Fe~0/荧光假单胞菌联合处理染料废水的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从造纸厂IC厌氧反应器内的污泥中筛选出一株对直接耐晒黑19(C.I. Direct Black19,简称DB19)有高效降解能力的菌株,通过形态特征、生理生化及16S rDNA序列分析,初步鉴定为荧光假单胞菌(Pseudomonas fluorescens),命名为Pf-6。采用序批实验,在35±2℃条件下,考察了Fe~0对Pf-6菌降解DB19、活性艳蓝X-BR(C.I. Reactive Blue4,简称X-BR或RB4)、活性艳红X-3B(C.I. Reactive Red2,简称X-3B或RR2)及混合染料的影响及相关反应动力学;借助UV-vis、FT-IR等手段分析染料降解过程产物,初步探讨了Fe~0/Pf-6菌联合体系降解3种染料的脱色机理。
     (1)Fe~0/Pf-6菌联合体系处理DB19,比纯Pf-6菌、单独Fe~0体系脱色率显著提高。厌氧条件下,3种体系脱色过程均遵循一级反应动力学,其反应速率常数k_1分别为55.4×10~3 h~1、35.7×10~3 h~1和14.3×10~3 h~1。
     (2)Fe~0/Pf-6菌联合体系处理100 mg/L的DB19脱色的适宜条件为:兼氧,初始pH为7.0,Fe~0投加量为500 mg/L,Pf-6菌液接种量为5%。当DB19的初始浓度
     由100 mg/L增加到1500 mg/L,脱色速率常数k_1由63.8×10~3 h~1减小到22.4×10~3 h~1。
     (3)兼氧Fe~0/Pf-6菌联合体系处理100 mg/L的X-BR,71 h后可实现约90%的脱色率,比纯Pf-6菌、单独Fe~0体系分别高30%和40%;而处理100 mg/L的X-3B,55 h后即可实现约90%的脱色率,比其它两种体系脱色率高约60%。X-BR和X-3B在联合体系中的脱色过程均遵循一级反应动力学,其反应速率常数k1分别为31.1×10~3 h~1和35.6×10~3 h~1。
     (4)兼氧Fe~0/Pf-6菌联合体系分别处理DB19、X-BR和X-3B 3种染料脱色后,系统内TTC-脱氢酶活性分别为40.98,37.07,45.26μgTF/(mL·h),而纯Pf-6菌体系仅为16.53,12.23,19.80μgTF/(mL·h),说明添加Fe~0有助于提高兼氧微生物系统的脱氢酶活性,从而促进染料脱色。
     (5)UV-vis和FT-IR分析表明,在Fe~0/Pf-6菌联合体系中,DB19、X-3B和X-BR主要通过偶氮键的断裂和蒽醌共轭结构的破坏实现脱色,含萘环和苯环结构等中间产物可得到进一步降解。
     (6)Fe~0/Pf-6菌联合体系对三种染料形成的混合废水也有较好的脱色效果。在适宜条件下,当三种染料初始浓度均为40 mg/L,经55 h处理后,DB19、X-BR和X-3B的脱色率分别为88%、80%和75%。
One bacterial strain with high degradation capacity for the dye- C.I. Direct Black19 (DB19) was isolated from anaerobic sludge in an Internal Circulation (IC) anaerobic reactor of a paper and pulp wasterwater treatment plant. The bacterium, which is named Pf-6, was primarily identified as Pseudomonas fluorescens through analysis results of its morphological, physiological and biochemical performances and 16S rDNA genetical sequence test. By batch experiments, the effect of zero-valent iron (Fe~0) on the biodegradation of DB19、C.I. Reactive Blue4 (X-BR or RB4)、C.I. Reactive Red2 (X-3B or RR2) and mixed pollutant composed of above three dyes, and kinetics of their decolorization in the Fe~0/Pf-6 combined system were investigated under the condition of mesophilic temperature 35±2℃. The decolorization process and intermediate products of these dyes in the Fe~0/Pf-6 combined system were preliminarily analysed by means of some methods such as UV-vis, FT-IR.
