新型压电微生物传感仪及其在临床分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由微生物感染引发的疾病已经严重威胁到人类的健康。结核病是由结核分枝杆菌病原体感染引发的重大传染性疾病,曾经是人类的第一大杀手,随着抗菌素的广泛应用,上世纪六七十年代,结核病的危害直线下降,人类颇有“大获全胜”的感觉。在上世纪末,结核病却又卷土重来,疫情直线回升,大有重新找回“第一杀手”位置之势,而最令人担心的,莫过于耐药性结核病病例的大量出现。要控制耐药菌株的发展,最直接而有效的方法是进行结核分枝杆菌早期快速检测。结核分枝杆菌由于其增代时间长,生长缓慢,比其它微生物更难实现快速检测。快速全自动微生物培养系统对于临床病原菌感染的早期诊断、抗生素的合理运用、延缓病原菌的耐药性都起到了十分重要的作用。而目前临床使用得较多的几款全自动微生物培养系统包括BACTEC 460 TB和BACTEC MGIT 960。BACTEC 460 TB存在放射性污染、仪器操作和维护困难。BACTEC MGIT 960系统所使用的荧光物质易分解造成假阴性。此外,以上仪器本身造价就高,其配套试剂需依赖进口,因此其推广受到经济条件的限制,对于结核病发生率高的贫穷国家或发展中国家是可望而不可及的。
     串联式压电传感器的主体部分是由压电石英晶体和一对插入溶液中的平行板金属对电极串联组成,该传感器对电极间的电参数变化有灵敏的响应。由于其操作简便、准确、灵敏以及价格便宜而深受广大分析化学者的欢迎。本论文在本室前期工作的基础上,致力于快速、灵敏、准确而造价便宜的新型串联式压电微生物传感器的研制。通过改进、优化或引入新的探头,解决了传感器受背景电参数及电极材料影响的问题,拓宽了该类传感器在生命科学中的应用,使信息的提取更加准确容易,测定更加快速方便。鉴于此开展了以下研究工作:
     (1)新型多通道串联式压电传感器(MSPQC)的构建及其在结核分枝杆菌减毒菌株H37Ra检测中的应用。该方法是将结核分枝杆菌产生的挥发性代谢产物导致接收液电导变化和串联式压电传感器对电导的灵敏响应结合起来进行检测。首先,设计了双管检测装置,外部是检测管,底部固定有一对电导电极,管内盛有2 ml KOH接收溶液;检测池内部是培养管,内盛有Youmans改良Proskauer-Beck培养基,结核分枝杆菌能代谢培养基中甘油和天门冬酰胺产生挥发性的NH3和CO2,代谢产物能被接收液吸收,导致接收液的电导发生变化,从而检测出结核分枝杆菌。由于双管结构的引入,解决了检测受仪器灵敏区间限制问题。我们用MSPQC成功地检测了H37Ra,在102~107 cfu?ml-1之间,菌液初始浓度的对数与检测时间(FDT)之间存在线性关系。检测限为10 cfu?ml-1。同时检测结果与全自动化的BACTEC MGIT 960进行了对比,二者的结果均通过Ziehl-Neelsen (Z-N)染色法镜检证实了H37Ra的存在。该仪器与同类产品相比还有一个最重要的优点,价格便宜(仪器约为:10~20万,试剂约为:20元;而同类产品BACTEC MGIT 960仪器:90万,试剂约为:80元)。MSPQC有望开发成为一种准确、快速而廉价的结核分枝杆菌检测仪器。
     (2) MSPQC用于结核分枝杆菌标准菌株H37Rv和临床菌株的检测。通过对未减毒标准菌株H37Rv与减毒菌株H37Ra在Youmans改良Proskauer-Beck培养基中的MSPQC典型曲线的对比,分析了未减毒菌株可能的代谢途径,并通过对代谢途径的推测,优化了培养基,获得了H37Rv的增强检出信号,初步证实了推测。同时筛查了最佳抑菌剂成分并成功用于临床菌株的检测,其检测结果与L-J斜面和BACTEC MGIT 960进行对比,结果表明,该仪器准确、快速、简便,有望应用于临床实验室结核分枝杆菌的检出。
     (3)提出MSPQC进行一线抗结核药物药敏试验的新方法。通过设定参比管,并将参比管加入的菌液浓度调节为药物管浓度的1/100,巧妙地解决了MSPQC的不完全定量问题。根据临床实验室标准机构(CLSI)的规定成功定义了菌株对于药物敏感性的快速划分标准,并在此基础上将临床结核分枝杆菌对异烟肼、链霉素、乙胺丁醇和利福平四种一线药物的敏感性进行了实际划分,其结果与琼脂比例法(APM)和BACTEC MGIT 960方法进行了比较,该法快速、操作简便,还可以实时监测,从而为结核分枝杆菌药敏研究及药物治疗提供有效手段。
     (4)叉指阵列电极串联式压电传感器(IDE-SPQC)的构建及其在微生物培养检测中的应用。IDE-SPQC是直接将叉指阵列电极(IDE)代替平行板不锈钢对电极与压电石英晶体串联构成。本章通过理论和实验对比探讨了IDE-SPQC与串联式压电传感器(SPQC)对溶液电导和电容变化的响应以及IDE电极参数对IDE-SPQC响应灵敏度的影响。结果表明,在一定条件下,IDE-SPQC较SPQC对溶液电参数的变化有更灵敏的响应。当使用IDE-SPQC对微生物进行检测时,其线性范围为10~106 cfu?ml-1,检测下限为10 cfu?ml-1。其结果与SPQC和平板计数法(PPC)进行了对比,该方法与SPQC和PPC有相同的准确度,但较后两者更快速。
     (5)聚苯胺多通道串联式压电传感器(PAn-MSPQC)的研制。将IDE修饰碱型聚苯胺/聚乙烯醇复合物制备成PAn探头与压电石英晶体串联,构建了PAn-MSPQC。其用于微生物测定的原理为:细菌在新陈代谢过程中均会产生CO2,而在一定湿度下CO2能与聚苯胺掺杂,能引起PAn探头电导的变化,实现对微生物的检出。相对于SPQC,由于探头不直接与培养基溶液接触,该传感器不受培养基电参数的影响,不需要特别合成的培养基。利用该传感器可定量地检测样本中的初始微生物浓度,其线性范围为10~106 cfu?ml-1,其检测限为10 cfu?ml-1。
     (6)聚吡咯多通道串联式压电传感器的制备(PPY-MSPQC)。常规的SPQC除了受仪器灵敏区间限制外,还有一点就是其电极材料难于选择。导电聚合物经掺杂导电率可提高十几个数量级,由绝缘体变为导体,有金属性,可作为电极,再加之其对于一些物质具有选择性电响应,可将其代替金属电极作为敏感探头,与压电石英晶体串联,构建新型串联式传感器。本章以聚吡咯为例,将聚吡咯化学沉积于绝缘基底上制成导电聚合物膜作为MSPQC的探头,研究其在高湿度和室温下对于NH3的响应特性。当NH3量在0.1μmol到6μmol之间时,氨量与频移之间存在线性关系,该方法的最低检测限为0.1μmol。该传感器有望用于需在高湿度、室温下进行NH3测量的体系。
     (7) PPY-MSPQC用于L-天门冬酰胺酶活性的测定。基于L-天门冬酰胺酶催化L-天门冬酰胺底物水解产生NH3,通过使用PPY-MSPQC测定NH3,从而实现酶活性的测定。使用PPY-MSPQC筛选了L-天门冬酰胺酶活性测定的最佳条件;测定了酶动力学参数;研究了该酶对不同底物L-天门冬酰胺、D-天门冬酰胺以及L-谷氨酰胺的不同催化活性;测定了不同酶浓度,该方法的线性范围是0.01~0.1 U?ml-1,其检测下限为0.01 U?ml-1。其结果与奈氏试剂法进行了对比,该方法准确、无需使用有毒的试剂且能实现实时在线检测。该方法有望用于产L-天门冬酰胺酶微生物的筛选及产氨酶活性的测定。
The infection caused by microorganisms has threatened humans’health. Tuberculosis (TB) is the most important infection disease which caused by Mycobacterium tuberculosis. It has been the largest killer for human. In the 1960s, its harmfulness decreased with antibiotics’wide applications. However, the re-emergence of TB, especially resistant strains, results in a major health care problem. The development of a rapid and efficient automated microorganism culture system for the identification of TB is of extreme important for patient treatment and protection of health-care professionals. Rapid Culture detection techniques have been used in clinic, such as BACTEC 460 TB and BACTEC MGIT 960. However, the former has the radioactive damage and the latter need to use fluorescent reagent which is easily decomposed. In addition, all above systems are rather expensive for both instruments and reagents. So, their wide use was limited. Millions of people in developing countries die each year from TB because of expensive diagnostic cost. More accurate, more rapid and cheaper detection system is urgently needed in developing countries.
