., Jr.; Trost, P. A., et al., Urea hydrolysis can predict the potential pathogenicity of Vibrio parahaemolyticus strains isolated in the Pacific Northwest[J]. Appl Environ Microbiol 1994, 60 (8), 3020-3022.
    [134] Henegariu, O.; Heerema, N. A.; Dlouhy, S. R., et al., Multiplex PCR: critical parameters and step-by-step protocol[J]. Biotechniques 1997, 23 (3), 504-511.
    [135] Furuya, S.; Suzuki, S.; Kobayashi, H., et al., Rapid method for detecting resistance to a QoI fungicide in Plasmopara viticola populations[J]. Pest Manag Sci 2009, 65 (8), 840-843.
    [136] Fluit, A. C.; Widjojoatmodjo, M. N.; Box, A. T., et al., Rapid detection of salmonellae in poultry with the magnetic immuno-polymerase chain reaction assay[J]. Appl Environ Microbiol 1993, 59 (5), 1342-1346.
    [137] Fluit, A. C.; Torensma, R.; Visser, M. J., et al., Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay[J]. Appl Environ Microbiol 1993, 59 (5), 1289-1293.
    [138] Kapperud, G.; Vardund, T.; Skjerve, E., et al., Detection of pathogenic Yersinia enterocolitica in foods and water by immunomagnetic separation, nested polymerase chain reactions, and colorimetric detection of amplified DNA[J]. Appl Environ Microbiol 1993, 59 (9), 2938-2944.
    [139] Ahn, S.; Walt, D. R., Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays[J]. Analytical Chemistry 2005, 77 (15), 5041-5047.
    [140] Wang, R. F.; Cao, W. W.; Johnson, M. G., 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods[J]. Appl Environ Microbiol 1992, 58 (9), 2827-2831.
    [141] Niederhauser, C.; Candrian, U.; Hofelein, C., et al., Use of polymerase chain reaction for detection of Listeria monocytogenes in food[J]. Appl Environ Microbiol 1992, 58 (5), 1564-1568.
    [142] Giesendorf, B. A.; Quint, W. G.; Henkens, M. H., et al., Rapid and sensitive detection of Campylobacter spp. in chicken products by using the polymerase chain reaction[J]. Appl Environ Microbiol 1992, 58 (12), 3804-3808.
    [143] Hong, G. E.; Kim, D. G.; Bae, J. Y., et al., Species-specific PCR detection of the fish pathogen, Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-L-alanine amidase[J]. Fems Microbiology Letters 2007, 269 (2), 201-206.
    [144] Nhung, P. H.; Ohkusu, K.; Miyasaka, J., et al., Rapid and specific identification of 5 human pathogenic Vibrio species by multiplex polymerase chain reaction targeted to dnaJ gene[J]. Diagnostic Microbiology and Infectious Disease 2007, 59 (3), 271-275.
    [145] Sithigorngul, P.; Rukpratanporn, S.; Pecharaburanin, N., et al., A simple and rapidimmunochromatographic test strip for detection of pathogenic isolates of Vibrio harveyi[J]. J Microbiol Methods 2007, 71 (3), 256-264.
    [146] Wittlinger, F.; Steffen, R.; Watanabe, H., et al., Risk of Cholera Among Western and Japanese Travelers[J]. J Travel Med 1995, 2 (3), 154-158.
    [147] Mead, P. S.; Slutsker, L.; Griffin, P. M., et al., Food-related illness and death in the united states reply to dr. hedberg[J]. Emerging Infectious Diseases 1999, 5 (6), 841-842.
    [148] Kaper, J. B.; Morris, J. G., Jr.; Levine, M. M., Cholera[J]. Clin Microbiol Rev 1995, 8 (1), 48-86.
    [149] Dziuban, E. J.; Liang, J. L.; Craun, G. F., et al., Surveillance for waterborne disease and outbreaks associated with recreational water--United States, 2003-2004[J]. MMWR Surveill Summ 2006, 55 (12), 1-30.