     (1) Compared with pure Pf-6 and single Fe~0 treatment systems, the decolorization effect of DB19 was significantly improved in the Fe~0/Pf-6 combined system. Under the anaerobic condition, the decolorization process of DB19 obeyed the first-order reaction dynamics in above three treatment systems. The dynamical constants k1 in the Fe~0/Pf-6 combined, pure Pf-6 and single Fe~0 systems were 55.4×10~3 h~1, 35.7×10~3 h~1 and 14.3×10~3 h~1 respectively.
     (2) When intial DB19 concentration was 100 mg/L, the optimum conditions of oxygen supplied、pH, Fe~0 dosage and Pf-6 inoculation volume for its decolorization in the Fe~0/Pf-6 combined system were facultative anaerobic, 7.0, 500mg/L and 5% respectively. Otherwise, the k1 decreased from 63.8×10~3 h~1 to 22.4×10~3 h~1 with increasing of initial DB19 concentration from 100 mg/L to 1500 mg/L.
     (3) When initial X-BR concentration and HRT were 100 mg/L and 71 h respectively, its decolorization rate was about 90% in the Fe~0/Pf-6 combined system under the facultative anaerobic condition, which were 30% and 40% higher than that in the pure Pf-6 and single Fe~0 systems respectively. However, the decolorization rate of X-3B in the Fe~0/Pf-6 combined system could also reach about 90% with initial dye concentration and HRT of 100 mg/L and 55 h respectively, which was 60% higher than that in the pure Pf-6 and single Fe~0 systems. Otherwise, both of the decolorization processes of X-BR and X-3B obeyed the first-order reaction dynamics and theirs dynamical constants k1 were 31.1×10~3 h~1 and 35.6×10~3 h~1 respectively in the combined system.
     (4) After these dyes– DB19, X-BR and X-3B were decolozied under the facultative anaerobic condition, the values of 2,3,5-triphenyl tetrazoliumchloride dehydrogenase activity (TTC-DHA) in the Fe~0/Pf-6 combined system could reach up to 40.98, 37.07, 45.26μgTF/(mL·h) respectively, while they were only 16.53, 12.23, 19.80μgTF/(mL·h) respectively in the pure Pf-6 system. It showed that, Fe~0 could effectively improve dehydrogenase activity under the facultative anaerpbic condition, which was benefit to promote dye decolorization in the Fe~0/Pf-6 combined system.
     (5) Based on analysis results of UV-vis and FT-IR, it indicated that, in the Fe~0/Pf-6 combined system, the decolorization of DB19, X-3B and X-BR were achieved mainly through fracture of azo bond and damage of anthraquinone conjugate structure respectively. Otherwise, some intermediate products with the structure of naphthalene ring and benzene during these dyes decolorization could also be partially degraded in the combined system.
     (6) During treatment of mixed dye wasterwater composed of DB19、X-BR and X-3B, certain decolorization effect could be obtained in the Fe~0/Pf-6 combined system. When initial each dye concentration and HRT were 40 mg/L and 55 h respectively, the decolorization rates of DB19, X-BR and X-3B were 80%, 75% and 47% respectively under the optimum conditions.
引文
[1]《化学百科全书》编辑委员会.化工百科全书(13)[M].北京:化学工业出版社, 1997: 5-12.
    [2]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社, 1997: 4-8.
    [3]杨新玮,罗钰言,肖刚,等.化工产品手册,染料(第4版)[M].北京:化学工业出版社, 2005: 6-12.
    [4]肖刚,王景国.染料工业技术[M].北京:化学工业出版社, 2004: 11-17.
    [5]胥维昌.染料行业废水处理现状和展望[J].染料工业, 2002, 39(6): 35-39.
    [6]张金平,阚振荣.微生物混合培养体系对染料脱色的研究[D].河北大学, 2006: 12-15.
    [7]上海科学技术情报研究所.国外染料公害及其防治措施[M]. 1975, 08: 25.
    [8]冯冰凌,叶菊招.聚氨基葡糖超滤膜的研制及其在印染废水处理中的应用[J].工业水处理, 1998, 18(4): 16-18.
