人工湿地的碳氮磷循环过程及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展中地区普遍存在流域水环境污染和水生态失衡的问题。人工湿地具有处理效果稳定、投资低、管理方便和美化环境等优点,在发展中地区流域污染治理中具有突出的技术优势和广阔的应用前景。因此,积极开展人工湿地深度净化污染河水的碳氮磷循环过程及其环境效应研究对人工湿地工程设计、运营管理及推广应用具有重要的现实意义。
     本文基于人工湿地小试系统,评价了人工湿地净化污染河水的长期运行效果,解析了污染物的降解运移特征;系统研究了人工湿地关键组成要素在去污过程中的作用和影响;采用静态箱-气相色谱法评价了人工湿地中温室气体释放特征及关键影响因素;通过建立人工湿地物质循环模型,明确了人工湿地中污染物的流向及归趋途径;基于规模化人工湿地工程的原位监测,综合评价了规模化人工湿地工程的环境效应。取得主要研究结论如下:
     (1)人工湿地具有较好的长期水质净化效果,且具有明显的年际、季节变化特征。人工湿地出水COD、NH4+-N浓度满足国家《地表水环境质量标准》(GB3838-2002)Ⅲ类标准,平均去除率分别65.63%~76.69%和83.61%-94.43%;TN、TP平均去除率分别44.78%~82.77%和36.65%~70.77%。人工湿地中COD降解最快,其次是NH4+-N和TN, TP最慢,其去除速率常数分别为0.39d-1、0.26d-1、0.11d-1和0.01d-1。人工湿地中有机物的去除过程主要在湿地基质-水界面层和表层水体的中前部;氮污染物在湿地基质-水界面和表层水体中的降解缓慢,主要在基质层根区得到生物转化和吸收;而磷的去除主要在系统基质层的前部。
     (2)随着湿地系统的稳定运行,植物生长逐步趋于稳定,植物每年最大生物量为0.46-2.59kg/m2。植物泌氧能力为0.24-0.36mgO2/gFW/d和126.67-297.78mg O2/m2/d,发芽期、拔节生长期、成熟期及休眠期的泌氧速率大于其它生长期。植物有机物分泌能力为0.18-0.52mgTOC/gFW/d和120.48-431.31mgTOC/m2/d,生长旺盛期有机物分泌速率最大,休眠期最小。植物碳、氮、磷净累积量分别为151.52-878.29g/m2,9.22-42.51g/m2和1.89-4.29g/m2。不同湿地系统基质碳、氮、磷净累积量分别为23.88-37.81g/m2,10.94-14.13g/m2和3.98-4.17g/m2。植物收割对植物生长和水质净化效果有一定影响,宜在枯萎期(11、12月份)进行植物收割。
     (3)人工湿地总体上表现为大气N20和CH4的排放源,大气C02的吸收汇。人工湿地N2O、CH4和CO2平均通量分别为215.39~514.3μg/m2/h、2.17~145.23μg/m2/h和-592.83~553.91mg/m2/h,夏季平均交换通量大于其季节。N20释放通量高于旱作农田、草原和天然湿地,接近于水田生态系统;CH4释放通量高于稻田,接近于森林,远小于天然沼泽湿地和水库。植物促进湿地系统N20和CH4的释放,减弱了湿地系统C02的释放。随着进水浓度的增加,N2O、CH4和C02的平均释放通量逐渐升高,但在过高的进水浓度条件下N20释放降低。合理调蓄湿地进水和分区域适时收割植物是人工湿地温室气体释放的有效减排策略。
     (4)人工湿地系统中有机物去除的主要途径是生物好氧分解代谢,其次是基质蓄积作用,CH4释放的贡献不大;脱氮的主要途径是微生物生物硝化反硝化作用,其次是植物吸收作用和基质蓄积作用,氨挥发作用的贡献较小;除磷的主要途径是基质填料的蓄积作用,其次是植物吸收作用。应用表面流人工湿地系统净化模拟污染河水时,生物呼吸作用释放C02约占进水碳负荷的46.78~54.01%,基质蓄积约占10.15~16.08%;植物吸收积累的氮约占进水氮负荷的5.44~25.07%,基质蓄积约占6.45-8.32%,微生物硝化反硝化作用释放的N2O约占1.1~2.63%,而以系统微生物硝化/反硝化作用释放NO、N2的形式释放及其他流失方式输出的氮达35.89~48.92%;基质蓄积的磷约占28.27~33.92%,植物吸收积累的磷约占12.83-32.9%。
     (5)武河湿地具有良好的水质净化效果,湿地出水COD、NH4+-N浓度基本达到地表Ⅲ类水标准,COD、NH4+-N削减负荷分别为3.95吨/公顷/年和0.75吨/公顷/年。具有一定的温室气体释放风险,表现为N2O、CH4的释放源,但其平均释放通量低于污水处理厂。此外,武河湿地实现了良好的生态修复效果,并在涵养水源、生物多样性保护、科普教育和生态风景观赏等方面发挥着重要作用。
At present there are generally severe environmental problems especially water pollution and ecological degradation of the river's basin in the developing countries, due to serious pollution and destruction caused by human beings. Constructed wetlands (CWs) is a reasonable option for treating wastewater and has been widely used in the developing countries, because of their lower cost, less operation and maintenance requirements, and lack of reliance on energy inputs. The design, operation and application of CWs is very important in pollution control, therefore, it is necessary to study the cyclic processes of carbon, nitrogen and phosphorus in CWs and its environmental impacts for the further treatment of polluted river water.