     The key section of series piezoelectric quartz crystal (SPQC) is composed of an AT cut, 9 MHz piezoelectric quartz crystal and a pair of parallel-plate metal electrodes inserted into liquid solution in series. It has sensitive response to the electric parameter changes (such as conductance and capacitance) between the electrodes. SPQC has attracted many analysts because of its sensitive response, accurate, low cost and easy operation. This dissertation is devoted to the study of novel microorganism piezoelectric quartz crystal sensors, especially TB sensor. The main work of this thesis could be summarized as follows:
     (1) A new multi-channel series piezoelectric quartz crystal sensor system (MSPQC) was developed for rapid growth and detection of Mycobacterium tuberculosis H37Ra. The system was used to detect H37Ra based on combination the volatile metabolic products during the growth of M.tuberculosis with SPQC sentive response to solution conductance. Firstly, the double tubes configuration was proposed. The metabolic products, diffusing from the medium into the KOH absorbing solution, resulted in the conductance change of the absorbing solution detected by the MSPQC sensitively. The frequency shift versus time response curves were recorded by self-developed software. Frequency detection time (FDT) corresponding to–100 Hz in frequency shift value was used as a parameter to quantitatively determine M.tuberculosis H37Ra (an avirulent strain). As for H37Ra, the FDT had a linear relationship with the logarithm of its initial concentration in the range of 102~107 colony forming units (cfu)?ml-1 (R=-0.998) and the detection limit was low to 10 cfu?ml-1. 4% NaOH solution that can kill contaminating microorganisms and make M.tuberculosis alive was used as pretreatment reagent to provide the selectivity to this method. Comparing tests were also carried out by using BACTEC? MGIT? 960 and conventional Lowenstein-Jensen (L-J) slants. The results showed that the proposed system was quicker than BACTEC? MGIT? 960 and it is also cheaper and will be widely used in TB tests in the world.
     (2) Multi-channel series piezoelectric quartz crystal (MSPQC) was developed for rapid growth and detection of H37Rv and clinic strains. The typical response curve of H37Rv growth in Youmans medium was compared with that of H37Ra. From their difference in profile and frequency response values, their different nitrogen metabolic path was speculated. Base on above speculation, the culture medium was adjusted, and excellent frequency signal was obtained. The speculation was verified. Simultaneously, the optimum antibacterial reagents were investigated and the proposed method was used to detect 40 strains clinic mycobacteria successfully. The results were compared with L-J slants and BACTEC MGIT 960. It demonstrated that the proposed method is rapid, accurate and easy operation and it could be popularized in clinical microbiology laboratories.
     (3) A new antitubercule susceptibility testing method based on multi-channel series piezoelectric quartz crystal (MSPQC) was proposed. Semiquantitative results could be achieved with the 1% threshold as determinant of resistance through adjusting the inoculum concentration in reference tube (1/100 in drug tube). This method was used to test susceptibility of clinical mycobacterium tuberculosis isolates against isoniazd, rifampin, ethambutol hydrochloride and streptomycin. Comparing tests were run at the same time by the agar proportion method (APM) and BACTEC MGIT 960 method. The experimental results showed that MSPQC method had a good agreement with the reference methods. Compared with those methods, the MSPQC method is simple, rapid, and convenient to perform.
     (4) A new interdigital electrode- series piezoelectric quartz crystal (IDE-SPQC) sensor was proposed here. It was constructed using an interdigital electrode (IDE) connection with a piezoelectric quartz crystal in series. The response was studied theoretically and experimentally. Proposed sensor was more sensitive than series piezoelectric quartz crystal sensor (SPQC) to changes in electrical parameters of solution in certain conditions. Factors affecting the response of the IDE-PQC were discussed in detail. Proposed method was used to detect Pseudomonas aeruginosa. The logarithm of the initial concentration of P. aeruginosa had a linear relationship with frequency detection time (FDT) in the range of 10 ~106 cfu?ml-1. The detection limit could be as low as 10 cfu?ml-1. Pour plate counts (PPC) and SPQC methods were used for comparing with proposed method. Escherichia coli and Staphylococcus aureus were also detected successfully with proposed method.
     (5) A new base-type polyaniline/poly vinyl alcohol piezoelectric quartz crystal (PAn-MSPQC) system for rapid detection of bacteria population was proposed. In this system, interdigital electrode coated with a base-type polyaniline/poly vinyl alcohol composite film was used as probe (PAn) in place of steel electrode in multi-channel series piezoelectric quartz crystal (MSPQC) system. The probe was directly connected to the piezoelectric detection system. B-PAn/PVA film can react with CO2 produced by the growth of bacteria in culture medium, which caused the film electrical properties change. This change can be sensitively monitored by piezoelectric detection system. The superiority of using proposed probe instead of steel electrode were those: firstly, it was more sensitive to bacteria growth response, and secondly, it didn’t require a specially formulated culture medium which was demanded in MSPQC system. Just like MSPQC, proposed system can be used to detect bacteria population. When used to quantitatively determine P.aeruginosa, the frequency detection time (FDT) obtained in frequency shift curve had a linear relationship with the logarithm values of initial concentration of P.aeruginosa in the range of 10~106 cfu?ml-1. The detection limit was 10 cfu?ml-1.
     (6) A new polypyrrole multi-channel series piezoelectric quartz crystal system (PPY-MSPQC) was proposed for NH3 detection at high humidity and room temperature. The significant electrical properties, stability characteristics, good processing of conducting polymers make them ideal candidates to act as a soft electrode material; the conductivity changes of the polymers by a doping or dedoping reaction due to introduction of ion make them to act as a sensing film. Polypyrrole, chemically deposited on surface of polyimide, had sensitive respose to low concentration NH3. In this paper, polypyrrole/polyamide was used as probe (see Fig.1 A (2)) instead of stainless steel electrodes connection with piezoelectric quartz crystal in series and a new PPY-MSPQC system was constructed for detecting NH3. From 0.1μmol to 6μmol, there is a linear relationship between the frequency shifts (Y) and the ammonia amounts (X) shown in Y=8.4464+102.99X (R=0.998), the detection limit is 0.1μmol. This method can be used to detect NH3 at high humidity and room temperature, such as amidase activity assay.
     (7) A PPY-MSPQC method for L-asparaginase activity assay. The PPY-MSPQC was used to assay L-asparaginase activity that can catalyze the hydrolysis of L-asparagine into L-asparatic acid and NH3. The optimum enzyme activity assay conditions were investigated. The kinetic parameter was calculated by changing the substrate concentration. The catalyzing activity of L-asparaginase to different substrates was also studied. The proposed method can be used to detect enzyme concentration quantitatively in the range of 0.01~0.1 U?ml-1. The results were compared with classic Nessleration’s method. Some advantages are found, such as real time and nontossxic. It is expected to use in sceening L-asparaginase producing microorganisms and detecting amidase activity.