    [150] Yoder, J. S.; Hlavsa, M. C.; Craun, G. F., et al., Surveillance for waterborne disease and outbreaks associated with recreational water use and other aquatic facility-associated health events--United States, 2005-2006[J]. MMWR Surveill Summ 2008, 57 (9), 1-29.
    [151] Daniels, N. A.; Shafaie, A., A review of pathogenic Vibrio infections for clinicians[J]. Infections in Medicine 2000, 17 (10), 665-671.
    [152] Nandi, B.; Nandy, R. K.; Mukhopadhyay, S., et al., Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW[J]. Journal of Clinical Microbiology 2000, 38 (11), 4145-4151.
    [153] Baruah, K.; Cam, D. T. V.; Dierckens, K., et al., In vivo effects of single or combined N-acyl homoserine lactone quorum sensing signals on the performance of Macrobrachium rosenbergii larvae[J]. Aquaculture 2009, 288 (3-4), 233-238.
    [154] Caipang, C. M. A.; Brinchmann, M. F.; Kiron, V., Profiling gene expression in the spleen of Atlantic cod, Gadus morhua upon vaccination with Vibrio anguillarum antigen[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 2009, 153 (3), 261-267.
    [155] Kwok, A. Y. C.; Wilson, J. T.; Coulthart, M., et al., Phylogenetic study and identification of human pathogenic Vibrio species based on partial hsp60 gene sequences[J]. Canadian Journal of Microbiology 2002, 48 (10), 903-910.
    [156] Thompson, F. L.; Iida, T.; Swings, J., Biodiversity of vibrios[J]. Microbiology and Molecular Biology Reviews 2004, 68 (3), 403-409.
    [157] Vieira, V. V.; Teixeira, L. F. M.; Vicente, C. P., et al., Differentiation of environmental and clinical isolates of Vibrio mimicus from Vibrio cholerae by multilocus enzyme electrophoresis[J]. Applied and Environmental Microbiology 2001, 67 (5), 2360-2364.
    [158] Tarr, C. L.; Patel, J. S.; Puhr, N. D., et al., Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination[J]. Journal of Clinical Microbiology 2007, 45 (1), 134-140.
    [159] Panicker, G.; Myers, M. L.; Bej, A. K., Rapid detection of Vibrio vulnificus in shellfish and Gulf of Mexico water by real-time PCR[J]. Applied and Environmental Microbiology 2004, 70 (1), 498-507.
    [160] Di Pinto, A.; Ciccarese, G.; Tantillo, G., et al., A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus[J]. Journal of Food Protection 2005, 68 (1), 150-153.
    [161] Teh, C. S. J.; Chua, K. H.; Thong, K. L., Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes[J]. Journal of Applied Microbiology 2010, 108 (6), 1940-1945.
    [162] Wilson, W. J.; Strout, C. L.; DeSantis, T. Z., et al., Sequence-specific identification of 18 pathogenic microorganisms using microarray technology[J]. Molecular and Cellular Probes 2002, 16 (2), 119-127.
    [163] Keramas, G.; Bang, D. D.; Lund, M., et al., Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp[J]. Molecular and Cellular Probes 2003, 17 (4), 187-196.
    [164] Wang, X. W.; Zhang, L.; Jin, L. Q., et al., Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens[J]. Applied Microbiology and Biotechnology 2007, 76 (1), 225-233.
    [165] Suo, B.; He, Y. P.; Paoli, G., et al., Development of an oligonucleotide-based microarray to detect multiple foodborne pathogens[J]. Molecular and Cellular Probes 2010, 24 (2), 77-86.
    [166] Kerouanton, A.; Marault, M.; Petit, L., et al., Evaluation of a multiplex PCR assay as an alternative method for Listeria monocytogenes serotyping[J]. J Microbiol Methods 2010, 80 (2), 134-137.
    [167] Chagovetz, A.; Blair, S., Real-time DNA microarrays: reality check[J]. Biochem Soc Trans 2009, 37 (2), 471-475.