     In this study, the longterm treatment performance in the pilot-scale CWs for treating polluted river water was studied, and the contaminant transformation and degradation characteristics during removal process were also investigated. The main components of CWs, such as wetland plants and substrates, were systemically studied, and their function and role in wetland succession have been evaluated. The greenhouse gases fluxes and characteristics in CWs were studied through the method of static chamber-gas chromatography, furthermore, the correlations between greenhouse gases emission and its key influence factors was analysed. By building material cycling models in CWs, the contribution of different pollutant removal pathways in CWs during the experimental period quantified, and the dominant removal pathways for different pollutants in CWs were also determined. The environmental effects of CWs were assessed based on the in-situ monitoring in the full-scale surface CWs. The main research conclusions are as follows:
     (1) The CW was found to be suitable for treatming polluted river water and could achieve an excellent long-term removal performance. The average effluent concentration of COD and NH4+-N met Grade-III of national surface water standards in China (GB3838-2002), and the average removal efficiency of COD, NH4+-N, TN and TP was65.63%-76.69%,83.61%-94.43%,44.78%-82.77%and36.65%-70.77%. The calculated first-order removal rate constants for COD, NH4+-N, TN and TP removal in CWs were0.39d"1,0.26d-10.11d-1and0.01d-1, which illustrates that COD degraded more rapidly than NH4+-N, but TN and TP had the lower biodegradated rates. The removal process of organic matter in CWs mainly occurred in the front of the interface layer between sediment and water. Nitrogen in CWs degraded slowly in the interface layer between sediment and water, and its removal depended on plant uptake and microbial transformation processes in the sediment. However, phosphorus was mainly removed in the the front of the sediment in CWs.
     (2) All of plants in CWs grew well with as wetland systems operated and developed sustainably. The highest total biomasses of plants per year were0.5459-1.6841kg/m2. The rates of oxygen release of different plants were0.24-0.36gO2/FWg/d or126.67-297.78gO2/m2/d, and oxygen release rates in the budding, elongation, maturation and dormancy phases were higher than values obtained in other stages of plant growing. The rates of organic carbon excretion by roots were0.18-0.52mg TOC/gFW/d or120.48-431.31mg TOC/m2/d, and the maximum and minimum were obtained in the elongation phase and in the dormancy phase respectively. The organic carbon, nitrogen and phosphorus assimilated in plants were151.52-878.29g/m2,9.22-42.51g/m2and1.89-4.29g/m2, accordingly, the accumulated organic carbon, nitrogen and phosphorus accumulated in the sediment of various wetland systems at the end were23.88-37.81g/m2,10.94-14.13g/m2and3.98-4.17g/m2. The harvest of plants in different periods would influence the growth of plants and removal performance of CWs, and wetland plants should be harvest in November or December timely.
     (3) The CW was the sources of atmosphere N2O and CH4as a whole, on the contrary, it appeared to be the sink of atmosphere CO2. The mean N2O, CH4and CO2fluxes in wetland systems were215.39-514.3μg/m2/h、2.17-145.23μg/m2/h and-592.83-553.91mg/m2/h in this study, and the values in summer were higher than in other seasons. The mean N2O flux in this study was higher than the values reported in the literature for ecosystems e.g. farmland, forest and natural wetlands, but similar to the values in the paddy field. The mean CH4flux in this study was higher than the values in paddy fields, and similar to the values in forests, but lower than other ecosystems e.g. natural wetlands and reservoirs. The growth of wetland plants in CWs promoted the emission of N2O and CH4, however, reduced the emission of CO2. The high N2O, CH4and CO2fluxes were obtained as influent concentration in CWs increased. But CWs exhibited a decrease of N2O emission when having too high influent concentration. In general, regulating and stabilizing the influent of wetland systems properly, as well as selecting and harvesting plants timely, would be probable measures for controlling the greenhouse gas emission in CWs.
     (4) The dominant removal pathways for organic matter in CWs were aerobic biological metabolism besides sediment storage, but metabolising methane had little contribution. Microbial nitrification and denitrification processes were the main nitrogen removal pathway besides plant uptake and sediment storage, and ammonia volatilization reduced less nitrogen. Sediment storage was the key factor limiting phosphorous removal in CWs and plant uptake could also remove a portion of phosphorus. Based on the mass balance in CWs for treating polluted river water in this study, the emission of CO2by aerobic biological metabolism accounted for46.78~54.01%of the total carbon input, and sediment storage contributed10.15~16.08%. Plant uptake accounted for5.44~25.07%of the total nitrogen input, while nitrogen removal by sediment storage and N2O emission contributed6.45~8.32%and1.1~2.63%, respectively. However, the percentage of NO and N2emission due to nitrification and denitrification and other nitrogen loss was estimated to be35.89~48.92%. It was also shown that sediment storage accounted for28.27~33.92%of the total phosphorous input, while plant uptake accounted for12.83~32.9%.
     (5) Based on the full-scale study in Wu River CW, it was indicated that the CW improved the quality of the river water. The mean concentration of COD and NH4+-N in effluent met Chinese Grade-Ⅲ national surface water standards, and COD and NH4+-N removal capacity of the CW was estimated to be3.95t/hm2/y and0.75t/hm2/y. Wu River CW exhibited a certain risk of greenhouse gas emission. It was the sources of atmosphere N2O and CH4, but the emission flux in this study was lower than the values reported in the literature for sewage treatment plants. In addition, the riverside ecological ecosystem was also remediated by building Wu River CW, and the CW also played an important role in water conservation, biodiversity conservation, education and ecology landscape.
引文
[1]Kjetil B, Olav M S, Randi S. Effect of decaying toxic blue-green algae on water quality-a laboratory study [J]. Arch Hydrobiol,1987,108(4):549-563.
    [2]Duy T N, Lam P K S, Shaw G R, et al. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algae) toxins in water [J]. Rev Environ contam Toxicol,2000,163:113-186.
    [3]Tallec G, Gamier J, Billen G, et al. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation [J]. Bioresource Technology,2008,99(4):2200-2209.
    [4]Bousquet P, Ciais P, Miller J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability [J]. Nature,2006,443:439-443.
    [5]Mikaloff Fletcher S E, Tans P P, Bruhwiler L M, et al. CH4 sources estimated from atmospheric observations of CH4 and its 13C12C isotopic ratios:1. Inverse modeling of source processes [J]. Global Biogeochemical Cycles,2004,18: GB4004.
