十足目(Crustacea:Decapoda)经济甲壳动物谷氨酸脱氢酶基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
游离氨基酸在生物体的渗透调节过程中发挥着重要的作用,谷氨酸是其中最为重要的一种,而谷氨酸脱氢酶(Glutamate dehydrogenase, GDH)作为谷氨酸代谢过程中的关键酶之一,有关其基因的研究并不多见。同时,十足目动物作为甲壳纲中一个重要的经济类群,对盐度的适应范围多种多样。因此,研究十足目中主要的经济动物GDH基因及其与盐度变化的关系,将对深入了解游离氨基酸在渗透调节过程中的作用机制及十足目动物的分化演变有着重要的意义。
     本研究在获得甲壳纲十足目5种经济动物谷氨酸脱氢酶(GDH)序列片段的基础上,选择其中凡纳滨对虾的GDH-B基因序列进行生物信息学分析,并通过对凡纳滨对虾进行急性和长期的盐度胁迫,研究谷氨酸脱氢酶基因在不同盐度胁迫条件下的表达差异及变化规律,其中主要研究结果如下:1.十足目5种经济动物谷氨酸脱氢酶基因的定性研究
     采用常规PCR技术,扩增获得了凡纳滨对虾(Litopenaeus vannamei)、罗氏沼虾(Macrobrachium rosenbergii)、红螯螯虾(Cherax quadricarinatus)、中华绒螯蟹(Eriocheir sinensis)、拟穴青蟹(Scylla paramamosain)肌肉GDH序列片段;通过多序列比对,发现其氨基酸序列中的若干高度保守区域,其中GGVTVS片段在所有已获得的真核生物GDH序列中表现出高度同源性;在脊椎动物和无脊椎动物类群中又分别存在一个高度保守区,综合已有文献,根据结构保守区的差异,GDH在真核生物中可分为GDH-1和GDH-2两大类,本研究所获得的5种GDH序列属于GDH-2。
     2.凡纳滨对虾谷氨酸脱氢酶的生物信息学分析
     对获得的凡纳滨对虾GDH-B全长序列进行进一步的生物信息学分析。发现凡纳滨对虾的GDH-B二级结构中存在20个α-螺旋和14个β-折叠结构,而利用Swiss-MODEL对其进行三维结构模拟则发现14个α-螺旋和10个β-折叠结构,两个氨基酸保守区域则分别存在于两个β-折叠集中区域;同时发现在其170-183aa处存在一个多种氨基酸脱氢酶的活性位点(Glu/Leu/Phe/Val dehydrogenases active site) VpfGGAKaGlkiNP,利用Bioedit软件对谷氨酸脱氢酶的氨基酸组成进行分析表明,该蛋白富含甘氨酸、丙氨酸和谷氨酸等与渗透调节相关的氨基酸类。结果提示GDH-B的结构与其功能密切相关。
     3.急性盐度胁迫下谷氨酸脱氢酶表达变化研究
     利用实时荧光定量PCR技术研究了急性盐度胁迫下凡纳滨对虾肌肉和鳃中GDH的表达变化情况。发现无论面对低盐胁迫还是高盐胁迫,GDH-A在肌肉和鳃中均是胁迫后24 hr其表达量最高,在高盐胁迫下,同一时刻GDH-A在鳃中的表达量始终高于其在肌肉中的表达量,在24 hr时差异最为显著。GDH-B的变化则稍有差异,在低盐胁迫时,其在肌肉和鳃中的表达量在48 hr最高,在高盐胁迫时,肌肉中的GDH-B表达量在48 hr最高,但变化不显著,而鳃中该基因的表达量在96 hr达到最高,且显著高于其他时刻的表达量。结果提示,在应对盐度急性胁迫时,GDH-A响应时间要早于GDH-B,其主要靶器官为鳃,可能与急性盐度胁迫下的渗透调节关系更为密切,GDH-B响应时间稍晚,可能在更为复杂的代谢过程中发挥作用。
     4.长期盐度胁迫下谷氨酸脱氢酶表达变化研究
     利用实时荧光定量PCR技术研究了在长期盐度胁迫下凡纳滨对虾肌肉和鳃中GDH的表达变化情况。发现在低盐度(5‰)下,GDH-A在肌肉和鳃中的表达量要显著低于中盐度(20‰)及高盐度组(32‰),各盐度下的组织表达差异并不显著;而对于GDH-B,高盐度组对虾肌肉中的表达量显著高于其他两组,鳃中表达差异并不显著。由于肌肉是氨基酸的主要积累场所,推测GDH-B在谷氨酸合成方面起主要作用,而GDH-A在面对长期盐度胁迫时,其在渗透调节方面的作用已不明显。
Free amino acid (FAA) play a vital role in cell volume and osmoregulation process of organisms. Among these FAAs, glutamate is a most important one. But little information is known about glutamate dehydrogenase (GDH), which is the key enzyme in the process of glutamate metabolism. Meanwhile, as a major group of crustacean, decapods species have various salinity adaptability. So the study of relationship between GDH gene and salinity variation has a significant meaning for further understanding in osmoregulation and polarization evolution of decapoda.