引文
[1] Shen D Z, Zhu W H, Nie L H, et al. Behaviour of a series piezoelectric sensor in electrolyte solution: Part 1 Theory. Analytica Chimica Acta, 1993, 276(1): 87-97
    [2] Shen D Z, Nie L H, Yao S Z. A new type of piezoelectric detector in liquid: Part 2 Computation of the equivalent circuit parameters of a piezoelectric crystal with a separated electrode and of series piezoelectric sensors in a non-electrolyte solution. Journal of Electroanalytical Chemistry, 1993, 360(1-2): 71-87
    [3] Sauerbrey G Z. The use of quartz oscillators for weighing thin layers and for microweighing. Z.Phys., 1959, 155(): 206-222
    [4] Lu C, Lewis O. Investigation of film-thickness determination by oscillating quartz resonators with large mass load. Journal of Applied Physics, 1972, 43(11): 4385
    [5] Kanazawa K K, Gordon J G. The oscillation frequency of a quartz resonator in contact with a liquid. Analytica chimica acta, 1985, 17()5: 99-105
    [6] Yao S Z, Zhou T A. Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids. Analytica Chimica Acta, 1998, 212(1): 61-72
    [7] Zhou T A, Nie L H, Yao S Z. On equivalent circuits of piezoelectric quartz crystals in a liquid properties. Journal of Electroanalytical Chemistry, 1990, 293(1): 1-18
    [8] Schneider T W, Martin S J. Influence of compressional wave generation on thickness-shear mode resonator response in a field. Analytical Chemistry, 1995, 67(18): 3324-3335
    [9] Thompson M, Dhaliwal G K, Arthur G L. Liquid-phase piezoelectric and acoustic transmission studies of interfacial immunochemistry. Analytical Chemistry, 1986, 58(6): 1206-1209
    [10] Duncan-Hewitt W C, Thompson M. Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure. Analytical Chemistry, 1992, 64(1): 94-105
    [11] Yang M, Thompson M. Acoustic network analysis and equivalent circuit simulation of the thickness-shear mode acoustic wave sensor in the liquid phase. Analytica Chimica Acta, 1993, 282(3): 505-515
    [12] Shana Z A, Josse F. Quartz crystal resonators as sensors in liquids using the acoustoelectric effect. Analytical Chemistry, 1994, 66(13): 1955-1964
    [13] Hao R Z, Wang D B, Zhang X, et al. Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosensors and Bioelectronics, 2009, 24(5): 1330–1335
    [14] Prusak-Sochaczewski E, Luong J H, Guilbault G G. Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium. Enzyme and microbial technology, 1990, 12(3): 173-177
    [15] Cater R M, Mekalanos J J. Quartz crystal microbalance detection of vibrocholerae O139 serotype. Journal of Immunological Methods, 1995, 187(1): 121-125
    [16] Ben-Dov I, Willner I, Zisman E. Piezoelectric immunosensor for urine specimens of chlamydia trachomatis employing a quartz crystal microbalance microgravimetric analysis. Analytical Chemistry, 1997, 69(17): 3506-3510
    [17] Plomer M, George G G, Bertold H. Development of a piezoelectric crystal immuosensor for detection enterbacteria. Enzyme Microb Technol, 1992, 14(3): 230-238
    [18] Minunni M, Mascini M, Carter R M, et al. A quartz crystal microbalance displacement assay for Listeria monocytogenes. Analytica Chimica Acta, 1996, 325(3): 169-174
    [19] Bovenizer J S, Jacobs M B, Guibault G G. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Analytical Letters, 1998, 31(8): 1287-1295
    [20] Anza J, Takeshila H, Kobayashi Y. Layer-by layer construction of enzyme multilayers on an electrode for the preparation of glucose and lactate sensors: elimination of ascorbate interference by means of an ascorbate oxidase multilayer. Analytical Chemistry, 1998, 70(4): 811-817
    [21] Ho W, Krawse S, Mcneil C J, et al. Electrochemical sensor for measure of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer trasformation. Analytical Chemistry, 1999, 71(10): 1940-1947
    [22] Cavic-VlasaK B A, Rajakovic L J V. Enzymatically amplified time-resolved fluorescence immunoassay with terbium chelate. Analytical Chemistry, 1992, 64(4): 342-346
    [23] Liu D Z, Ge K, Chen K, et al. Clinical analysis of urea in human blood bycoupling surface acoustic wave sensor with urease extracted from pumpkin seeds. Analytica Chimica Acta, 1995, 307(1): 61-65
    [24] He D L, Bao L L, Lun T, et al. A new study of the enzymatic-hydrolysis of carboxymethyl cellulose with a bulk acoustic wave sensor. Talanta, 2000, 50(6): 1267-1273
    [25] Wang R H, Cai Q Y, Wei W Z, et al. Rapid determination of ribonuclease and microanalysis of heparin with a SAW/conductance sensor. Talanta, 1997, 44(4): 641-647
    [26] Cai Q Y, Wang R H, Wu L, et al. SAW enzyme sensor applied to kinetic assay of acid phosphatase. The Analyst, 1995, 120(12): 2833-2836
    [27] Bao L L, Xie Q J, Xu Y J, et al. A new method for determination ofα-amylase with a bulk acoustic wave sensor. Analytical Letters, 1999, 32(5): 885-889
    [28] Ebersoie R C, Ward M D. Amplified mass immunosorbent assay with aquartz crystal microbalance. Journal of American Chemical Society, 1988, 110(26): 8623-8628
    [29] Hellas C M Y,Chan H L, Yang M S. Determination of mode of interaction between novel drugs and calf thymus DNA using quartz crystal resonator. Sensors and Actuators B: Chemical, 2002, 81(2-3): 283-288
    [30] Fawcett W C, Evans J A, Chien L, et al. Nucleic acid hybridization detected by piezoelectric resonance. Analytical Letters, 1988, 21(7): 1099-1114
    [31] Wang J, Nilsen P E, Jiang M. Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Analytical Chemistry, 1997, 69(24): 5200-5202
    [32] Tombelli S, Mascini M, Turner A P. Improved procedures for immobilisation of oligonucleotides on gold-coated piezoelectric quartz crystals. Biosensors and Bioelectronics, 2002, 17(11-12): 929-936
    [33] Wang J, Jiang M, Nilsen T W, et al. Dendritic nucleic acid probes for DNA biosensor. Journal of American Chemical Society, 1998, 65(14): 1916-1924
    [34] Niikura K, Matsuno H, Okahata Y. Direct monitoring of DNA polymerase reaction on a Quartz-Crystal microbalance. Journal of American Chemical Society, 1998, 120(33): 8537-8538
    [35] Ketterer T, Stadler H, Rickert J. Detection of oligonucleotide sequences with quartz crystal oscillators. Sensors & Actuator B: Chemical, 2000, 63(1-2): 73-75
    [36] David E N, James Q C, Tina R A. Long-term on-line monitoring of microbial biofilms using a quartz crystal microbalance. Analytical Chemistry, 1993, 65(1):65-69
    [37] Chen K, Deng L, Nie L H, et al. Model of quartz crystal microbe growth sensor and is application to estimation of microbial population in mineral waters. Analytica Chimica Acta, 1996, 329(1-2): 83-89
    [38] Bao L L, Deng L, Nie L H, et al. A rapid method for determination of Proteus vulgaris with a piezoelectric quartz crystal sensor coated with a thin liquid film. Biosensors and Bioelectronics, 1996, 11(12): 1193-1198
    [39]张进忠.压电体声波微生物传感及其应用研究.长沙:湖南大学化学化工学院,2001
    [40] Zhang J Z, Wei W Z, Mao Y, et al. Monitoring of Bio-Oxidation process of ferrous ion by using piezoelectric impedance analysis. Current microbiology, 2001, 43(2): 83-88
    [41] Bovenizer J S, Jacobs M B, Guibault G G. The detection of Pseudomonas aeruginosa using the quartz crystal microbalance. Analytical Letters, 1998, 31(8): 1287-1295