    [6]Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment [J]. Water Research,2009,43(17):4093-4103.
    [7]Weiss M, Neelis M L, Blok K, et al. Non-energy use and related carbon dioxide emissions in Germany:A carbon flow analysis with the NEAT model for the period of 1990-2003 [J]. Resources, Conservation and Recycling,2008,52(11): 1252-1265.
    [8]Fetter C W., Sloey W E., Spangler F L. Potential replacement of septic tank drain fields by artificial marsh wastewater treatment systems [J]. Ground Water.1976, 14(6):396-401.
    [9]Brix H. Use of constructed wetland in water pollution control:Histroicald development, present status, and future perspectives [J]. Wat. Sci.Tech.1994, 30(8):209-223.
    [10]Vymazal J. Removal of nutrients in various types of constructed wetlands [J]. Sci. Total Environ.2007,380:48-65.
    [11]Jing S R, Lin Y F, Lee D Y, et al. Nutrient removal from polluted river water by using constructed wetlands [J]. Bioresource Technology,2001,76(2):131-135.
    [12]Van Buren M A, Watt W E, Marsalek J. Enhancing the removal of pollutants by an on-stream pond [J]. Water Science Technology,1996,33(4-5):325-332
    [13]Wood A. Constructed wetlands in water pollution control:fundamentals to their understanding [J]. Wat. Sci.Tech,1995,32(3):21-29.
    [14]Arias M E, Brown M T. Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogota Savannah, Colombia [J]. Ecol. Eng. 2009, (35):1070-1078.
    [15]Hammer D A, Bastian R X. Wetlands ecosystems:Natural water purifiers [A]. In: Hammer D A, Constructed Wetlands for Wastewater Treatment:Municipal, Industrial, and Agricultural [M]. Chelsea, M:Lewis Publishers,1989,5-19.
    [16]Vymazal J. Constructed Wetlands for Wastewater Treatment:Five Decades of Experience [J]. Environ. Sci. Technol.2011,45:61-69.
    [17]Kivaisi A K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review [J]. Ecol. Eng.2001,16:545-560.
    [18]Kadlec R H, Knight R L. Treatment Wetlands [M]. CRC Press/Lewis Publishers, Boca Raton, Florida, USA,1996.
    [19]Bachand P A M, Home A J. Denitrification in constructed free-water surface wetlands II:Effects of vegetation and temperature [J]. Ecol. Eng.2000,14:17-32.
    [20]Kuschk P, Wiessner A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate [J]. Water Res.2003,37(17):4236-4242.
    [21]Breen P F, Chick A J. Rootzone Dynamics in Constructed Wetlands receiving wastewater:a comparison of vertical and horizontal flow systems [J]. Wat. Sci. Tech.1995,32(3):281-290.
    [22]Chen Z M, Chen G Q, Chen B, et al. Net ecosystem services value of wetland: Environmental economic account [J]. Commun Nonlinear Sci.2009, 14:2837-2843.
    [23]Stottmeister U, Wiener A, Kuschk P, et al. Effects of Plants and Microorganisms in Constructed Wetlands for Wastewater Treatment [J]. Biotechnol Adv.2003,22: 93-117.
    [24]Gagnon V, Chazarenc F, Comeau Y, et al. Influence of Macrophyte Species on Microbial Density and Activity in Constructed Wetlands [J]. Wat. Sci.Tech.2007, 56:249-254.
    [25]US Environmental Protection Agency. Manual-Constructed wetlands treatment of municipal wastewaters [R]. EPA/625/R-99/010. Cincinnati, Ohio:Office of Research and Development, National Risk Management Research Laboratory, 1999.
    [26]Davis L. A Handbook of Constructed Wetlands:A Guide to Creating Wetlands for: Agricultural Wastewater, Domestic Wastewater, Coal Mine Drainage, Stormwater in the Mid-Atlantic Region [R]. USEPA Region III with USDA, NRCS, Washington DC,1995.
    [27]Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands:Dependency on environmental parameters, operating conditions and supporting media [J]. Journal of Environmental Management,2012,112:429-448.
    [28]Wang R, Korboulewsky N, Prudent P, et al. Feasibility of Using an Organic Substrate in a Wetland System Treating Sewage Sludge:Impact of Plant Species [J]. Bioresource Technology,2010,101:51-57.
    [29]Reddy K R, D'Angelo E M. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands [J]. Wat. Sci.Tech.1997,35(5):1-10.
    [30]Huetta D O, Morrisb S G, et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands [J]. Water Res.2005,39:3259-3272.
    [31]Reddy K R, O'Connor G A, Gale P M. Phosphorus Sorption Capacities of Wetland Soils and Strem Sediments Impacted by Dairy Effluent [J]. Journal of Environmental Quality,1998,27:438-447.
    [32]Richardson C J. Mechanisms Controlling Phosphorus Retention Capacity in Fresh Water Wetlands [J]. Science,1985,228(14):24-27.
    [33]Mitsch W J, Gosselink J G Wetlands [M]. The Second Edition, New York:Van Nostrand Reinhold,1993.
    [34]Werker A G, Van Loon W, Legge R L. Tracers for investigating pathogen fate and removal mechanisms in mesocosms [J]. Science of the Total Environment,2007, 380(1-3):188-195.
    [35]Axelrood P E, Clarke A M, Radley R, et al. Douglas fir root associated microorganisms with inhibitory activity towards fungal plant pathogens and human bacterial pathogens [J]. Can J Microbiol,1996,42:690-700.
    [36]Matamoros V, Puigagut J, Garcia J, et al. Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands:a preliminary screening [J]. Chemosphere,2007,69(9):1374-1380.