     The GDH gene of Litopenaeus vannamei was analyzed using methods of bioinformatics after fragments of GDH cDNAs from 5 economic animals of decapods were sequenced in this study. Then the expression profiles of GDH mRNA during acute and chronic salinity stress in L.vannamei were investigated. Results of current study can provide basic data for understanding mechanism of osmoregulation and new approach for culture of economic crustaceans.
     1. Characterization of the glutamate dehydrogenase genes in five economic animals of Decapods, Crustacean
     Conventional PCR technical was used for amplification of GDH cDNA fragments of L. vannamei, Macrobrachium rosenbergii, Cherax quadricarinatus, Eriocheir sinensis, and Scylla paramamosain. The alignment of the five GDH amino acid sequences with those of other species showed some highly conservative regions. A highly homology region was detected in all eukaryotic GDH sequences. Other two conservative regions existed in sequences of vertebrates and invertebrates, respectively. Accroding to the existing literatures, GDH in eukaryotic organisms can divided into two families (GDH-1 and GDH-2) by their differences in structure.
     2. Bioinformatics analysis for glutamate dehydrogenase gene in L.vannamei
     Further bioinformatics analysis for GDH-B in L.vannamei was carried out and 20α-helices and 14β-strands were found in the secondary structure of GDH-B. However, 14α-helices and 10β-strands were discovered in its three-dimensional structure that made by Swiss-MODEL. Two conservative amino acid regions located in twoβ-strands concentration regions. Meanwhile, we found a Glu/Leu/Phe/Val dehydrogenases active site encoding VpfGGAKaGlkiNP at th 170-183 aa of GDH-B. The deduced amino acids composition of GDH-B in L.vannamei is analysised using Bioedit and the results showed glycine, alanine and glutamate which related with osmoregulation are abundant in this protein.
     3. Expression profiles of glutamate dehydrogenase gene during acute salinity stress in L.vannamei
     A semi-quantitative real-time PCR assay was developed to estimate the expression profiles of two GDH genes in muscle and gills of L. vannamei, during acute salinity stress. The results showed that GDH-A mRNA expression reached the peak level 24 hr after exposure both at hypo-and hyperosmotic stress. The relative amount of GDH-A mRNA in gills is higher than that in muscle and the difference are most obvious at 24 hr exposure. The maximum mRNA level of GDH-B attained at 48 hr both in gill and muscle, but no significant change can been observed in diffetent exposure time. While the relative amount of GDH-B mRNA in gill reached the peak point at 96 hr exposure and significantly higher than the expression levels of other sampling times. The results suggest GDH-A has a closer relationship with osmoregulation in acute salinity stress for the short response time in gills and GDH-B may paly its role in the complex process of metabolism.
     4. Expression profiles of glutamate dehydrogenase gene during chronic salinity stress in L.vannamei
     A semi-quantitative real-time PCR assay was developed to estimate the expression profiles of two GDH genes in muscle and gills of L. vannamei, during chronic salinity stress. The results showed a significant low expression level of GDH-A in muscle and gills at 5%o rather than 20%o and 32%o, but no remarkable tissue specific was detected. For GDH-B, a significant high expression level in muscle but gills can be observed. As muscle is a main site for accumulation of amino acid, it can be speculated that GDH-B is important for synthetic of glutamate, while GDH-A's role in osmoregulation is not apparent for long-term salinity stress.