    [42] Xie Q J, Zhang Y Y, Xu M C, et al. Combined quartz crystal impedance and electrochemical impedance measurements during adsorption of bovine serum albumin onto bare and cysteine- or thiophenol-modified gold electrodes. Journal of Electroanalytical Chemistry, 1999, 478(1-2):1-8
    [43] Xie Q J, Wang J, Zhou A, et al. A Study of Depletion Layer Effects on Equivalent Circuit Parameters Using an Electrochemical Quartz Crystal Impedance System. Analytical Chemistry, 1999, 71(20): 4649-4656
    [44] Xie Q J, Xiang C H, Yang X H, et al. Simultaneous impedance measurements of two one-face sealed resonating piezoelectric quartz crystals for in situ monitoring of electrochemical processes and solution properties. Analytica Chimica Acta, 2005, 533(2): 213-224
    [45] Tu X M,Xie Q J,Xiang C H, et al. Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films. The Journal of Physical Chemistry B, 2005, 109(9): 4053-4063
    [46] He H, Xie Q J, Zhang Y Y, et al. A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction. Journal of Biochemical and Biophysical Methods, 2005, 62(2): 191
    [47] Li Y L, Xiang C H, Xie Q J, et al. Electrochemical quartz crystal microbalancestudy on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films, 2006, 497(1-2): 270-278
    [48] Tsionsky V, Daikhin L, Zilberman G, et al. Response of the EQCM for electrostatic and specific adsorption on gold and silver electrodes. Faraday discuss, 1997, 107(): 337–350
    [49] Tsionsky V, Daikhin L, Gileadi E. Weighing ions in solution with the quartz crystal microbalance. Journal of electrochemical society, 1995, 142(12): 233–234
    [50] Tsionsky V, Daikhin L, Gileadi E. Response of the elect rochemical quartz crystal microbalance for gold electrodes in the doubl–layer region. Journal of electrochemical society, 1996,143(7): 2240-2245
    [51] Liu Y C, Wang C M, Hsiung K P. Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Analytical Biochemistry, 2001, 299(2): 130-135
    [52] Sudlow G, Brikett D J, Wade D N. The Characterization of Two Specific Drug Binding Sites on Human Serum Albumin. Molecular Pharmacology, 1975, 11(6): 824-832
    [53] Harteveld J L N,Nieuwenhuizen M S, Wils E R J. Detection of Staphylococcal Enterotoxin B employing a piezoelectric crystal immunosensor. Biosensors and Bioelectronics, 1997, 12(7): 661-667
    [54] Lu H C, Chen H Mi, Lin Y S, et al. A Reusable and Specific Protein A-Coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Prog, 2000, 16(1): 116-124
    [55] Zhang H W, Zhao R, Chen Z Y, et al. QCM–FIA with PGMA coating for dynamic interaction study of heparin and antithrombin III. Biosensors and Bioelectronics, 2005, 21(1): 121–127
    [56] Shen D Z, Xu Y J, Nie L H, et al. An impedance analyzer method to simulate the oscillating characteristic of a series piezoelectric sensor in oscillators with zero or non-zero phases. Talanta, 1994, 41(11): 1993-1998
    [57] Shen D Z, Kang Q, Liu Z C, et al. Oscillation condition for a series piezoelectric sensor. Analytica Chimica Acta, 1997, 340(1-3): 55-60
    [58] Kang Q, Liu Z C, Hu J T, et al. Investigation of the detection limit of a series piezoelectric sensor. Talanta, 1996, 43(4): 691-694
    [59]申大忠.新型压电传感器的响应理论研究及其应用.长沙:湖南大学化学化工学院,1994
    [60] He F J, Geng Q, Zhu W, et al. Rapid detection of Escherichia Colform using a separated electrode piezoelectric crystal sensor. Analytica Chimica Acta, 1994, 289(3): 313-321
    [61] Wang R H, Xie Y T, Wei W Z. A series of piezoelectric quartz crystal microbial sensing technique used for biochemical oxygen demand assay in environmental monitoring. Microchemical Journal, 1999, 63(3): 405-412
    [62] Bao L L, Deng L, Nie L H, et al. Determination of microorganism with a quartz crystal microbalance sensor. Analytica Chimica Acta, 1996, 319(1-2): 97-101
    [63] Bao L L, Deng L, Yao S Z. A thin liquid film thickness shear mode bulk acoustic wave sensor for determination of Porteus mirabilis. Talanta, 1996, 46(4): 675-680
    [64] Bao L L, Tan H W, Duan Q, et al. A Rapid Method for Determination of staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz crystal sensor. Analytica Chimica Acta, 1998, 369(1-2): 139-145
    [65] Qu X G, Bao L L, Su X L, et al. Rapid detection of Escherichia coliform with a bulk acoustic wave sensor based on the gelation of tachypleus amebocyte lysate. Talanta, 1998, 47(2): 285-290
    [66] Deng L, Tan H W, Yao S Z. On-line Rapid detection of urea-producing bacteria with a novel bulk acoustic wave ammonia sensor. Enzyme and Microbial Technology, 1997, 21(4): 258-264
    [67] Zhang J Z, Tan H W, Zhang H, et al. Determination of Proeus mirabilis and analysis of antimicrobial properties of tea with a BAW-impedance sensor. International journal of environmental analytical Chemistry, 1998, 69(4): 317-328
    [68] Zhang J Z, Wei W Z. Monitoring of mutagenic process with piezoelectric quartz crystal impedance analysis. Talanta, 2000, 55(3): 525-533
    [69] Tan H W, Wang R H, Zhang H, et al. A bacterial growth response model applied to analysis of proteus mirabilis with a bulk acoustic wave ammonia sensor, in Progress of International Seventh Beijing Conference and Exhibition on Instrumental Analysis, Electroanalytical Chemistry, Beijing: Peking University Press, 1997: 121-122
    [70] Tan H W, Wang R H, Zhang H, et al. Detection and analysis of the temperature-dependent growth characteristics of proteus mirabilis using a bulk acoustic wave ammonia sensor. Bioelectrochemistry and Bioenergetics, 1997, 44(1): 83-88
    [71] Tan H W, Deng L, Nie L H, et al. Detection and growth characteristic analysis of Proteus vulgaris with a bulk acoustic wave ammonia sensor. Analyst, 1997, 122(2): 179-184
    [72] Tan H W, Zhang H, Su X L, et al. Bulk acoustic wave ammonia sensor applied to analysis antimicrobial properties of tea. Biotechnology Progress, 1998, 14(4): 639-644
    [73] Shen D Z, Zhu W H, Nie L H, et al. Frequency characteristic of a series piezoelectric sensor and application to the determination of water in organic solvents. Chinese Journal of Chemistry, 1994, 12(1): 58-65
    [74] Shen D Z, Kang Q, Hu J T. Investigation of the detection limit of a series piezoelectric sensor and use in detection of the water content of the edible oils. Analytical Letters, 1996, 29(6): 911-919
    [75] Shen D Z, Li Z Y, Nie L H, et al. Behaviour of series piezoelectric sensor in electrolyte solution: Part II Applications in titrimetry. Analytica Chimica Acta, 1993, 280(2): 209-216
    [76] Liu D Z, Lai Y Z, Nie L H, et al. Rapid detection of L-glutamic acid using a series-electrode piezoelectric quartz crystal sensor. Analytica Chimica Acta, 1995, 313(3): 229-236
    [77] Xu Y J, Lu C Y, Nie L H, et al. Impedance sensor for dissolved nitrogen oxide using a series piezoelectric crystal device. Analyst, 1996, 121(6): 883-886
    [78] Shen D Z, Kang Q, Wang X Y. Piezoelectric enzyme sensor with improved temperature characteristics for determining urea in urine. Microchimica Acta, 1997, 126(3-4): 267-270
    [79] Chen P, Nie L H, Yao S Z. Application of a series piezoelectric sensor as a detector in ion chromatography. Journal of Chromatographic Science, 1995, 33(5): 268-272
    [80]沈萍等.微生物实验.北京:高等教育出版社, 2002: 96-106
    [81] Gianni P, Silas G V, Paul C, et al. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. Journal of Biotechnology, 2005, 115(4): 425–434