    [37]Cooper P F, Boon A G The use of Phragmites for wastewater treatment by the Root Zone Method:The UK approach [A]. In:Reddy K R, Smith W H., Eds. Aquatic Plants for Water Treatment and Resource Recovery [M]. Magnolia Publishing:Orlando, FL,1987.
    [38]Kadlec R H, Knight R L, Vymazal J, Brix H, Cooper P F, Haberl R. Constructed Wetlands for Water Pollution Control:Processes, Performance, Design and Operation [R]. Scientific and Technical Report No.8; IWA:London,2000.
    [39]Danish Environmental Protection Agency. Environmental Guidelines for Root Zone Systems up to 30 PE [R], Ministry of Environment and Energy,1999 (in Danish).
    [40]Vymazal J, Brix H, Cooper PF, et al. Constructed Wetlands for Wastewater Treatment in Europe, Backhuys Publishers, Leiden,1998.
    [41]Zhang T, Xu D, He F, et al. Application of constructed wetland for water pollution control in China during 1990-2010 [J]. Ecol. Eng.,2012,47:189-197.
    [42]Okurut T O. Plant growth and nutrient uptake in a tropical constructed wetland [A]. In Vymazal, J. (ed.), Transformations of Nutrients in Natural and Constructed Wetlands [M]. Backhuys Publishers, Leiden,2001,451-462.
    [43]Cooper P. The design and performance of a nitrifying vertical flow reed bed treatment system [J]. Wat.Sci.Tech.,1997,35(5):215-221.
    [44]Wu H, Zhang J, Li P, et al. Nutrient Removal in Constructed Microcosm Wetlands for Treating Polluted River Water in northern China [J]. Ecological Engineering,2011,37:560-568.
    [45]阳承胜,蓝崇钰,张干.N、P、K在宽叶香蒲人工湿地系统中的分布与积[J].深圳大学学报,2005,22:264-268.
    [46]Vymazal J.1995. Algae and Element Cycling in Wetlands [M]. Lewis Publishers, Chelsea, MI.
    [47]蒋跃平,葛滢,岳春雷,等.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1718-1723.
    [48]李建娜,胡曰利,吴晓芙,等.人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J].环境污染与防,2007,29:506-509.
    [49]Maltais-Landry G, Maranger R, Brisson J, et al. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands [J]. Water Research,2009,43:535-545.
    [50]Ouyang Y, Luo S M, Cui L H. Estimation of nitrogen dynamics in a vertical-flow constructed wetland [J]. Ecological Engineering,2011,37:453-459.
    [51]Cheng S, Grosse W, Karrenbrock F, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecol Eng,2002,18(3): 317-325.
    [52]Sorrell B K, Armstrong W. On the difficulties of measuring oxygen release by root systems of wetland plants [J]. Ecol.,1994, (82):177-183.
    [53]Kadlec R H, Wallace S D. Treatment Wetlands [M]. CRC Press, Boca Raton, USA,2009,1016 pp.
    [54]Fennessy M S, Cronk J K, Mitsch W J. Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions [J]. Ecol. Eng.,1994,3(4):469-484.
    [55]Brix H. Macrophyte-mediated oxygen transfer in wetlands:transport mechanisms and rates [A]. In Moshiri A G (ed.), Constructed Wetlands for Water Quality Improvement [M]. CRC Press, Boca Raton, FL,1993,391-398.
    [56]Sorre B K, Armstrong W. On the difficulties of measuring oxygen release by root systems of wetland plants [J]. Journal of Ecology,1994,82:177-183.
    [57]Armstrong W, Cousins D, Armstrong J, et al. Oxygen Distribution in Wetland Plant Roots and Permeability Barriers to Gas-exchange with the Rhizosphere:a Microelectrode and Modelling Study with Phragmites australis [J]. Annals of Botany,2000,86:687-703.
    [58]Brix H. Gas exchange through dead culms of reed, Phragmites australis (Cav.) Trin. Ex Steud [J]. Aquatic Botany,1989,35:81-89.
    [59]Nivala J, Wallace S, Headley T, et al. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol. Eng.,2012,61:544-554.
    [60]Christine L, Oliver H, Michael H. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus [J]. Aquatic Botany,2006,84:333-340.
    [61]WieBner A, Kuschk P, Stottmeister U. Oxygen release by roots of Typha latifolia and Juncus effusus in laboratory hydroponic systems [J]. Acta Biotechnologica, 2002,22(1-2):209-216.
    [62]Soda S, Ike M, Ogasawara Y, et al. Effects of light intensity and water temperature on oxygen release from roots into water lettuce rhizosphere [J]. Water Research,2007,41:487-491.
    [63]Li H, Ye Z H, Wei Z J, et al. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants [J]. Environmental Pollution,2011, 59:30-37.
    [64]Ezekiel B, Emile B, Armand G. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere [J]. Soil Biol Biochem, 2003,35(9):1183-1192.
    [65]Nikolausza M, Kappelmeyera U, Szekely A, et al. Diurnal redox fluctuat ion and microbial act ivit y in the rhizosphere of w et land plants [J]. Eur J Soil Biol,2008, 44:324-333.
    [66]Anderson T A, Cuthie E A, Walton B T. Bioremediat ion in the rhizophere [J]. Sci Technol,1994,27:2630-2636.
    [67]Schnoor J L, Licht L A, Mccutcheon S C. Phytoremediation of organic and nutrient contaminants [J]. Environmental Science and Technology,1995,29(2): 318-323.
    [68]Romheld V. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species:an ecological approach [J]. Plant and Soil, 1991,130:127-134.
    [69]Warembourg F R, Roumet C, Lafont F. Differences in rhizosphere carbon-partitioning among plant species of different families [J]. Plant Soil,2003, 256(2):347-357.
    [70]Brix H, Headley T. The role of macrophyte-derived organic carbon for denitrification in treatment wetlands [A]. Mander U, Koiv M, Vohla C. (Eds.),2nd International Symposium on Wetland Pollutant Dynamics and Control (WETPOL), Estonia, Tartu,2007.