引文
1. Andersson J.O. and Roger A.J.2003. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes. BMC Evolutionary Biology.3:14-24.
    2. Andre P.1995. Osmotic Regulation in Crustaceans. J. Crustacean. Boil.15(1):1-60.
    3. Arnold K., Bordoli L., Kopp J., et al.2006. The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling. Bioinformatics, 22:195-201.
    4. Arystarkhova E., Wetzel R.K., Asinovski N.K., et al.1999. The gamma subunit modulates Na+ and K+ affinity of the renal Na, K-ATPase. J. Biol. Chem. 274:33183-33185.
    5. Baxter-Lowe L.A., Guo J.Z., Bergstrom E.E., et al.1989. Molecular cloning of the Na,K-ATPase a-subunit in developing brine shrimp and sequence comparison with higher organisms. FEBS Lett.257:181-187.
    6. Beltz B.S.,1988. Crustacean neurohormones. In:Laufer, H., Downer, R.G.H.(Eds.), Endocrinology of Selected Invertebrate Types. Alan R.Liss, New York, USA, 235-258.
    7. Benachenhou-Lahfa N., Forterre P., Labedan B.1993. Evolution of glutamate dehydrogenase genes:evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J Mol Evol. 36(4):335-346.
    8. Bhattacharyya K.K., Bergstrom E.E. Hokin L.E.1990. Molecular cloning of the (3-subunit of Na, K-ATPase in the brine shrimp, Artemia:The cDNA-derived amino acid sequence show low homology with β-subunits of vertrbrates except in the single transmembrane and the carboxy-terminal domains. FEBS let.269:233-238.
    9. Britton K.L., Baker P.J., Rice D.W., et al.1992. Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenases. Eur. J. Biochem. 209:851-859.
    10. Burton R.S.1986. Incorporation of 14C-bicarbonate into the free amino acid pool during hyperosmotic stress in an intertidal copepod. J.Exper.Zool.238:55-61.
    11. Burton R.S.1991a. Regulation of proline synthesis during osmotic stress in the copepod Tigriopus californicus. J.Exper.Zool.259:166-173.
    12. Burton R.S.1991b. Regulation of proline synthesis in osmotic response:effects of protein synthesis inhibitors. J.Exper.Zool.259:272-277.
    13. Burton R.S.1992. Proline synthesis during osmotic stress in megalopa stage larval of the blue crab Callinectes sapidus. Biol. Bull.182:409-415.
    14. Burton R.S., Feldman M.W.1982. Changes in free amino acids concentration during osmotic response in the intertidal copepod Tigriopus californicus. Comp. Biochem. Physiol.73A:441-445.
    15. Chan S.M., Chen X.G.1998. PCR cloning and expression of the molt-inhibiting hormone gene for the crab Charybdus feriatus. Gene,224:23-33.
    16. Charmantier-Daures M., Charmantier G, Jansen K.P.C., et al.1994. Involvement of eyestalk factors in the neuroendocrine control of osmoregulation in adult American lobster, Homarus americanus.Gen. Comp. Endocrinol.94:281-293.
    17. Chen S.H., Lin C.Y., Kuo C.M.2004. Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii):evidence of alternative splicing. Mar. Biotechnol.6:83-94.
    18. Chung J.S., Wilkinson M.C., Webster S.G.1998. Amino acid sequences of both isoforms of crustacean hyperglycemic hormone (CHH) and corresponding precursor-related peptide in Cancer pagurus. Regul.Pept.77:17-24.
    19. Chung K.F., Lin H.C.2006. Osmoregulation and Na, K-ATPase expression in osmoregulatory organs of Scylla paramamosain. Comp. Biochem. Physiol, Part A. 144:48-57.
    20. De Kleijn, D.P.V., van Herp, F.,1995. Molecular biology of neurohormone precursors in the eyestalk of crustacea. Comp. Biochem. Physiol.112:573-579.
    21. De Kleijn, D.P.V., van Herp, F.,1998. Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapods crustaceans. Invertebr. Reprod. Dev.33:263-272.