    [82] Gao P, Shi C Y, Tian J,et al. Investigation on response of the metabolites in tricarboxylic acid cycle of Escherichi coli and Pseudomonas aeruginosa to antibiotic perturbation by capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(1): 180–187
    [83] Durmaz G, Us T, Aydinli A, et al. Optimum detection times for bacteria and yeastspecies with the BACTEC 9120 aerobic blood culture system: Evaluation for a 5-year period in a Turkish University Hospital. Journal of Clinical Microbiology, 2003, 41(2): 819-821
    [84] Horvath L L, George B J, Murray C K, et al. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for candida growth detection. Journal of Clinical Microbiology, 2004, 42(1): 115-118
    [85] Dunne W M, Case L K, Isgriggs L, et al. In-house validation of the BACTEC 9240 blood culture system for detection of bacterial contamination in platelet concentrates. Transfusion, 2005, 45(7): 1138-1142
    [86] Qian Q, Tang Y W, Kolbert C P, et al. Direct identification of bacteria from positive blood cultures by amplification and sequencing of the 16S rRNA gene: evaluation of BACTEC 9240 instrument true-positive and false-positive results. Journal of Clinical Microbiology, 2001, 39(10): 3578–3582
    [87] Leitritz L, Schubert S, Bucherl B, et al. Evaluation of BACTEC MGIT 960 and BACTEC 460TB systems for recovery of mycobacteria from clinical specimens of a university hospital with low incidence of tuberculosis. Journal of Clinical Microbiology, 2001, 39(10): 3764–3767
    [88] Piersimoni C, Scarparo C, Callegaro A, et al. Comparison of MB/BacT 3D system with radiometric BACTEC system and L?wenstein-Jensen medium for recovery and identification of mycobacteria from clinical specimens: a multicenter study. Journal of Clinical Microbiology, 2001, 39(2): 651–657
    [89] Rohner P, Beni A M, Ninet B, et al. Evaluation of the BACTEC 960 MGIT compared to the BACTEC 460 and solid media for the isolation of Mycobacteria from clinical specimens. Abstr Gen Meet Am Soc Microbiol, 1999, 99(): 641
    [90] Aathithan S, Plant J C, Chaudry A N, et al. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyser with multiple conducting polymer sensors. Journal of Clinical Microbiology, 2001, 39(7): 2590–2593
    [91] Grametbauer P, Kartusek S, Hausuer O. Diagnosis of aerobic Gram negative bacteria by the detection of volatile metabolites using gas chromatography. Cesk Epidemiology Mikrobiology Immunology, 1998, 37(4): 216–223
    [92] Vitenberg A C, Stolbova A V, Loffe B V, et al. Headspace gas chromatography analysis in the rapid diagnosis of anaerobic infections. Zh Mikribiology Epidemiology Immunobiology, 1986, 1(): 20–24
    [93] Socolowsky S, Hohne C, Sandow D. The direct detection of volatile fatty acidsby gas chromatography in microbiological diagnosis. Zeitschrift Med. Lab. Diagn, 1990, 31(8): 445–452
    [94] Li Y, Dick W A, Tuovinen O H. Fluorescence microscopy for visualization of soil microorganisms—a review. Biology and Fertility of Soils, 2004, 39(5): 301–311
    [95] Selvin P R. Principles and biophysical applications of luminescent lanthanide probes. Annu. Rev. Biophys. Biomol. Struct, 2002, 31(): 275–302
    [96] Higgins J A, Nasarabadi S, Karns J S, et al. A handheld real time thermal cycler for bacterial pathogen detection. Biosensors and Bioelectronics, 2003, 18(9): 1115–1123
    [97] Ko S, Grant S A. Development of a novel FRET method for detection of Listeria or Salmonella. Sensors and Actuators B: Chemical, 2003, 96(1-2): 372–378
    [98] Maier S A, Plasmonics: Fundamentals and Applications, New York: Springer, 2007: 21-34
    [99] Cooper M A. Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 2003, 377(5): 834–842
    [100] Yu Q, Taylor A D, Chen S, et al. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B, 2005, 107(1): 202–208
    [101] Oh B K, Lee W, Chun B S, et al. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosensors and Bioelectronics, 2005, 20(9): 1847–1850
    [102] Eggins B R. Chemical Sensors and Bisensors. John Wiley & Sons Ltd, 2002:
    [103] Ivnitski D, Abdel-Hamid I, Atanasov P, et al. Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics, 1999, 14(3): 309–316
    [104] Casimiri V, Burstein C. Biosensor for L-lactate determination as an index of E.colinumber in crude culture medium. Analytica Chimica Acta, 1998, 361(1-2): 45-53
    [105] Schoning M J, Poghossian A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst, 2002, 127(9): 1137–1151
    [106] Bergveld P. Thirty years of isfetology: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical, 2003, 88(1): 1–20
    [107] Sandifer J R, Voycheck J J. A Review of Biosensor and Industrial Applications of pH-ISFETs and an Evaluation of Honeywell's "DuraFET". Mikrochim. Acta, 1999, 131(1–2): 91–98
    [108] Barsoukov E, Macdonald J R. Impedane Spectroscopy Theory, Experiment and Applications. John Wiley & Sons Ltd, 2005:
    [109] Grimnes S, Martinsen O. Bioimpedance and Bioelectricity Basics. Academic Press, 2008:
    [110] Mirsky V M, Riepl M, Wolfbeis O S. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997, 12(9): 977–989
    [111] Radke S M, Alocilja E C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics, 2005, 20(8): 1662–1667
    [112] Mata A, Gibello A, Casamayor M M, et al. Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Applied and Environmental Microbiology, 2004, 70(24): 3183-3187
    [113] Glukhov A I, Gordeev S A, Altshuler M L, et al. Klinic heskaialaboratornaia. Diagnostika, 2003, 7(7): 48-50
    [114] Lehtola M J, Loades C J, Keevil C W. Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. Journal of clinical Microbioloblogy. Methods, 2005, 62(2): 211–219
    [115] Khalil B, Arie J W, Christina M J, et al. Comparison of real-time PCR and culture for detection of porphyromonas gingivalis in subgingival plaque samples. Journal of Clinical Microbiology, 2003, 41(11): 4950-4954
    [116] Crowther J R. ELISA Theory and Practice. Humana Press Inc, USA, 1995:
    [117] Mortley W S. Pulse compression by dispersive gratings on crystal quartz. Marconi Rev, 1965, 28(159): 273–290
    [118] Matis I G. On multiparameter control of dielectric properties of laminate polymer materials. Latvijas PSR Zinatnu Akademijas Vestis Fizikas un Tehnisko, 1966, 6(): 60–67
    [119] Jachowicz R S, Senturia S D. A thin-film capacitance humidity sensor. Sensors and Actuators B: Chemical,1981, 2(2): 171–186
    [120] Zaretsky M C, Melcher J R. Complex permittivity measurements of thin films using microdielectrometry. Conference on Electrical Insulation and Dielectric Phenomena, 1986, (): 462–471
    [121] Senturia S D, Sheppard N F, Poh S Y, et al. The feasibility of electricalmonitoring of resin cure with the charge-flow transistor. Polym. Eng. Sci., 1981, 21(2): 113–118
    [122] Endres E, Drost S. Optimization of the geometry of gas-sensitive interdigital capacitors. Sensors and Actuators B: Chemical, 1991, 4(1-2): 95–98
    [123] Scapple R Y. A trimmable planar capacitor for hybrid applications. Proc. 24th Electronic Components Conf, 1974, (): 203–207
    [124] Lee H L. Optimization of a resin cure sensor. Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, 1982:
    [125] Kohnke P C, Rajakumar C. General-purpose finite-element software for fluid-structure analysis. Int. J. Comput. Appl. Technol, 1992, 5(): 199–207