    [71]陆松柳,胡洪营,孙迎雪,等.3种湿地植物在水培条件下的生长状况及根系分泌物研究[J].环境科学,2009,30(7):1091-1095.
    [72]李海燕,陈章和.三种湿地植物的生长及根系溶解性有机碳分泌物研究[J].热带亚热带植物学报,2011,19(6):536-542.
    [73]Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewater treatment by artificial wetlands [J]. Water Research,1986,20:363-368.
    [74]Munch C, Kuschk P, Roske I. Root stimulated nitrogen removal:only a local effect or important for water treatment [J]. Water Science and Technology,2005, 51(9):185-192.
    [75]张鸿,陈光荣.两种人工湿地氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报,1999,3(4):575-578.
    [76]靖元孝,杨丹菁.风车草(Cyperus alternifolius)人工湿地系统氮去除及氮转化细菌研究[J].生态科学,2004,23(1):89-91.
    [77]邢鹏,孔繁翔,陈开宁,等.生态修复水生植物根际氨氧化细菌的研究[J].环境科学,2008,29(8):2154-2159.
    [78]郑师章,乐毅全,等.凤眼莲及其根际微生物共同代谢和协同降酚机理的研 究[J].应用生态学报,1994,5(4):403-408.
    [79]Karjalainen H, Stefansdottir G, Tuominen L, et al. Do submersed plants enhance microbial activity in sediment? [J]. Aquatic Botany,2001,69:1-13.
    [80]申欢,胡洪营,潘永宝.潜流式人工湿地冬季运行的强化措施研究[J].中国给水排水,2007,23(5):44-46.
    [81]Lu S Y, Wu F C, Lu Y F, et al. Phosphorus removal from agricultural runoff by constructed wetland [J]. Ecol. Eng.,2009,35:402-409.
    [82]Reinhardt M, Miiller B, Gachter R, et al. Nitrogen removal in a small constructed wetland:an isotope mass balance approach [J]. Environ. Sci. Technol.2006,40: 3313-3319.
    [83]Arias M, Da Silva-Carballal J, Garcia-Rio L, et al. Retention of phosphorus by iron and aluminum-oxides-coated quartz particles [J]. J Colloid Interface Sci. 2006,295(1):65-70.
    [84]Arias C A, Del Bubba M, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [J]. Water Res.2001,35(5):1159-1168.
    [85]Brix H. Treatment of wastewater in the rhizosphere of wetland plants-The root-zone method [J]. Wat Sci Technol,1987, (19):107-118.
    [86]Faulkner S P, Richardson C J. Physical and chemical characteristics of freshwater wetland soils [A]. In Hammer D A. Constructed Wetlands for Wastewater Treatment:Municipal, Industrial and Agricultural [M]. Michigan, USA:Lewis Publishers,1989:41-72.
    [87]Ozacar M. Adsorption of phosphate from aqueous solution onto alunite [J]. Chemosphere.2003,51(4):321-327.
    [88]李晓东,李海波,马铮铮,等.人工湿地基质净化磷素的吸附剂性能[J].东北大学学报.2008,29:730-733.
    [89]Mann, R A, Bavor H J. Phosphorus removal in constructed wetlands using gravel and industrial waste substrata [J]. Wat Sci Technol,1993,27(5):107-113.
    [90]张燕,庞南柱,蹇兴超,等.3种人工湿地基质吸附污水中氨氮的性能与基质筛选研究[J].湿地科学.2012,10:87-91.
    [91]吕学研,吴时强,阮晓红,等.人工湿地基质对混合溶液中有机化合物的等温吸附行为[J].环境科学与技术,2013,36:136-141.
    [92]李倩囡,张建强,谢江,等.人工湿地基质吸附磷素性能及动力学研究[J].水处理技术,2011,37(9):64-67.
    [93]Westholm L J. Substrates for phosphorus removal-potential benefits for on-site wastewater treatment [J]. Water Research,2006,40:23-36.
    [94]廖婧琳,苏跃,徐德福,冯等.人工湿地生态工程中基质的筛选及应用研究[J].环境科学与技术,2008,31(8):125-128.
    [95]Xu D, Xu J, Wu J, Muhammad A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems [J]. Chemosphere,2006,63(2): 344-52.
    [96]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [97]Hamersley M R, Howes B L, White D S, et al. Nitrogen balance and cycling in an ecologically engineered septage treatment system [J]. Ecol Eng.2001,18: 61-65.
    [98]李科德.芦苇床系统净化污水的机理[J].中国环境科学.1995,15(2):140-144.
    [99]蒋玲燕,殷峻,闻岳,等.修复受污染水体的潜流人工湿地微生物多样性研究[J].环境污染与防治,2006,28(10):734-737.
    [100]张甲耀,林清华,夏盛林,等.不同植物构成的潜流式人工湿地处理系统的净化能力及其异养细菌数量的研究[J].环境工程,1998,16(3):17-20.
    [101]吴振斌,王亚芬,周巧红,等.利用磷脂脂肪酸表征人工湿地微生物群落结构[J].中国环境科学,2006,26(6):737-741.
    [102]Ibekwe A, Grieve C M, Lyon S R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent [J]. Applied Environmental Microbiology,2003,69(9):5060-5069.
    [103]Zhou Q, He F, Zhang L, et al. Characteristics of the microbial communities in the integrated vertical-flow constructed wetlands [J]. J Environ Sci (China).2009, 21(9):1261-1267.
    [104]梁威,吴振斌,詹发萃,等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [105]Hatano K, Trettin C C, House C H. Microbial populations and decomposition activity in three subsurface flow constructed wetlands [A]. In:Gerald A M. Constructed wetlands for water quality improvement [M]. Florida:Levis Pubilshers.1993,540-547.
    [106]梁威,吴振斌,周巧红,等.复合垂直流构建湿地植物根区磷酸酶及脲酶活性与污水净化的关系[J].植物生理学通讯,2002,38(6):622-624.