    22. Dircksen H., Bocking D., Heyn U., et al.2001. Crustacean hyperglycemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. Biochem.J.356:159-170.
    23. Duchateau-bosson, Gh., Ch. Jeuniaux and Florkin M.1961. Role de la variation de la composante amino-acide intracellulaire dans l'euryhalinte d'Arenicola marina L. Arch. Int. Physiol. Biochem.,69:30-35.
    24. Escalante R., Garcia-Saez A., and Sastre L.1995. In situ hybridization analyses of Na, K-ATPase alpha-subunit expression during early larval development of Artemia franciscana. J Histochem Cytochem.43(4):391-399.
    25. Fingerman M.1997. Crustacean endocrinology:a retrospective, prospective, and introspective analysis. Physiol. Zool.70:257-269.
    26. Florkin M., Schoffenisls E.1969. Molecular approaches to ecology. Academic Press, New York, NY.112-163.
    27. Frieden C.1963. L-Glutamate dehydrogenase. In:Boyer, P.D., Lardy, H. and Myrback, K. (Eds.), the Enzymes,2nd ed. vol.7, Academic Press, New York,3-24.
    28. Genovese G., Luquet C.M., Paz D.A., et al.2000. The morphometric changes in the gills of the estuarine crab Chasmagnathus granulates under hyper-and hyporegulation conditions are not caused by proliferation of specialized cells. J.Anat. 197:239-246.
    29. Gilles R.1979. Intracellular organic osmotic effectors. In:Gilles R (Ed.), Mechanisms of osmoregulation in animals. John Wiley and Sons, New York, NY, 111-156.
    30. Goolish E.M., Burton R.S.1989. Energetics of osmoregulation in the intertidal copepod Tigriopus californicus. Funct. Ecol.3:81-89.
    31. Gu P.L., Chan S.M.1998. Cloning of a cDNA encoding a putative molt-inhibiting hormone from the eyestalk of the sand shrimp Metapenaeus ensis. Mol Mar Bio Biotech,7:214-220.
    32. Gu P.L., Yu K.L., Chan S.M.2000. Molecular characterization of an additional shrimp hyperglycemic hormone:cDNA cloning, gene organization, expression and biological assay of recombinant proteins. FEBS Lett.472,122-128.
    33. Guex N. and Peitsch M.C.1997. SWISS-MODEL and the Swiss-PdbViewer:An environment for comparative protein modelling. Electrophoresis 18:2714-2723.
    34. Hamilton E.W., Scott A.2001. Heckathorn:Mitochondrial Adaptations to NaCl. Complex Ⅰ is protected by anti-oxidants and small heat shock proteins, whereas complex Ⅱ is protected by proline and betaine. Plant Physiol,126:1266-1274.
    35. Hare P.D., Cress W.A., Van Staden J.1998. Dissecting the role of osmolyte accumulation during stress. Plate Cell Env.21:535-553.
    36. Hasler U., Wang X.Y. Crambert G.1998. Role of beta-subunit domains in the assembly stable expression intracellular routing and functional properties of Na K-ATPase. J.Biol.Chem.273:30826-30835
    37. Henry R.P., Campoverde M.2006. Neuroendocrine regulation of carbonic anhydrase expression in the gills of the euryhaline green crab, Carcinus maenas. J.Exp.Zool. 305:663-668.
    38. Henry R.P., Thomason K.L., Towle D.W.2006. Quantitative changes in branchial carbonic anhydrase activity and expression in the euryhaline green crab, Carcinus maenas. Comp. Biochem.Physiol.A.136:243-258.
    39. Hernandez R.M., Buckle R.L.F., PalaciosE., et al.2006. Preferential behavior of white shrimp Litopenaeus vannamei (Boone 1931) by progressive temperature-salinity simultaneous interaction. Journal of Thermal Biology,31: 565-572.
    40. Hochachka P.W. and Somero G.N.2002. Biochemical adaptation:mechanism and process in physiological evolution. New York:Oxford University Press.