    [168] Hirschhorn, J. N.; Sklar, P.; Lindblad-Toh, K., et al., SBE-TAGS: An array-based method for efficient single-nucleotide polymorphism genotyping[J]. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (22), 12164-12169.
    [169] Lu, C.; Shi, C.; Zhang, C., et al., Development of single base extension-tags microarray for the detection of food-borne pathogens[J]. Sheng Wu Gong Cheng Xue Bao 2009, 25 (4), 554-559.
    [170] Bi, K.; Miyoshi, S. I.; Tomochika, K. I., et al., Detection of virulence associated genes in clinical strains of vibrio mimicus[J]. Microbiology and Immunology 2001, 45 (8), 613-616.
    [171] Rivera, I. N.; Lipp, E. K.; Gil, A., et al., Method of DNA extraction and application of multiplex polymerase chain reaction to detect toxigenic Vibrio cholerae O1 and O139 from aquatic ecosystems[J]. Environ Microbiol 2003, 5 (7), 599-606.
    [172] Conejero, M. J.; Hedreyda, C. T., PCR detection of hemolysin (vhh) gene in Vibrio harveyi[J]. JGen Appl Microbiol 2004, 50 (3), 137-142.
    [173] Di Pinto, A.; Ciccarese, G.; Tantillo, G., et al., A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus[J]. J Food Prot 2005, 68 (1), 150-153.
    [174] Xiao, P.; Mo, Z. L.; Mao, Y. X., et al., Detection of Vibrio anguillarum by PCR amplification of the empA gene[J]. J Fish Dis 2009, 32 (3), 293-296.
    [175] Kim, H. J.; Park, S. H.; Lee, T. H., et al., Microarray detection of food-borne pathogens using specific probes prepared by comparative genomics[J]. Biosensors & Bioelectronics 2008, 24 (2), 238-246.
    [176] Urakawa, H.; KitaTsukamoto, K.; Ohwada, K., 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae[J]. Fems Microbiology Letters 1997, 152 (1), 125-132.
    [177] Wiesinger-Mayr, H.; Vierlinger, K.; Pichler, R., et al., Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition[J]. BMC Microbiology 2007, 7, 78.
    [178] De Medici, D.; Anniballi, F.; Wyatt, G. M., et al., Multiplex PCR for Detection of Botulinum Neurotoxin-Producing Clostridia in Clinical, Food, and Environmental Samples[J]. Applied and Environmental Microbiology 2009, 75 (20), 6457-6461.
    [179] Steemers, F. J.; Chang, W. H.; Lee, G., et al., Whole-genome genotyping with the single-base extension assay[J]. Nature Methods 2006, 3 (1), 31-33.
    [180] Wong, H. C.; Lee, Y. S., Regulation of iron on bacterial growth and production of thermostable direct hemolysin by Vibrio parahaemolyticus in intraperitoneal infected mice[J]. Microbiology and Immunology 1994, 38 (5), 367-371.
    [181] Cabello, F. C.; Espejo, R. T.; Hernandez, M. C., et al., Vibrio parahaemolyticus O3:K6 epidemic diarrhea, Chile, 2005[J]. Emerging Infectious Diseases 2007, 13 (4), 655-656.
    [182] Martinez-Urtaza, J.; Lozano-Leon, A.; DePaola, A., et al., Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates[J]. Journal of Clinical Microbiology 2004, 42 (10), 4672-4678.
    [183] Frank, J. A.; Reich, C. I.; Sharma, S., et al., Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J]. Appl Environ Microbiol 2008, 74 (8), 2461-2470.
    [184] Versalovic, J.; Koeuth, T.; McCabe, E. R., et al., Use of the polymerase chain reaction for physical mapping of Escherichia coli genes[J]. Journal of Bacteriology 1991, 173 (17), 5253-5255.
    [185] Hunter, P. R.; Gaston, M. A., Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity[J]. Journal of Clinical Microbiology 1988, 26 (11), 2465-2466.