    [9]陈惟咏,荆建鸣.高压脉冲电凝聚技术处理活性染料废水实验研究[J].上海环境科学, 2006, 25(4): 150-154.
    [10]阎存仙,周红.粉煤灰对染料水的脱色研究[J].环境污染与防治, 2000, 22(5): 3-5.
    [11]于敏,崔进发.超滤膜处理分散染料废水[J].工业用水与废水, 2003, 34(5): 36-38.
    [12]成文,曾宝强.孔雀绿染料的微生物脱色研究[J].应用与环境生物学报, 2000, 6(4): 370-373.
    [13] Umesh U.Jadhav, Vishal V.Dawkar, Gajanan S.Ghodaka, et al. Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS[J]. Journal of Hazardous Materials. 2008, 158(1-2): 507-516.
    [14] Yogesh M. Kolekar, Shrikant P. Pawar, Kachru R.Gawai, et al. Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil[J]. Bioresource Technology, 2008, 99(18): 8999-9003.
    [15] D.C. Kalyani, P.S. Patil, J.P. Jadhav, et al. Biodegradation of reactive textile Red BLI by an isolated bacterium Pseudomonas sp. SUK1[J]. Bioresource Technology, 2008, 99: 4635-4641.
    [16] Chih-Hung Chen, Chin-Feng Chang, Chuan-Hsin Ho, et al. Biodegradation of crystal violet by a Shewanella sp. NTOU1[J]. Chemosphere, 2008, 72: 1712-1720.
    [17] Chung-Chuan Hsueh, Bor-Yann Chen. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola[J]. Journal of Hazardous Materials, 2006, 7: 56-60.
    [18]张波,白云峰,朱斌,等.两株细菌对偶氮染料活性艳红X-3B脱色的研究[J].山西大学学报(自然科学版), 1998, 21(1): 77-79.
    [19]佘晨兴,王生平,霍佳生,等.染料脱色菌XB-7的分离、筛选及其特性[J].福建轻纺. 2007, (5): 1-4.
    [20]吴楚,王慧,郑天凌,等.一株苯胺蓝降解菌的分离鉴定及其降解特性[J].华侨大学学报(自然科学版). 2008, 29(1): 38-41.
    [21]林晓华,董新娇.一株染料脱色红酵母菌的分离鉴定及脱色条件研究[J].浙江农业学报, 2005, 17(4): 196-199.
    [22]徐文东,文湘华,付莉燕,等.偶氮染料派拉丁蓝RRN脱色细菌的选育与研究[J].环境科学学报, 2001, 21: 127-132.
    [23] Koichi Harazono, Kazunori Nakamura. Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol[J]. Chemosphere, 2005, 59: 63-68.
    [24] Matthew Tatarko, John A.Bumpus. Biodegradation of Congo Red by Phanerochaete chrysosporium[J]. Water Research, 1998, 32(5): 1713-1717.
    [25]张朝晖,夏黎明.黄孢原毛平革菌对染料和印染废水的降解[J].应用与环境生物学报, 2001, 7(4): 382-387.
    [26]肖继波,胡勇有.活性艳蓝KN-R的生物吸附脱色研究[J].中国环境科学, 2004, 24(1): 63-67.
    [27]张昊,杨清香,李慧君,等.活性红M-3BE脱色真菌的筛选及脱色性能研究[J].环境工程学报, 2007, 1(11): 55-58.
    [28]金朝晖,柴英涛,李铁龙,等. 3株真菌对活性艳蓝KN-R的脱色条件[J].环境科学, 2004, 25(2): 81-84.
    [29]贾振杰,李慧君,杨清香,等.不同培养基对富集筛选脱色真菌菌群的效果比较[J].微生物学通报, 2007, 34(4): 629-634.
    [30] Chen, K.C., Yu, J.Y., Liou, D.J., et al. Decolorization of textile azo dyes by newly isolated bacterial strains[J]. Biotechnology, 2003, 101:57-68.
    [31] M.Adosinda M.Martins, Nelson Lima, Armando J.D.Silvestre, et al. Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes[J]. Chemosphere, 2003, 52: 967-973.
    [32] Liu J Q, Liu H T. Decolorization of azodyes by algae[J]. Environmental Pollution, 1992(75): 273-278.