    [126] Nabors K, Kim S, White J, et al. Fast capacitance extraction of general three-dimensional structures. Proc. IEEE Int. Conf. Computer Design: VLSI in Computers and Processors, 1991, (): 479–484
    [127] Kim J S, Lee D G. Analysis of dielectric sensors for the cure monitoring of resin matrix composite materials. Sensors and Actuators B: Chemical, 1996, 30(2): 159–164
    [128] Fouke J M, Wolin A D, Sanders K G., et al. Sensor for measuring surface fluid conductivity in vivo. IEEE Trans. Biomed. Eng., 1988, 35(10): 877–881
    [129] Rousselet J, Markx G H, Pethig R. Separation of eryhrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140(1-3): 209-216
    [130] Li L, Bashir R. Dielectrophoretic separation of live and heat-treated cells of listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuators B: Chemical, 2002, 86(2-3): 215-221
    [131] Becker F F, Wang X B, Huang Y, et al. Removal of human leukaemia cells from blood using interdigitated microelectrodes. Journal of Physics D: Applied Physics, 1994, 27: 2659-2662
    [132] Becker F F, Wang X B, Huang Y, et al. Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings in National Academy Science, USA, 1995, 92(): 860-864
    [133] Zou Z W, Lee S, Ahn C H. A Polymer Micro?uidic Chip with interdigitated electrodes arrays for simultaneous dielectrophoretic manipulation and impedimetric detection of microparticles. IEEE sensors journal, 2008, 8(5): 527-535
    [134] Kim J S, Lee D G. Analysis of dielectric sensors for the cure monitoring of resinmatrix composite materials. Sensors and Actuators B: Chemical, 1996, 30(2): 159–164
    [135] Sheppard Jr N F, Garverick S L, Day D R, et al. A new method for in situ cure monitoring. Microdielectrometry, 1981, (): 65–76
    [136] Benes E, Gr M., Burger W, et al. Sensors based on piezoelectric resonators. Sensors and Actuators A, Physical, 1995, 48(11): 1–21
    [137] Leidl A, Hartinger R, Roth M, et al. A new SO2 sensor system with SAW and IDC elements. Sensors and Actuators B: Chemical, 1996, 34(2): 339–342
    [138] Washabaugh A P, Mamishev A, Du Y, et al. Dielectric measurements of semi-insulating liquids and solids. International Conference on Conduction and Breakdown in Dielectric Liquids, 1996, (): 381–384
    [139] Haeusler A, Meyer U. A novel thick film conductive type CO2 sensor. Sensors and Actuators B: Chemical, 1996, 34(1-3): 388–395
    [140] Oho T, Tonosaki T, Isomura K, et al. A CO2 sensor operating under high humidity. Journal of Electroanalytical Chemistry, 2002, 522(2): 173–178
    [141] Zhou R, Hiermann A, Schierbaum K D, et al. Detection of organic solvents with reliable chemical sensors based on cellulose derivatives. Sensors and Actuators B: Chemical, 1995, 25(1-3): 443–447
    [142] Radke S M, Alocilja E C. A microfabricated biosensor for detecting foodborne bioterrorism agents. IEEE Sensors Journal, 2005, 5(4): 744-750
    [143] Radke S M. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors Journal, 2004, 4(4): 434-440
    [144] Radke S M, Alocilja E C. A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosensors and Bioelectronics, 2005, 20(8): 1662–1667
    [145] Yang L, Li Y, Erf G F. Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Analytical Chemistry, 2004, 76(4): 1107–1113
    [146] Yang L J, Li Y B, Griffis C L, et al. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics, 2004, 19(10): 1139-1147
    [147] Yang L, Li Y B. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. Journal of Microbiological Methods, 2006, 64(1): 9-16
    [148] Varshney M, Li Y B. Double interdigitated array microelectrode-basedimpedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium. Talanta, 2008, 74(4): 518–525
    [149] World Health Organization, 2007. Tuberculosis facts-handout. Available at: http://www.who.int/tb/publications/2007/factsheet_2007.pdf.
    [150] Youmans G P. In:Tuberculosis, W.B. Saunders Company, Philadelphia London Toronto, 1979:
    [151] Hanna B A, EbrahimzadehA, Elliott L B, et al. Multicenter Evaluation of the BACTEC MGIT 960 ystem for Recovery of Mycobacteria. Journal of Clinical Microbiology, 1999, 37(3): 748-752
    [152] Badak F Z, Kiska D L, Setterquist, et al. Comparison of mycobacteria growth indicator tube with BACTEC 460 for detection and recovery of mycobacteria from clinical specimens. Journal of Clinical Microbiology, 1996, 34(9): 2236-2239
    [153] Woods G L, Fish G, Plaunt M, et al. Clinical evaluation of difco ESP culture system II for growth and detection of mycobacteria. Journal of Clinical Microbiology, 1997, 35(1):121-124
    [154] Elsom J, Lethem M I, Rees G D et al. Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell-microparticulate interaction in real-time. Biosensors and Bioelectronics, 2008, 23(8): 1259-1265
    [155] Kim N, Park I, Kim D K. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance precipitation sensor. Biosensors and Bioelectronics, 2007, 22(8): 1593-1599
    [156] Tu X, Xie Q, Jiang S, et al. Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole-carbon nanotubes composite film for amperometric detection of dopamine. Biosensors and Bioelectronics, 2007, 22(12): 2819-2826
    [157] Tombelli S, Mascini M, Turner A P F. Improved procedures for immobilization of oligonucleotides on gold-coated piezoelectric quartz crystals. Biosensors and Bioelectronics, 2002, 17(11-12): 929-936
    [158] Su X, Chew F T, Li S F Y. Determination of antibodies to Yersinia enterocolitica bacteria using a piezoelectric quartz crystal immunosensor. Biosensors and Bioelectronics, 2000, 15(11-12): 629-639
    [159] He F J, Zhang L D, Zhao J W. A TSM immunosensor for detection of M.tuberculosis with a new membrane material. Sensors and Actuators B: Chemical, 2002, 85(3): 284-290
    [160] He F J, Zhang L D, Rapid Diagnosis of M.tuberculosis Using a Piezoelectric Immunosensor. Analytical Sciences, 2002, 18(4): 397-402
    [161] Zhang J Z, Bao L L, Yao S Z, et al. A series piezoelectric quartz crystal microbial sensing technique used for biochemical oxygen demand assay in environmental monitoring. Microchemical Journal, 1999, 62(3): 405-412
    [162] Shen D Z, Kang Q, Liu Z C, et al. Application to the determination of urease activity in plant seeds. Analytica Chimica Acta, 1997, 340(1-3): 55-60
    [163] Bao L L, Tan H W, Duan Q, et al. A rapid method for determination of Staphylococcus aureus based on milk coagulation by using a series piezoelectric quartz crystal sensor. Analytica Chimica Acta, 1998, 369 (1-2): 139-145
    [164] Chang K S, Jang H D, Lee C F, et al. Series quartz crystal sensor for remote bacteria population monitoring in raw milk via the Internet. Biosensors and Bioelectronics, 2006, 21(8): 1581-1590
    [165] Yang X Y, Wei W Z, Yao, S Z. Determination of components in biological media by ion chromatography with series bulk acoustic wave detection. Analytical Chimica Acta, 1999, 378(1-3): 95-100
    [166] He F J, Zhang X Q, Zhou J D, et al. A new MSPQC system for rapid detection of pathogens in clinical samples. Journal of Microbiological Methods, 2006, 66(1): 56-62
    [167] Zhao J W, Zhu W J, He F J .Rapidly determining E.coli and P. aeruginosa by an eight channels bulk acoustic wave impedance physical biosensor. Sensors and Actuators B: Chemical, 2005, 107(1): 271-276