    41. Hong Z., Lakkineni K., Zhang Z., et al.2000. Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol, 122:1129-1136.
    42. Huberman A., Aguilar M.B., Brew K., et al.1993. Primary structure of the major isoform of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish Procambarus bouvieri (Ortman):interspecies comparison. Peptides,14:7-16.
    43. Huong D.T.T. and Wilder M.N.2001. Studies on osmoregulation in the giant freshwater prawn (Macrobrachium rosenbergii). http://www.ctu.edu.vn/institutes/mdi/jircas/JIRCAS/research/workshop/pro01/D4-dtt h-study%20on%20osmoregulation.pdf
    44. Huong D.T.T., Yang W.J., Okuno A. et al.2001. Changes in free amino acids in the hemolymph of giant freshwater prawn Macrobrachium rosenbergii exposed to varying salinities:relationship to osmoregulation ability. Comp. Biochem.Physiol.A. 128(2):317-326.
    45. Hurtado M.A., Racotta I.S., Civera R., et al.2007. Effect of hypo-and hypersaline conditions on osmolality and Na+-K+-ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low-and high-HUFA diets. Comp. Biochem.Physiol.A.147:703-710.
    46. Kegel G., Reichwein B., Weese S., et al.1989. Amino acid sequence of the crustacean yperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS Lerr. 255(1):10-14.
    47. Kegel G., Reichwein B., Tensen C., et al.1991. Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limosus:emergence of a novel neuropeptide family. Peptides,12(5):909-913.
    48. Keller R.1992. Crustacean neuropeptides:structures, function and comparative aspects. Experientia,48:439-448.
    49. Kempf B., Bremer E.1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments, Arch. Microbiol.170:319-330.
    50. Kemple A.R., Macpherson H.T.1954. Liberation of amino acid in perennial rye grass during witting. Biochem,58:45-49.
    51. Khodabandeh S., Charmantier G., Charmantier-Daures M.2006. Immunolocalization of Na+-K+-ATPase in osmoregulatory organs during the embryonic and postembryonic development of the lobster Homarus gammarus. J.Crustacean Biol. 2:515-523.
    52. Lago-Leston A., Ponce E., Enriqueta-Munoz M.2007. Cloning and expression of hyperglycemic (CHH) and molt-inhibiting (MIH) hormones mRNAs from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperature and salinity conditions. Aquaculture,270:343-357.
    53. Lee K.J.1995. Molecular cloning of a cDNA encoding putative molt-inhibiting hormone from the blue crab, Callinectes sapidus. Biochen Biophys Res Commun, 209:1126-1131.
    54. Lee K.J., Watson R.D., Roer R.D.1998. Molt-inhibiting hormone mRNA levels and ecdysteroid tiger during a molt cycle of the blue crab Callinectes sapidus. Biochen Physiol Res Commun,249:624-627.
    55. Li E.C., Arena L., Chen L.Q. Vanwormhoudt Alain.2009. Characterization and tissue-specific expression of the two glutamate dehydrogenase cDNAs in pacific white shrimp, Litopenaeus vannamei. J crustacean boil.29(3),379-386.
    56. Li E.C., Chen L.Q., Zeng C., et al. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture,2008, 274:80-86.
    57. Lin, Y.C., Chen, J.C.,2001. Acute toxicity of ammonia on Litopenaeus. vannamei Boone Juveniles at different salinity levels. J. Exp. Mar. Biol. Ecol.259:109-119.
    58. Lin Y.C., Chen J.C.,2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224,193-201.
    59. Liu H.Y., Pan L.Q., Zheng D.B.2008. Effect of salinity on biogenic amines, hemolymph osmotic pressure, and activity of gill's Na+-K+-ATPase in Charybdis japonica (Crustacea, Decapoda). J. World Aquacult. Soc.39(6):812-820.
    60. Liu L., Laufer H., Gogarten P.J., et al.1997. cDNA cloning of a manbibular organ-inhibiting hormone from the spide crab Libinia emarginata. Invert Neurosci, 3:199-204.
    61. Livak K.J. and Schmittgen T.D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods,25:402-408.
    62. Lockwood A.P.M.1961. Osmoregulation in gammarids. J.Exp.Biol.38:647-658.
    63. Lucu C., Flik, G.1999. Na+-K+-ATPase and Na+/Ca+ exchange activities in gills of hyperregulating Carcinus maenas. Am. J. Physiol.276:R490-R499.