    [186] Harth, E.; Matsuda, L.; Hernandez, C., et al., Epidemiology of Vibrio parahaemolyticus Outbreaks, Southern Chile[J]. Emerging Infectious Diseases 2009, 15 (2), 163-168.
    [187] Mead, P. S.; Slutsker, L.; Dietz, V., et al., Food-related illness and death in the United States[J]. Emerging Infectious Diseases 1999, 5 (5), 607-625.
    [188] Wagley, S.; Koofhethile, K.; Rangdale, R., Prevalence and potential pathogenicity of Vibrio parahaemolyticus in Chinese mitten crabs (Eriocheir sinensis) harvested from the River Thames estuary, England[J]. J Food Prot 2009, 72 (1), 60-66.
    [189] Beuchat, L. R., Suitability of some enrichment broths and diluents for enumerating cold- and heat-stressed Vibrio parahaemolyticus[J]. Can J Microbiol 1977, 23 (5), 630-633.
    [190] Ray, B.; Hawkins, S. M.; Hackney, C. R., Method for the detection of injured Vibrio parahaemolyticus in seafoods[J]. Appl Environ Microbiol 1978, 35 (6), 1121-1127.
    [191] Hara-Kudo, Y.; Nishina, T.; Nakagawa, H., et al., Improved method for detection of Vibrio parahaemolyticus in seafood[J]. Appl Environ Microbiol 2001, 67 (12), 5819-5823.
    [192] Fabbro, C.; Cataletto, B.; Del Negro, P., Detection of pathogenic Vibrio parahaemolyticus through biochemical and molecular-based methodologies in coastal waters of the Gulf of Trieste (North Adriatic Sea)[J]. Fems Microbiology Letters 2010, 307 (2), 158-164.
    [193] Pan, T. M.; Wang, T. K.; Lee, C. L., et al., Food-borne disease outbreaks due to bacteria in Taiwan, 1986 to 1995[J]. Journal of Clinical Microbiology 1997, 35 (5), 1260-1262.
    [194] Chao, G. X.; Jiao, X. A.; Zhou, X. H., et al., Distribution, prevalence, molecular typing, and virulence of Vibrio parahaemolyticus isolated from different sources in coastal province Jiangsu, China[J]. Food Control 2009, 20 (10), 907-912.
    [195] Deng, Z. A.; Li, X. Q.; Hu, Y. S., et al., Application of pulse-field gel electrophoresis analysis in source-tracking of food-borne disease caused by Vibrio parahaemolyticus[J]. Zhonghua Yu Fang Yi Xue Za Zhi 2008, 42 (1), 36-38.
    [196] Liu, F.; Guan, W. Y.; Alam, M. J., et al., Pulsed-field Gel Electrophoresis Typing of Multidrug-resistant Vibrio parahaemolyticus Isolated from Various Sources of Seafood[J]. Journal of Health Science 2009, 55 (5), 783-789.
    [197] Chowdhury, N. R.; Chakraborty, S.; Eampokalap, B., et al., Clonal dissemination of Vibrio parahaemolyticus displaying similar DNA fingerprint but belonging to two different serovars (O3 : K6 and O4 : K68) in Thailand and India[J]. Epidemiology and Infection 2000, 125 (1), 17-25.
    [198] Ellingsen, A. B.; Jorgensen, H.; Wagley, S., et al., Genetic diversity among Norwegian Vibrio parahaemolyticus[J]. Journal of Applied Microbiology 2008, 105 (6), 2195-2202.
    [199] Goarant, C.; Merien, F.; Berthe, F., et al., Arbitrarily primed PCR to type Vibrio spp. pathogenic for shrimp[J]. Appl Environ Microbiol 1999, 65 (3), 1145-1151.
    [200] Iida, T.; Hattori, A.; Tagomori, K., et al., Filamentous phage associated with recent pandemicstrains of Vibrio parahaemolyticus[J]. Emerging Infectious Diseases 2001, 7 (3), 477-478.