    [33]黄国兰,孙红文,宋智慧,等.固定化藻类的生理特征和对染料的脱色能力研究[J].环境科学学报, 2000, 20(4): 445-449.
    [34]孙红文,黄国兰,丛丽莉,等.藻类对偶氮染料的降解及定量结构-生物降解性研究[J].中国环境科学, 1999, 19(4): 289-292.
    [35]闵一钰. ZE-1号印染废水脱色菌群的选育及适用条件的研究[J].环境污染与防治, 1992, 14(6): 14-16.
    [36]曾丽璇,罗国维.一组优势菌对活性染料的脱色研究[J].环境污染治理技术与设备, 2000, 1(5): 36-39.
    [37]张金平,阚振荣,苏维,等.混合培养体系对染料的脱色和降解条件研究[J].生物技术, 2008, 18(1): 78-81.
    [38]邱木清,孙立夫,王根轩,等.氨基黑10B的EM脱色研究[J].江苏环境科技, 2008, 21(1): 33-36.
    [39]杨清香,贾振杰,李慧君,等.高效脱色菌群的脱色、产酶及群落分析[J].中国环境科学, 2007, 27(6): 763-767.
    [40] M.S.Khehra, H.S.Saini, D.K.Sharma, et al. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes[J]. Water Research, 2005(39): 5135-5141
    [41]瓮亮,吴赞敏.高效脱色菌的选育及对染料废水脱色的研究[D].天津工业大学, 2006.
    [42]彭晓文,邱廷省,陈明,等.微生物絮凝剂的絮凝特性及废水处理研究[J].皮革科学与工程, 2004, 14(1): 43-46.
    [43]张静,张丽芳,周培国,等.青霉菌M5对活性艳红X-3B吸附性能的研究[J].工业用水与废水, 2009, 3(15): 38-40, 48.
    [44]李蒙英,倪建国,洪法水,等.真菌和细菌对染料的吸附脱色及再生能力的研究[J].环境科学学报, 2002, 22(6): 780-783.
    [45]安虎仁,钱易,顾夏声.染料在好氧条件下的生物降解性能[J].环境科学, 1994, 15(6): 16-19.
    [46] C.I.Pearce, J.R. Lloyd, J.T. Guthrie, et al. The removal of colour from textile wastewater using whole bacterial cells: a review[J]. Dyes and Pigments, 2003, 58: 179-196.
    [47] Hu T-L. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola[J]. Water Science and Technology, 2001, 43(2): 261-269.
    [48] A.Pandy, P.Singh, L.Iyengar, et al. Bacterial decolorization and degradation of azo dyes[J]. International&Biodegradation, 2007, 59: 73-84.
    [49]金若菲,王竞,张劲松,等.蒽醌染料中间体的微生物降解脱色研究[J].环境科学研究, 1999, 12(6): 32-35.
    [50] Suzuki,Y.,Yoda,T.,Ruhul,A.,Sagiura,W.,et al. Molecular cloning and characterization of the gene encoding azoreductase from Bacillus sp. OY1-2 isolated from soil[J]. Journal of Biological Chemistry, 2001, 246: 9059-9065.
    [51] Zollinger H. Color chemistry-syntheses, properties and applications of organic dyes pigments[J]. New York: Wile-VCH, 2003.
    [52] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes[J]. Applied Microbiology and Biotechnology, 2001, 56(1-2): 69-80.
    [53] Chung KT, Stevens SEJ, Cerniglia CE. The reduction of azo dyes by the intestinal microflora[J]. Critical Reviews in Microbiology, 1992, 18(3): 175-197.
    [54]许玫英,郭俊,岑英华,等.染料的生物降解研究[J].微生物学通报, 2006, 33(1): 138-143.
    [55]刘友勋.染料废水处理方法研究进展[J].科技探索, 2009, (1): 103-106.
    [56] Yoo, E. S. , Libra, J. , Adrian, L.. Mechanism of decolorization of azo dyes in an anaerobic mixed culture[J]. Journal of Environment Engineering (ASCE), 2001, 127, 844-849.