    [107]成水平,夏宜琤.香蒲、灯芯草人工湿地的研究-Ⅱ净化污水的空间[J].湖泊科学,1998,10(1):62-66.
    [108]何起利,梁威,贺锋,等.人工湿地氧化还原特征及其与微生物活性相关性[J].华中农业大学学报,2007,26(6):845-851.
    [109]Liang W, Wu Z, Cheng S, et al. Roles of substrate microorganisms and urease activities in wastewater purification in a constructed wetland system [J]. Ecological Engineering,2003,21:191-195.
    [110]徐德福,徐建明,李映雪.几种人工湿地基质微生物活性研究[J].农业环境科学学报,2008,27(2):753-757.
    [111]陈秀荣,周琪.人工湿地脱氮除磷特性研究[J].环境污染与防治,2005,27:526-529.
    [112]Jia W, Zhang J, Li P, et al. Nitrous oxide emissions from surface flow and subsurface flow constructed wetland microcosms:Effect of feeding strategies [J]. Ecological Engineering,2011,37:1815-1821.
    [113]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62.
    [114]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [115]Koskiaho, J Ekholm P, Raty M, et al. Retaining agricultural nutrients in constructed wetlands-experiences under boreal conditions [J]. Ecological Engineering,2003,20:89-103.
    [116]Kovacic D A, David M B, Gentry L E, et al. Effectiveness of constructed wetlands in reducing nitrogen and phosphorus expot from agriculture tile drainge [J]. Journal of Environmental Quality,2000,29:1262-1274.
    [117]张金勇.南四湖表面流人工湿地中试研究及规模化工程示范[D].济南:山东大学,2008.
    [118]Garcia J, Aguirre P, Barragan J, et al. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands [J]. Ecological Engineering,2005,25:405-418.
    [119]Headley T R, Herity E, Davison L. Treatment at different depths and vertical mixing with in a 1-m deep horizontalsub surface-flow wetland [J]. Ecological Engineering,2005,25:567-582.
    [120]王世和,王薇,俞燕.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版),2003,33(3):359-362.
    [121]Huang J, Jr Reneau R B, Hagedorn C. Nitrogen removal inconstructed wetlands employed to treat fomestic wastewater [J]. Water Research,2000,34(9): 2582-2588.
    [122]吴建强,周训华,王敏,等.水力停留时间变化对2种人工湿地净化效果的影响[J].环境工程学报,2012,6:3537-3542.
    [123]孙广智,Gray K R, Biddlestone A J.下行流芦苇床污水处理试验研究与设计方程[J].中国给水排水,1997,13(增刊):4-6.
    [124]凌祯,杨具瑞,于国荣,等.不同植物与水力负荷对人工湿地脱氮除磷的影响[J].中国环境科学,2011,31(11):1815-1820.
    [125]Mashauri D A, Mulungu D M M, Abdulhussein B S. Constructed wetland at the university of dar Es salaam [J]. Water Research,2000,34(4):1135-1144.
    [126]朱文玲,郑离妮,崔理华,等.不同碳氮比条件下4种可控因素对垂直流人工湿地总氮去除的影响[J].农业环境科学学报,2010,29(6):1187-1192.
    [127]贾文林,吴娟,武爱国,等.碳氮比对人工湿地污水处理效果的影响[J].环境工程学报,2010,4(4):767-770.
    [128]王世和,王薇,俞燕.潜流式人工湿地的运行特性研究[J].中国给水排水,2003,19(4):9-11.
    [129]Steer D, Fraser L, Boddy J, et al. Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent [J].2002,18:429-440.
    [130]Woulds C, Ngwenya B T. Geochemical processes governing the performance of a constructed wetland treating acid mille drainage, Central Scotland [J]. Appl. Geoehem.,2004,19:1773-1783.
    [131]殷峻,闻岳,周琪.人工湿地中微生物生态的研究进展[J].环境科学与技术,2007,30:108110.
    [132]Randall C W, Buth D. Nitrite build-up in active sludge resulting from temperature effects [J]. Journal of Water Pollution Control Federation,1984,56(9): 1039-1044.
    [133]Wild H E, JR., Sawyer C N, McMahon T C. Factors affecting nitrification kinetics [J]. Journal of Water Pollution Control Federation,1971,43(9): 1845-1854.
    [134]Koottatep T, Polprasert C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics [J]. Wat. Sci. Tech.,1997,36(12):1-8.
    [135]Wieβner A, Kappelmeyer U, Kuschk P, et al. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructedwetland [J]. Wat.Res.,2005,39(1):248-256.
    [136]吴建强,黄沈发,丁玲,等.人工湿地中的SND机理以及Do、pH对其的影响[J].环境污染与防治,2005,27:476-478.
    [137]IPCC. Climate change 2007:The physical science basis. Contributions of working group I to the fourth assessment report of the intergovernmental panel on climate change [M]. Cambridge:Cambridge University Press,2007.
    [138]中国气象局.2011年中国温室气体公报(第1期)[R].2012.
    [139]Hansen J E, Lacis A A. Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate change [J]. Nature,1990,346(6286):713-719.
    [140]Delwiche C C. Denitrification, Nitrification and Atmosphere Nitrous Oxide [M]. New York:John Wiley and Sons, Inc,1981.
    [141]Dong L F, Nedwell D B, Underwood G J, et al. Nitrous oxide formation in the Colne Estuary, England:three central role of nitrite [J]. Applied and environmental microbiology,2002,68(3):1240-1249.
    [142]WMO. Greenhouse Gas Bulletin [R].2007.
    [143]Lal R. Carbon sequestration [J]. Phiolosophical Transaction of the Royal Society,2007,363:815-830.
    [144]Mitsch W J, Gosselink J G Wetlands,4th ed [M]. John Wiley&Sons, Inc. New York, NY USA,2007.