    [201] Chowdhury, N. R.; Chakraborty, S.; Ramamurthy, T., et al., Molecular evidence of clonal Vibrio parahaemolyticus pandemic strains[J]. Emerging Infectious Diseases 2000, 6 (6), 631-636.
    [202] Laohaprertthisan, V.; Chowdhury, A.; Kongmuang, U., et al., Prevalence and serodiversity of the pandemic clone among the clinical strains of Vibrio parahaemolyticus isolated in southern Thailand[J]. Epidemiol Infect 2003, 130 (3), 395-406.
    [203] Olive, D. M.; Bean, P., Principles and applications of methods for DNA-based typing of microbial organisms[J]. Journal of Clinical Microbiology 1999, 37 (6), 1661-1669.
    [204] Bag, P. K.; Nandi, S.; Bhadra, R. K., et al., Clonal diversity among recently emerged strains of Vibrio parahaemolyticus O3:K6 associated with pandemic spread[J]. Journal of Clinical Microbiology 1999, 37 (7), 2354-2357.
    [205] Maluping, R. P.; Ravelo, C.; Lavilla-Pitogo, C. R., et al., Molecular typing of Vibrio parahaemolyticus strains isolated from the Philippines by PCR-based methods[J]. Journal of Applied Microbiology 2005, 99 (2), 383-391.
    [206] Bhowmick, P. P.; Khushiramani, R.; Raghunath, P., et al., Molecular typing of Vibrio parahaemolyticus isolated from seafood harvested along the south-west coast of India[J]. Letters in Applied Microbiology 2008, 46 (2), 198-204.
    [207] Kimura, B.; Sekine, Y.; Takahashi, H., et al., Multiple-locus variable-number of tandem-repeats analysis distinguishes Vibrio parahaemolyticus pandemic O3:K6 strains[J]. J Microbiol Methods 2008, 72 (3), 313-320.
    [208] Yeung, P. S.; Hayes, M. C.; DePaola, A., et al., Comparative phenotypic, molecular, and virulence characterization of Vibrio parahaemolyticus O3:K6 isolates[J]. Appl Environ Microbiol 2002, 68 (6), 2901-2909.
    [209] Parsons, M. B.; Cooper, K. L.; Kubota, K. A., et al., PulseNet USA standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio parahaemolyticus[J]. Foodborne Pathog Dis 2007, 4 (3), 285-292.
    [210] Yamamoto, S.; Harayama, S., PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Appl Environ Microbiol 1995, 61 (3), 1104-1109.
    [211] Mitra, U.; De, S. P.; Nair, G. B., et al., Plasmid patterns, serotyping and Kanagawa phenomenon of Vibrio parahaemolyticus isolates from man, water and fish in Calcutta, India[J]. J Diarrhoeal Dis Res 1987, 5 (3), 171-174.
    [212] Seguritan, V.; Feng, I. W.; Rohwer, F., et al., Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C[J]. Journal of Bacteriology 2003, 185 (21), 6434-6447.
    [213] Austin, B.; Austin, D. A.; Blanch, A. R., et al., A comparison of methods for the typing offish-pathogenic Vibrio spp.[J]. Systematic and Applied Microbiology 1997, 20 (1), 89-101.
    [214] Swaminathan, B.; Barrett, T. J.; Hunter, S. B., et al., PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States[J]. Emerging Infectious Diseases 2001, 7 (3), 382-389.
    [215] Rao, B. M.; Surendran, P. K., Genetic heterogeneity of non-O1 and non-O139 Vibrio cholerae isolates from shrimp aquaculture system: a comparison of RS-, REP- and ERIC-PCR fingerprinting approaches[J]. Letters in Applied Microbiology 2010, 51 (1), 65-74.
    [216] Le Roux, F.; Goubet, A.; Thompson, F. L., et al., Vibrio gigantis sp nov., isolated from the haemolymph of cultured oysters (Crassostrea gigas)[J]. International Journal of Systematic and Evolutionary Microbiology 2005, 55, 2251-2255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700