    64. Lucu C., Towle W.2006. Na+K+-ATPase in gills of aquatic crustacean. Comp. Biochem. Physiol Part A.135:195-214.
    65. Macias M.-T., Palmero I., Sastre L.1991. Cloning of a cDNA encoding an Artemia franciscana Na-K ATPase a-subunit. Gene.105:197-204.
    66. Martin G., Keller R., Kegel R., et al.1984. The hyperglycemic neuropeptide of the terrestrial isopod, Porcellio dilatatus:I, Isolation and characterization. Gen.Comp. Endocrinol.55,208-216.
    67. Masui D., Furriel R., McNamara J., et al.2002. Modulation by ammonium ions of gill microsomal (Na+, K+)-ATPase in the swimming crab Callinectes danae:A possible mechanism for regulation of ammonia excretion. Comp. Biochem. Physiol. Part C 132:471-482.
    68. Mcnamara J.C., Rosa J.C., Greene L.J. et al.2004. Free amino acid pools as effectors of osmostic adjustment in different tissues of the freshwater shrimp Macrobrachium olfersii (Crustacea, Decapoda) during long-term salinity acclimation. Mar.Fresh.Behav.Physiol.37(3):193-208.
    69. Minambres B., Olivera E.R., Jensen R.A., et al.2000. A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J.Biol.Chem. 275:39529-39542.
    70. Morris S.2001. Neuroendocrine regulation of osmoregulation and the evolution of air breathing in decapods crustaceans. J.Exp.Bio.204:979-989.
    71. Nagata S., Tanizawa K., Esaki N., et al.1988. Gene cloning and sequence determination of leucine dehydrogenase from Bacillus stearothermophilus and structural comparison with other NAD (P)+-dependent dehydrogenases. Biochemistry 27:9056-9062.
    72. Nisman, B.1954. The Stickland reaction. Bacteriol. Rev.18:16-42.
    73. Ohira T., Watanabe T., Nagasawa H., et al.1997. Molecular cloning of a molt-inhibiting hormone cDNA from the kuruma prawn Penaeus japonicas. Zool Sci, 14:785-789.
    74. Pan L.Q., Jiang L.X., Miao J.J.2005. Effects of salinity and pH on immune parameters of the white shrimp Litopenaeus vannamei. J. Shellfish Res.24 (4):1223-1227.
    75. Pan L.Q., Zhang L.J., Liu H.Y.2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlorvae. Aquaculture,273:711-720.
    76. Pante, M.J.R.,1990. Influence of environmental stress on the heritability of molting frequency and growth rate of the penaeid shrimp, Penaeus vannamei. University of Houston-Clear lake, Houston, TX, USA, M.Sc. Thesis.
    77. Pahlich, E. and Joy, K.W.1971. Glutamate dehydrogenase from pea roots: purification and properties of the enzyme. Can. J. Biochem.49:127-138.
    78. Parrie L., Towle D.W.2002. Induction of Na++K+-ATPase alpha subunit mRNA in branchial tissues of the American lobster Homarus americanus. J. Integ. Comp. Biol.
    79. Peterson G.L., Ewing, R.D., Hootman, S.R., et al.1978. Large-scale partial purification and molecular and kinetic properties of the (Na+K)-activated adenosine triphosphatase from Artemia salina nauplii. J. Biol. Chem.253:4762-4770.
    80. Pongsomboon S., Udomlertpreecha S., Amparyup P., Wuthisuthimethavee S., Tassanakajon A.2009. Gene expression and activity of carbonic anhydrase in salinity stressed Penaeus monodon. Comp. Biochem. Physiol. A.152:225-233.
    81. Roy L.A., Davis D.A., Saoud I.P., et al.2007. Branchial carbonic anhydrase activity and ninhydrin positive substances in the Pacific white shrimp, Litopenaeus vannamei, acclimated to low and high salinities. Comp.Biochem.Physiol.A.147:404-411.