    [168] Pavlou A K, Magan N, Sharp D, et al. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosensors and Bioelectronics, 2000, 15(7-8): 333–342
    [169] Pavlou A K, Magan N, McNulty C, et al. Use of an electronic nose system for diagnoses of urinary tract infections. Biosensors and Bioelectronics, 2002, 17(10): 893–899
    [170] Pavlou A K, Magan N, Jones J M, et al. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosensors and Bioelectronics, 2004, 20(3): 538-544
    [171] Turner A P F, Magan N. Electronic noses and disease diagnostics. Nature Review Microbiology, 2004, 2(2): 161–166
    [172] Dingle J H, Weinzirl J. The Biology of the Tubercle Bacillus: II. The Asparagin and Glycerin Metabolism of the Tubercle Bacillus. Journal of Bacteriology, 1931,23(4): 281-299
    [173] Ott J L. Asparaginase from mycobacteria. Journal of Bacteriology, 1960, 80(3): 355-361
    [174] Brettschneider O, Thiele R, Faber R, et al. Experimental investigation and simulation of the chemical absorption in a packed column for the system NH3-CO2-H2S-NaOH-H2O. Separation and Purification Technology, 2004, 39(3): 139-159
    [175] James E Pelkie, Concannon P John, Manley David B. Product Distributions in the CO2-NH3-H2O system from liquid conductivity measurements. Industrial and Engineering Chemistry Research, 1992, 31(99): 2209-2215
    [176] Jayaram H N, Ramarkrishnan T, Vaidyanathan C S. L-asparaginases from Mycobacterium tuberculosis strains H37Rv and H37Ra. Archives of biochemistry and biophysics, 1968, 126(1): 165-174
    [177] Halpern Y S, Grossowicz N. Hydrolysis of amides by extracts from mycobacteria. Biochemistry Journal, 1957, 65(4): 716-720
    [178] Owen C A, Karlson J R, Zeller A G., et al. Enzymology of tubercle bacilli and other mycobacteria V: Influence of streptomycin and other basic substances on the diamine oxidase of various bacteria. Journal of Bacteriology, 1951, 62(1): 53-62
    [179] BioCyc Database Collection, 2007. Available at: http://biocyc.org/MTBRV/NEW-IMAGE?type=ENZYME&object=RV0211-MONOMER
    [180] Kurz F, Rumpf B, Maurer G. Vapor-liquid-solid equilibria in the system NH3-CO2-H2O from around 310 to 470 K: New experimental data and modeling. Fluid Phase Equilibria, 1995, 104(): 261-275
    [181] Holmes P E, Naaz M, Poling B E. Ion Concentrations in the CO2?NH3?H2O System from 13C NMR Spectroscopy. Industrial and Engineering Chemistry Research, 1998, 37(8): 3281-3287
    [182] Ren J L, He F J, Yi S L, et al. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2008, 24(3): 403–409
    [183] Mojieli J M. Biology of Mycobacteria and immuonbiology of tuberculosis. Publisher of Shanghai technology, 1953: 60-84
    [184] Marshak A. Difference in response of a virulent straint of the tubercle bacillus and its avirulent variant to metabolites and their genetic significance. Journal ofBacteriology, 1951, 61(1): 1-16
    [185] Lorian V, Khavari P, Gray N. Quantitative bacteriological analysis of sputum as a test of antibiotic efficacy. Applied Environmental Microbiology, 1967, 15(3): 564-565
    [186] Erbay A, Colpan A, Bodur H, et al. Evaluation of antibiotic use in a hospital with an antibiotic restriction policy. International Journal of Antimicrobial Agents, 2003, 21(4): 308-312
    [187] Burns J L, Saiman L, Whittier S, et al. Comparison of two commercial systems (Vitek and MicroScan-WalkAway) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagnostic Microbiology and Infectious Disease, 2001, 39(4): 257-260
    [188] Gail L, Woods M D, Chairholder Barbara A, et al. Suscepibility testing of Mycobacteria, Nocardiae and other Aerobic Actinomycetes; Approved Standard. Clinical and laboratory standards institute, 2003: 23
    [189] Calson L D C, Walls C K, Coyle M B. Standardized BACTEC method to measure clarithromycin susceptibility of Mycobacterium genavense. Journal of clinical microbiology, 1998, 36(3): 748–751
    [190] Kati A, Marja-Leena K. Susceptibility testing with the manual mycobacteria growth indicator tube (MGIT) and the MGIT 960 system provides rapid and reliable verification of multidrug-resistant tuberculosis. Journal of clinical microbiology, 2003, 41(3): 1235–1239
    [191] Scarparo C, Ricordi P, Ruggiero G, et al. Evaluation of the fully automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide, streptomycin, isoniazid, rifampin, and ethambutol and comparison with the radiometric BACTEC 460 TB method. Journal of Clinical Microbiology, 2004, 42(3): 1109–1114
    [192] Bergmann J S, Woods G L. Evaluation of the ESP culture system II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculous drugs. Journal of Clinical Microbiology, 1998, 36(10): 2940–2943
    [193] He F J, Zhang X Q, Liu Z H. A new sensor method for studying the effect of surfactants on the growth of Pseudomonas aeruginosa. Sensors and Actuators B: Chemical, 2006, 113(1): 428–434
    [194] He F J, Zhao J W, Zhang L D, Su X N. A rapid method for Determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor.Talanta, 2003, 59(5): 935–941
    [195] Si S H, Xu Y J, Nie L H, et al. Bulk acoustic wave sensor for investigating hemorheological characteristics of plasma and its coagulation. Journal of Biochemical Biophysicals Methods, 1996, 31(3-4): 135–143
    [196] Shen D Z, Xu Y J, Nie L H, et al. An impedance analyzer method to simulate the oscillating characteristics of a series piezoelectric sensor in oscillators with zero or non-zero phases. Talanta, 1994, 41(): 1993-1998
    [197] Chang B W, Hsu Y M, Chang H.C. An improving method for determination of Escherichia coli population based on multi-channel series piezoelectric quartz crystal system. Sensors and Actuators B: Chemical, 2000, 65(1-3): 105-107
    [198] Hofmann T, Schroder K, Zacheja J, Binder J. Fluid characterization using sensor elements based on interdigitated Electrodes. Sensors and Actuators: B Chemical, 1996, 37(1-2): 37-42
    [199] Olthuis W, Sprenkels A J, Bomer J G, et al. Planar interdigitated electrolyte conductivity sensors on an insulating substrate covered with Ta2O5. Sensors Actuators B, Chemical, 1997, 43(1-3): 211-216
    [200] Nester E W, Anderson D G, Roberts C E, et al. Microbiology. Boston Mass: McGraw-Hill, 2001: 90-94
    [201] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley & Sons, 2001:
    [202] Mamishev A V, Rajan K S, Yang F M, et al. Interdigital sensors and transducers. Proceedings of the IEEE, 2004, 92(5): 808-845
    [203] Hoffmann B, Gadau M, Paeschke M, et al. Conductivity measurements with miniaturized thin film metal electrodes, Transducer’95 Eurosensors IX. The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Stockholm, Sweden, 1995: 25-29
    [204] Sheiretov Y, Zahn M , Dielectrometry measurements of moisture dynamics in oil-impregnated pressboard, IEEE Transactions on Dielectrics an Electrical Insulation, 1995, 2(3): 329-351
    [205] http://www.cnn.com/2004/HEALTH/02/14/blood.infection.ap/
    [206] Nester E W, Anderson D G, Roberts C E, et al. Nester, Microbiology. Boston Mass: McGraw-Hill, 2001: 90
    [207] Durmaz G, Us T, Aydinli A, et al. Optimum detection times for bacteria and yeast species with the BACTEC 9120 aerobic blood culture system: evaluation for a 5-year period in a Turkish university hospital. Journal of ClinicalMicrobiolgy, 2003, 41(2): 819–821