    [57] F.P.van der Zee,I.A.E.Bisschops,V.G.Blanchard et al. Sulfide removal by moderate oxygenation of anaerobic sludge environments[J]. Water Research, 2003, 37: 3098-3109.
    [58] Russ R, Raul J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacterial[J]. Applied and Environmental Microbiology, 2000, 66(4): 1429-1434.
    [59] Keck A, Rau J, Reemtsma T, et al. Identification of quinoide of naphthalene-2-sulfonate by Sphingomonas xenophaga BN6[J]. Applied and Environmental Microbiology, 2002, 68(9): 4341-4349.
    [60] Keck A, Klein J, Kudlich M, et al. Reduction of azo dyes by redox mediators origination in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. Strain BN6[J]. Applied and Environmental Microbiology, 1997, 63(9): 3684-3690.
    [61] Itoh K, Kitade Y, Yatome C. A Pathway for biodegradation of an anthraquinone dye, C.I. disperse red15, by a yeast st-rain Pichia anomala[J]. Bulletin of Environmental Contamination and Toxicology, 1996, 56: 413?418.
    [62] Itoh K, Yatome C, Ogawa T. Biodegradation of antraquinone dyes by Bacillus Subtllis[J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50: 522-527.
    [63]庄源益,辛宝平,宋文华,等.蒽醌染料中间体溴氨酸降解酶的特性[J].城市环境与城市生态, 2001, 14(2): 1-3.
    [64]董晓丽,周集体,王竞.蒽醌染料降解菌XL-1活细胞色素及降解产物的紫外可见光谱分析[J].光谱学与光谱分析, 2003, 23(1): 340-341.
    [65]李济吾,李峰.降解酸性蓝B的镰刀菌(Fusarium sp.)HJ01的分离和降解特性[J].环境科学学报, 2005, 25(12): 1641-1646.
    [66] Taruna Joshi, Leela Iyengar, Karunakar Singh, et al. Isolation, identification and application of novel bacterial consortium TJ-1 for the decolorization of strucrally different azo dyes[J]. Bioresource Technology, 2008, 99: 7115-7121.
    [67] Bras R, Ferrra IA, Pinheiro HM, et al. Batch tests for assessing decolorization of azo dyes by methanogenic and mixed culture[J]. Journal of Biotechnology, 2001, 89: 155-162.
    [68] Plumb J J, Bell J, Stuckey D C. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor[J]. Applied and Environmental Microbiology, 2001, 67(7): 3226-35.
    [69] Dos Santos AB, Madrid MP, DE Bok FAM, et al. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by thermophilic anaerobic consortium[J]. Enzyme and microbial technology, 2006b, 39(1): 38-46.
    [70] Chen Yu, Quan Xie. The mechanism of the Treatment of Wastewater Using Zero Valent Iron and Its Application[J]. Research of Environmental Sciences, 2000, 13(5): 24-26, 37.
    [71] Ponder S M, Darab J G, Mallouk T E. Remediation of Cr (Ⅵ) and Pb (II) Aqueous Using Supported Nanoscale Zero-valent Iron[J]. Environmental Science﹠Technology, 2000, 34(12): 2564-2569.
    [72] Zhou Hongyi, Wang Kahui, Zhou Minghua, Yan Xiaoli, Zhao Weirong. The Study on Reductive Dechlorination of Chlorinated Organic Compounds by Zero-valent Iron[J]. Techniques and Equipment for Environmental Pollution Control, 2001, 2(3): 14-20.
    [73]裴婕,周广运.零价铁还原降解活性艳红X-3B的动力学研究[J].大连大学学报, 2003, 24(2): 49-51.
    [74] Meifang Hou, Fangbai Li, Xinming Liu, et al. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron[J]. Journal of Hazardous materials, 2006, 11(19): 1-27.
    [75]倪利晓,阮晓红,李时银,等. Fe0对活性艳蓝K-3R的还原降解效果[J].河海大学学报(自然科学版), 2007, 35(5): 501-504.
    [76]闫金霞,董韶峰,卜永强,等.零价铁法处理染料废水脱色效果研究[J].染料与染色, 2007, 44(4): 45-46.