    [145]王毅勇,郑循华,宋长春,等.三江平原典型沼泽湿地氧化亚氮通量[J].应用生态学报.2006,17(3):493-497.
    [146]Prendez M, Lara-Gonz a lez S. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions [J]. Journal of Environmental Management,2008,4(88):658-664.
    [147]UNFCCC,2002. Background material for the synthesis and assessment of greenhouse gas inventories submitted in to year 2002< http://www.unfccc.int> enquiry September 28,2002.
    [148]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476.
    [149]丁维新,蔡祖聪.土壤有机质和外源有机物对甲烷产生的影响[J].生态学报,2002,(10):1672-2679.
    [150]陈槐,周舜,吴宁,等.湿地甲烷的产生、氧化及排放通量研究进展[J].应用与环境生物学报,2006,12(5):726-733.
    [151]Altor A E, Mistch W J. Pulsing hydrology,methane emissions, and carbon dioxide fluxes in created marshes:a 2-year ecosystem study [J]. Wetlands,2008, 28:423-438.
    [152]吴娟.人工湿地污水处理系统N20的释放与相关微生物研究[D].济南:山东大学,2009.
    [153]Liikanen A, Huttunen J T, Karjalainen S M, et al. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters [J]. Ecological Engineering,2006,26(3):241-251.
    [154]Sovik A K, Klove B. Emission of N2O and CH4 from a constructed wetland in southeastern Norway [J]. Science of the Total Environment,2007,380(1):28-37.
    [155]Teiter S, Mander U. Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones [J]. Ecological Engineering,2005, (25):528-541.
    [156]Tai P, Li P, Sun T, et al. Greenhouse gas emissions from a constructed wetland for municipal sewage treatment [J]. Journal of Environmental Sciences,2002,14: 24-33.
    [157]Pan T, Zhu X, Ye Y, et al. Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants:A case study in China [J]. Ecological Engineering,2011,37(2): 248-254.
    [158]Mander U, Lohmus K, Teiter S, et al. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands [J]. Science of the total Environment,2008,404:343-353.
    [159]Mander U, Maddison M, Soosaar K, et al. The Impact of Pulsing Hydrology and Fluctuating Water Table on Greenhouse Gas Emissions from Constructed Wetlands [J]. Wetlands,2011,31:1023-1032.
    [160]Chung Y C, Chung M S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification [J]. Water Science and Technology, 2000,42(3-4):23-27.
    [161]Wu J, Zhang J, Jia W, et al. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater [J]. Bioresource Technology,2009,100(12):2910-2917.
    [162]Yan C, Zhang H, Li B, et al. Effects of influent C/N ratios on CO2 and CH4 emissions from vertical subsurface flow constructed wetlands treating synthetic municipal wastewater [J]. Journal of Hazardous Materials,2012,203-204: 188-194.
    [163]Wang Y, Inamori R, Kong H, et al. Influence of plant species and wastewater strength on constructed wetland methane emissions and associated microbial populations [J]. Ecological Engineering,2008,32:22-29.
    [164]Wang Y, Inamori R, Kong H, et al. Nitrous oxide emission from polyculture constructed wetlands:Effect of plant species [J]. Environmental Pollution,2008, 152:351-360.
    [165]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1998.
    [166]杨旭,于水利,刘硕,等.上下回流人工湿地预处理徽污染水库水的研究[J].给水排水,2010,36:126-130.
    [167]修海峰.不同季节潜流与表流人工湿地氨氮去除动力学对比研究[J].吉林农业,2011,8:70-72.
    [168]鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2000.
    [169]吴海明.表面流人工湿地处理北方污染河水的长期净化效果及相关机理研究[D].济南:山东大学,2011.
    [170]Reed S C, Crites W, Middle brooks J. Natural systems for waste management and treatment [M].2nd ed. New York:McGraw-Hill.1995.
    [171]Armstrong W, Armstrong J, Beckett R M. Measurement and modeling of oxygen release from roots of Phragmites australis [A]. In:Cooper PF, Findlater BC, editors. Constructed wetlands in water pollution control [M]. Oxford, UK: Pergamon Press.1990,41-52.
    [172]Brix H., Schierup H. Soil oxygenation in constructed reed beds:The role of macrophyte and soil-atmosphere interface oxygen transport [A]. In:Cooper PF, Findlater BC, editors. Constructed wetlands in water pollution control [M]. Oxford, UK:Pergamon Press.1990,53-66.
    [173]董洪芳,于君宝,孙志高,等.黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征[J].环境科学,2010,31:1594-1599.
    [174]田应兵,熊明彪,熊晓山,等.若尔盖高原湿地土壤-植物系统有机碳的分布与流动[J].植物生态学报,2003,27:490-495.
    [175]祝宇慧,赵国智,李灵香玉,等.湿地植物对模拟污水的净化能力研究[J].农业环境科学学报,2009,28(1):166-170.
    [176]Debusk T A, James E P, Reddy K R. Use of aquatic and terrestrial plants for removing phosphorus from dairy wastewaters [J]. Ecological Engineering,1995, (5):371-393.
    [177]Andrea S B, Melissa N R, Larry D G, et al. Phosphorous removal by wollastonite:A constructed wetland substrate [J]. Ecological Engineering,2000, 15(2):121-132.
    [178]熊汉锋.梁子湖湿地土壤-水-植物系统碳氮磷转化研究[D].华中农业大学,2005.
    [179]郭长城,胡洪营,李锋民,等.湿地植物香蒲体内氮、磷含量的季节变化及适宜收割期[J].生态环境学报,2009,18(3):1020-1025.
    [180]Malhi S S, Meggill W B, Nyborg M. Nitrate losses in soils effect of temperature, moisture and substrate concentration [J]. Soil Biology and Biochemistry,1990,22: 733-737.
    [181]孙丽,宋长春,黄耀.沼泽湿地N2O通量特征及N2O与CO2排放间的关系[J].中国环境科学,2006,26(5):532-536.