    [208] Horvath L L, Hospenthal D R, Murray C K, et al. Detection of simulated Candidemia by the BACTEC 9240 system with plus aerobic/F and anaerobic/F blood culture bottles. Journa of Clinical Microbiolgy, 2003, 41(10): 4714–4717
    [209] Murray P R, Hollick G E, Jerris R C, et al. Multicenter comparison of BACTEC 9050 and BACTEC 9240 blood culture systems. Journal of Clinical Microbiolgy, 1998, 36(6): 1601–1603
    [210] Niebling G, Schlachter A. Qualitative and quantitative gas analysis with non-linear interdigital sensor arrays and artificial neural networks. Sensors Actuators B: Chemical, 1995, 27(1-3): 289-292
    [211] Tonosaki T, Oho T, Shiigi H,et al. Highly sensitive CO2 sensor with polymer composites operating at room temperature. Analytical Science, 2001, 17(): 249-252
    [212] Mamishev A V, Zahn M, Lesieutre B C, et al. Influence of Geometric Parameters on Characteristics of an Interdigital Dielectrometry Sensor. IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, 1996: 20-23
    [213] Mamisheva A V, Takahashib A R, Duc Y, et al.Parameter estimation in dielectrometry measurements. Journal of Electrostatics, 2002, 56(4): 465–492
    [214] Phillips I, Eykyn S, Laker M. Outbreak of hospital infection caused by contaminated autoclaved fluids. Lancet, 1972, 1(7763): 1258-1260
    [215] Eykyn S J, Gransden W R, Phillips I. The causative organisms of septicaemia and their epidemiology. Journal of Antimicrobial Chemotherapy, 1990, 25(): 41-58
    [216] Lawrence L H, Richard A K, Francis G. Electrode and electrolyte impedance in the detection of bacterial growth. IEEE Transaction Biomedical Engineering, 1981, 28(5): 403-415
    [217] Garro M S, Valdez G F D, Giori G S, Application of conductimetry for evaluation of lactic starter cultures in soymilk. Journal of Food Science, 2001, 67(3): 1175-1178
    [218]汪轩义,吴顺荫,张林.不锈钢钝化研究进展.材料导报,1999,13(3): 31-32
    [219] Chao S,Wrighton M S. Characterization of a solid-state polyaniline-based transistor: water vapor dependent characteristics of a device employing a poly(vinyl alcohol)/phosphoric acid solid-state electrolyte. Journal of Americal Chemical Society, 1987, 109(22): 6627-6631
    [220] Hutchison A S, Lewis T W, Moulton W E, et al. Development ofpolypyrrole-based electromechanical actuatous. Synthetic Metals, 2000, 113(1-2): 121-127
    [221] Clemens W, Fix W, Ficker J, et al. From polymer transistous toward printed electronics. Materal Research, 2004, 19(7): 1963-1973
    [222] Hong X, Tyson J C, Middlecoff J S, et al. Synthesis and Oxidative polymerization of semifluoroalkyl substituted thiophenes. Macromolecules, 1999, 32(13): 4232-4239
    [223] Berlot I, Labbe P, Moutet J C, Adsorption and electrochemical oxidation on carbon of micelle-forming cationic surfactants derived from pyrrole. Langmuir, 2000, 16(13): 5814-5819
    [224] Brown T M, Kim J S, Friend, R H, et al. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 1999, 75(12): 1679-1681
    [225] Dhanabalan A, Van Duren J K J, Van Hal P A, et al. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Advanced Functional Materials, 2001, 11(4): 255-262
    [226] Halik M, Klauk H, Zchieschang U, et al. Polymer gate dielectrics and conducting-polymer contacts for high-performance organic thin-film transistors. Advanced Materials, 2002, 14(23): 1712-1722
    [227] Xiao Y, Cui X, Hancock J M, et al. Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene)(PEDOT-MeOH) on multichannel neural probes. Sensors and Actuators B: Chemical, 2004, 99(2-3): 437-443
    [228] Gaylord, B S, Heeger, A J, Bazan, G C, DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single stranded DNA. Journal of American Chemical Society, 2003, 125(4): 896-900
    [229] Heeger A J, Semiconducting and metallic polymers the fourth generation of polymeric materials. Synthetic Metals, 2001, 125(1): 23-42
    [230] Xie Y, Dong S. Electrooxidation of ascorbic acid at the bis (4-pyridyl) disulfide modified gold electrode. Electroanalysis, 1994, 6(2): 119-123
    [231] Sixou B, Travers J P, Vautrin M, et al. Conductivity evolution of polypyrrole thin films with aging. Synthetic Metals, 1997, 84(1-3): 835-836
    [232] Guerion N, Ewen R J, et al. The fabrication and characterisation of a high sensitive polypyrrole sensor and its electrical response to amines of differingbasicity at high humidity. Synthetic Metal, 2002, 126(2-3): 301-310
    [233] Ren J L, He F J, Zhang L L, et al. A new B-PAn-P system for the detection of bacteria population. Sensors and Actuators B, Chemical, 2007, 125(2): 510–516
    [234] He F J, Ren J L, Liu Z H. The study and application of a new IDE–PQC sensor. Sensors and Actuators B: Chemical, 2007, 123(2): 1057–1063
    [235] An K H, Jeong S Y, Hwang H R, et al. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Advanced Materials, 2004, 16(12): 1005–1009
    [236] Jang J,Lim B. Facile fabrication of inorganic-polymer core-shell nanostructures by a vapor deposition polymerization. Angewandet Chemie-International Edition, 2003, 42(45): 5600–5603
    [237] Jyongsik J, Joonwon B. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sensors and Actuator B: Chemical, 2007, 122(1): 7-13
    [238]董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,2002:332-340
    [239] Schoch K F,Byers W A, Burkley L J. Deposition and characterization of conducting polymer thin films on insulating substrates. Synthetic Metals, 1995, 72(1): 13-23
    [240] Narta U K, Kanwar S S, Azmi W. Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Critical Reviews in Oncology/Hematology, 2007, 61(3): 208–221
    [241] Lanvers C, Pinheiro J P V, Hempel G, et al. Analytical validation of a microplate reader-based method for the therapeutic drug monitoring of L-asparaginase in human serum. Analytical Biochemisty, 2002, 309(1): 117–126
    [242] Cooney D, Handschumacher R. L-Asparaginase and L-asparagine metabolism. Annual Review of Pharmacology, 1970, 10(): 421-440
    [243] Ylikangas P, Mononen I. A fluorometric assay for L-asparaginase activity and monitoring of L-asparaginase therapy. Analytical Biochemistry, 2000, 280(12): 42-45
    [244] Tagami S, Maisuda K. An enzymatic method for the kinetic measurement of L-asparaginase activity and L-asparagine with an ammonia gas-sensing electrode. Chemical & Pharmaceutical Bulletin, 1990, 38(11): 153-155
    [245] Distasio J A, Niederman R A, Kafkewitz D D, et al. Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes. Journal of Biological Chemistry, 1976, 251(22): 6929-6933
    [246] Aghaiypour K, Wlodwer A, Lubkowski J. Structural basis for the activity andsubstrate specificity of E. chrysanthemi image-asparaginase. Biochemistry, 2001, 40(19): 5655-5664
    [247] Howard J B, Carpenter F H. L-Asparaginase from erwinia carotovora substrate specificity and enzymatic properties. Journal of biological chemistry, 1972, 247(4): 1020-1030
    [248] Boos J, Werber G, Ahlke E, et al. Monitoring of asparaginase activity and asparagines levels in children on different asparaginase preparations. European Journal of Cancer, 1996, 32(9): 1544-1550
    [249] Ju L, Wang J Q, Bachas L G. Biosensor for asparagine using a thermostable recombinant asparaginase from Archaeoglobus fulgidus. Analytical Chemistry, 2002, 74(14): 336-3341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700