    82. Saez A.G., Escalante R. Sastre L.2000. Hign DNA sequence variability at the al Na/K-ATPase locus of Artemia franciscana (brine shrimp):polymorphism in a gene for salt-resistance in a salt-resistant organism. Mol. Biol. Evol.17,235-250.
    83. Santos L.C.F., Belli N.M., Augusto A. et al.2007. Gill (Na+,K+)-ATPase in diadromous, freshwater palaemonid shrimps:species-specific kinetic characteristics and a-subunit expression. Comp. Biochen. Physiol.A.148:178-188.
    84. Schwede T., Kopp J., Guex N., et al.2003. SWISS-MODEL:an automated protein homology-modeling server. Nucl. Acids Res.31:3381-3385.
    85. Serrano L., Blanvillain G., Soyez D., et al.2003. Putative involvement of crustacean hyperglycemic hormone isoform s in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodatylus. J.Exp.Biol.206:979-988.
    86. Serrano L., Halanych K.M., Henry R.P.,2007. Salinity-stimulated changes in expression and activity of two carbonic anhydrase isoforms in the blue crab Callinectes sapidus. J.Exp.Bio.210:2320-2332.
    87. Sithigorngul W., Jaideechoey S., Saraithongkum W., et al.1999. Purification and characterion of an isoform of crustacean hyperglycemic hormone from the eyestalk of Macrobranchium resenbergii. J.Exp.Zool.284:217-224.
    88. Smith E.L., Austen B.M., Blumenthal K.M. et al.1975. Glutamate dehydrogenases. In:Boyer, P.D. (Ed.), The Enzymes,3rd ed., vol.11, Academic Press, New York, 293-367.
    89. Skou J.C. and Esmann M.1992. The Na, K-ATPase. J. Bioenerg. Biomembr.24: 249-261.
    90. Spees J.L., Chang S.A., Snyder M.J. et al.2002. Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. Biol.Bull. 203:331-337.
    91. Sugiura M.and Kisumi M.1985. Osmoregulation in a proline-producing strain of Serratia mercescens. J. gen. microbiol.131:2515-2520.
    92. Sun D.Y., Guo J.Z., Hartmann H.A.1991. Na, K-ATPase expression in the developing brine shrimp Artemia. Immunochemical localization of the alpha-and beta-subunits. J.Histochem.Cytochem.39:1455-1460.
    93. Sun D.Y., Guo J.Z., Hartmann H.A.1992. Differential expression of the alpha 2 and beta messenger RNAs of Na,K-ATPase in developing brine shrimp as measured by in situ hybridization. J.Histochem.Cytochem.40:555-562.
    94. Sun P.S.1994. Molecular cloning and sequence analysis of a cDNA encoding a molt-inhibiting hormone-like neuropeptide from the white shrimp Penaeus vannamei. Mol. Mar. Biol. Biotech.,3:1-6.
    95. Takada H., Yoshimura T., Ohshima T., et al.1991. Thermostable phenylalanine dehydrogenase of Thermoactinomyces intermedius:cloning, expression, and sequencing of its gene. J. Biochem.109:371-376.
    96. Tang L., Hutchinson C.R.1993. Sequence, transcriptional, and functional analyses of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor. J. Bacteriol.175:4176-4185.
    97. Tensen C.P., de Kleijn D.P.V., van Herp F.1991. Cloning and sequence analisis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus. Eur.J.Biochem.200:103-106.
    98. Tiu S.H., Chan S.M.2007. The use of recombinant protein and RNA interference approaches to study the reproduction function of a gonad-stimulating hormone from the shrimp Matepenaeus ensis. FEBS J.274:4385-4395.
    99. Tiu S.H., He J.G., Chan S.M.2007. The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation. Gene.396:226-235.
    100.Towle D.W., Palmer G.E., Harris Ⅲ J.L.,1976. Role of gill Na+-K+-dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196:315-322.
    101.Towle D.W., Paulsen R.S., Weihrauch D., et al.2001.Na++K+-ATPase in gills of the blue crab Callinectes sapidus:cDNA sequencing and salinity-related expression of a-subunit mRNA and protein. J. Exp. Biol.204:4005-4012.
    102.Tsai J.R., Lin H.C.2007. V-type H+-ATPase and Na++K+-ATPase in the gill of 13 euryhaline crabs during salinity acclimation. J.Exp.Bio.210:620-627.