    [77] Hang T. Dinh, Jan Kuever, Marc MuBmann, et al. Iron corrosion by novel anaerobic microorganisms[J]. Letters to nature, 2004, 427: 829-832.
    [78]董玲玲,吴锦华,吴海珍,等.硝基苯厌氧降解过程中Fe0的促进作用[J].环境化学, 2005, 24(6): 643-646.
    [79]陈皓,陈玲,赵建夫,等.铁元素对有机物厌氧降解的影响研究[J].四川环境, 2005, 24(6): 14-16.
    [80]程婷,戴友芝,刘智勇,等.零价铁对2,4-二氯酚生物还原脱氯的影响研究[J].微生物学通报, 2008, 35(3): 332-335.
    [81] Ahjeong Son, Jaewoo Lee, Pei C.Chiu, et al. Microbial reduction of perchlorate with zero-valent iron[J]. Water Research, 2006, 40: 2027-2032.
    [82] Wen Zhang, Ling Chen, Hao Chen, et al. The effect of Fe0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge[J]. Journal of Hazardous Materials, 2007, 143: 57-64.
    [83] K. J. Lampron, P. C. Chiu, D. K. Cha. Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms[J]. Water Research, 2001, 35(13): 3077-3084.
    [84] Srilakshmi Karri, Reyes Sierra-Alvarez, Jim A. Field. Zero Valent Iron as an Electron-Donor for Methanogenesis and Sulfate Reduction in Anaerobic Sludge[J]. Biotechnology and Bioengineering, 2005, 92(7): 810-819.
    [85] Jose M. Fernandez-Sanchez, Eric J. Sawvel, Pedro J. J. Alvarez. Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes[J]. Chemosphere, 2004(54): 823-829.
    [86]汤文琪,肖利平,戴友芝,等. Fe0-厌氧微生物体系处理活性艳红X-3B的试验研究[J].环境工程学报, 2009, 3(8): 1425-1428.
    [87]孟令芝.有机波谱分析[M].武汉大学出版社, 1996.
    [88]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001.
    [89]杨东虎.染料脱色细菌的筛选与脱色条件的研究[D].河北大学, 2003.
    [90]梁文燕,王珂,阮清鸳,等. TTC-脱氢酶还原法测定铜绿微囊藻活性[J].环境科学学报, 2008, 28(9): 1745-1750.
    [91] Hee Gon Kim, Yan Kim, Heon Man Lim et al..Purification, Characterization, and Cloning of Trimethylemine Dehydrogenase from Methylophaga sp. Strain SK1[J]. Biotechnology and Bioprocess Engineering, 2006, 11: 337?343.
    [92]解军,祁峰,裴海燕,等.脱氢酶活性检测方法及其在环境监测中的应用[J].中国环境监测, 2006, 22(5): 13-18.
    [93]姜明.低温反应器中微生物脱氢酶活性分析[D].黑龙江大学, 2007.
    [94]唐宁,柴立元,闵小波,等.厌氧污泥体系脱氢酶活性表征细菌数的研究[J].微生物学杂志, 2005, 25(2): 31?34.
    [95] S Nam, P.G. Tratnyek. Reduction of azo dyes with zero-valent iron[J]. Water Reseach, 2000, 34(6): 1837-1845.
    [96] Baohua Gu, David B Waston, Liyou Wu, et al. Microbiolog-ical characteristics in a zero-valent iron reactive barrier[J]. Environmental Monitoring and Assessment, 2002, 77: 293-309.
    [97] R. Sanghi, A. Dixit, S. Guha. Sequencial batch culture studies for the decolorization of reactive dye by Coriolus versicolor[J]. Bioresour. Technology, 2006, 97: 396-400.
    [98] Epolito W J, Yang H, Bottomley L A, et al. Kinetics of ze-ro-valent iron reductive transformation of the anthraquinone dye Reactive Blue4[J]. Journal of Hazardous Materials, 2008, 160: 594-600.
    [99]龚宜,罗汉金,周惠华,等.混合染料的相互作用机理研究[J].工业用水与废水, 2007, 38(6): 12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700