    [182]王重阳,郑靖,顾江新,等.下辽河平原几种旱作农田N2O排放通量及相关影响因素的研究[J].农业环境科学学报,2006,25(3):657-663.
    [183]刘晔,牟玉静,钟晋贤,等.氧化亚氮在森林和草原中的地-气交换[J].环境科学,1997,18(9):15-18.
    [184]邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报,2003,23(6):758-764.
    [185]Johansson A E, Klemedtsson A K, Klemedtsson L, et al. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater: Parameters and implications for emission factors [J]. Tellus B,2003,55(3): 737-750.
    [186]Inamori R, Gui P, Dass P, et al. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms [J]. Process Biochemistry,2007,42(3):363-373.
    [187]Fey A, Benckiser G, Ottow J C G Emissions of nitrous oxide from a constructed wetland using a ground filter and macrophytes in waste-water purification of a dairy farm [J]. Biology and Fertility of Soils,1999,29(4):354-359.
    [188]唐其文.不同耕作方式下紫色水稻土农田生态系统甲烷排放的研究[D].西南大学,2011.
    [19]杨晶晶.亚热带4种典型森林生态系统地表甲烷通量研究[D].中南林业科技大学,2012年.
    [190]丁维新.沼泽湿地及其不同利用方式下甲烷排放机理研究[D].中国科学院研究生院,2003.
    [191]杨乐.三峡水库甲烷和二氧化碳排放及其影响因子研究[D].中国科学院研究生院,2012.
    [192]Chanton J P,Whiting G J, Happell J D, et al. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes [J]. Aquatic Botany,1993,46:111-128.
    [193]张秀君,徐慧,陈冠雄.影响森林土壤N2O排放和CH4吸收的主要因素[J].环境科学,2002,23(5):8-11.
    [194]陈冠雄,商曙辉,于克伟,等.植物释放N2O的研究[J].应用生态学报,1990,1:94-96.
    [195]Holzapfel-Pschorn A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil [J]. Plant and Soil,1986,92:223-322.
    [196]Kim J, Verma S B, Billebach D P. Seasonal variation in methane emission from a remperate Phragmites-dominated marsh, effect of grow th stage and plant-mediated transport [J]. Global Chang e Biology,1998,5:433-440.
    [197]Odum E P, Barrett G W. Fundamentals of Ecology [M].陆健健,王伟,王天慧,何文珊,李秀珍译.北京:高等教育出版社,2009.
    [198]黄建辉,韩兴国.森林生态系统的生物地球化学循环:理论和方法[J].植物学通报,1995,12:195-223.
    [199]周启星,黄国宏.环境生物地球化学及全球环境变化[M].北京:科学出版社,2001.
    [200]秦先燕.南极无冰区和近海磷的生物地球化学循环[D].合肥:中国科学技术大学,2013.
    [201]张玲,袁增伟,毕军.物质流分析方法及其研究进展[J].生态学报,2009,29:6189-6198.
    [202]巫建光.废水生物处理系统的物质流和能量流解析及应用[D].合肥:中 国科学技术大学,2010.
    [203]周志红.农业生态系统中磷循环的研究进展[J].生态学杂志,1996,15:62-66.
    [204]王惠,马振民,代力民.森林生态系统硅素循环研究进展[J].生态学报,2007,27:3010-3017.
    [205]高建华,欧维新,杨桂山.潮滩湿地N、P生物地球化学过程研究[J].湿地科学,2004,2:220-227.
    [206]孙宏发,刘占波,谢安.湿地磷的生物地球化学循环及影响因素[J].内蒙古农业大学学报(自然科学版),2006,27:148-152.
    [207]张绪良,谷东起,丰爱平,等.莱州湾南岸滨海湿地的氮、磷循环过程及调控对策[J].中国生态农业学报,2008,16:1127-1133.
    [208]曾巾,杨柳燕,肖琳,等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学,2007,19:382-389.
    [209]王洪君.富营养化湖泊湖滨带氮生物地球化学过程研究—以太湖梅梁湾为例[D].中国科学院研究生院,2006.
    [210]任景玲.长江流域和黄、东海铝的生物地球化学循环及其影响因素研究[D].中国海洋大学,2010.
    [211]Baturin G N. Phosphorus cycle in the ocean [J]. Lithology and Mineral Resources,2003,38:101-119.
    [212]Karl D M, Bjorkman K M. Phosphorus cycle in seawater:dissolved and particulate poolinventories and selected phosphorus fluxes [J]. Methods in Microbiology,2001,30:239-270.
    [213]Paytan A, McLaughlin K. The oceanic phosphorus cycle [J]. Chemical Reviews, 2007,107:563-576.
    [214]Fillery I R P, De Date S K. Ammonia volatilization from nitrogen volatilization as an N loss mechanism in flooded rice fields [J]. Fert. Res.,1986,9:78-98.
    [215]Scheller E, Vogtmann H. Case-studies on nitrate leading in Arabia fields of organic farms [J]. Biol. Agric. Hort.,1995,11:1-4.
    [216]张文菊,童成立,吴金水,等.典型湿地生态系统碳循环模拟与预测[J]. 环境科学,2007,28:1905-1911.
    [217]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,469-476.
    [218]Sawaittayothin V, Polprasert C. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate [J]. Bioresour Technol, 2007,98:565-570.
    [219]Wang J, Zhang J, Xie H, et al. Methane emissions from a full-scale A/A/O wastewater treatment plant [J]. Bioresource Technology,2011,102:5479-5485.
    [220]Tsuneda S, Mikamia M, Kimochib Y, et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater [J]. Journal of Hazardous Materials,2005, B119:93-98.
    [221]Czepiel P, Crill P, Harriss R. Nitrous oxide emissions from municipal wastewater treatment [J]. Environmental Science & Technology,1995,29(9): 2352-2356.
    [222]王金鹤.城镇污水处理厂中温室气体的释放研究[D].山东大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700