    103.Udomkit A., Treeratttakol S., Panyim S., et al.2004. Crustacean hyperglycemic hormones of Penaeus monodon:cloning, production of active recombinant hormones and their expression in various shrimp tissues. J.Exp.Mar.Ecol.298:79-91.
    104.Umphrey H.R., Lee K.J., Watson R.D., et al.1998. Molecular cloning of a cDNA encoding molt-inhibiting hormone of the crab, Cancer meguster. Mol. Cell Endocrinol.136:145-149.
    105.Wainwright G, Webster S.G., Wilkinson M.C., et al.1996. Structure and significance of mandibular orgen-inhibiting hormone in crab Cancer pagurus. J. Boil. Chem.271: 12749-12754.
    106. Wang X., Ma S., et al.2006. Effects of water temperature and dietary carbohydrate levels on growth and energy budget of juvenile Litopenaeus vannamei. Chin. J. Oceanol. Limnol.24(3):318-324.
    107. Webster S.G.1986. Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterization of the putative molt-inhibiting hormone (MIH). Gen.Comp.Endocrinol.61:237-247.
    108.Willett C.S., Burton R.S.2002. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comp. Biochem. Physiol.B.132:739-750.
    109.Willett C.S., Burton R.S.2003. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comp. Biochem. Physiol. B.135: 639-649.
    110.Wyban J., Walsh W.A., Godin D.M.,1995.Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture,138:267-279.
    111.Yasuda A., Yasuda Y., Fujita T., et al.1994. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii):multiplicity of molecular forms and diverse function. Gen. Comp. Endocrinol.95:387-398.
    112.Zhu B., Yu G, Zhu J., Shen S.J.2000. Cloning and characterization of the glutamate dehydrogenase gene in Bacillus licheniformis. Sci. China Ser. C.43(3):254-264.
    113.Ziegler A.,1997. Immunocytochemical localization of Na+, K+-ATPase in the calcium-transporting sternal epithelium of the terrestrial isopod Porcellio scaber L. (Crustacea). J. Histochem. Cytochem.45:437-446.
    114.李二超.盐度对凡纳滨对虾的生理影响及其营养调节.2008,华东师范大学博士论文.
    115.李二超,陈立侨,曾增,等.2009.盐度对凡纳滨对虾体组织蛋白质积累、氨基酸组成和转氨酶活性的影响.水生生物学报.33(3):532-538.
    116.李二超,陈立侨,曾增,等.2008.不同盐度下饵料蛋白质含量对凡纳滨对虾生长、体成份和肝胰腺组织结构的影响.水产学报.32(3):425-433.
    117.刘存歧,王军霞,张亚娟,等.2008.盐碱地渗水盐度与纳钾比对凡纳滨对虾生长的影响.应用生态学报.19(6):1337-1342.
    118.刘凌云,郑光美.2002.普通动物学.北京:高等教育出版社.
    119.潘鲁青,刘泓宇.甲壳动物渗透调节生理学研究进展.水产学报.2005,29(1):109-115.
    120.沈丽琼,陈政强,陈昌生,等.2007.盐度对凡纳滨对虾生长与免疫功能的影响.集美大学学报(自然科学版).12(2):108-113.
    121.王再照,相建海.2001.甲壳动物CHH家族神经激素结构和功能研究进展.水产学报.25(2):175-180.
    122.吴凯,时翔,徐晓群.2007.急性盐度变化对凡纳滨对虾仔虾呼吸和排泄代谢的影响.厦门大学学报:自然科学版.46(1):149-154.
    123.张林娟,潘鲁青.2007.注射生物胺对凡纳滨对虾鳃丝离子转移酶活力与血淋巴渗透压的影响.海洋湖沼通报.2:114-120.
    124.周双林,姜乃澄,卢建平,等.2001.甲壳动物渗透压调节的研究进展Ⅰ.鳃的结构与功能及其影响因子.东海海洋.19(1):44-51.
    125.周双林,姜乃澄.甲壳动物渗透压调节的研究进展Ⅱ.排泄器官的结构与功能.东海海洋.2004,22(4):31-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700