深海热液口硫化物及沉积物微生物多样性及其与环境相互关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热液口生态系统自从1977年发现以来,被誉为“生命绿洲”。热液口生态系统的发现使人们对“生物圈”的认识有了进一步的了解。热液喷发物含有大量的化学物质和能量,由此孵育了耐高温、高压和分解有毒气体并且不依靠太阳能生活的大量生物。这个生态系统的环境特征被认为与地球生命形成早期的环境特征相似,因此研究热液生命系统中的嗜压、嗜热等极端微生物无疑具有重大的意义。
     古菌的氨氧化作用是在2005年以来发展的新课题。一直以来,科学家认为β-和γ-类型的细菌在氨氧化作用中占主导地位,古菌并不具备氨氧化的功能。但在2005年科学家通过基因组的研究发现古菌16S rRNA与类似细菌amoA的基因并排排列。同年分离得到了以氨为唯一能量来源的中温泉古菌,使得古菌能够进行氨氧化这一理论得到证实。随之而来的问题是,在其他生态系统中,是否也存在古菌的氨氧化作用?其多样性如何?不同生态系统古菌与细菌的氨氧化作用如何?哪些类型的古菌具有氧化氨的功能?
     本论文以2005年Atlantic/Alvin科学考察船中美联合取样得到的硫化物和同年中国“大洋一号”科学考察船取得的热液区沉积物样品为实验材料,对3个硫化物和15个沉积物样品进行氨氧化古菌的多样性及定量分析,并对2个硫化物和墨西哥湾沉积柱的甲烷菌进行多样性调查。
     对硫化物氨氧化古菌的多样性分析表明热液口硫化物的氨氧化古菌多样性并不丰富,但是序列比较特异。温度较低的样品的多样性比较丰富,温度较高的样品的多样性较低。所有3个样品的克隆子分成两个类型,定义为Chimney Group I和Chimney Group II。两个类型间序列具有明显的区别,平均相似性为80%。其中Chimney Group I与日本海的沉积物有较高的同源性(94%),而Chimney Group II与NCBI基因库的克隆子最高同源性也仅为89%。说明这个类型的克隆子序列比较新,有可能是存在于热液口硫化物中的特异氨氧化古菌。
     对硫化物的一个样品进行古菌16S rRNA的多样性分析表明氨氧化古菌并不属于MG1。16S rRNA来自嗜热泉古菌Desulfurooccales、Thermoproteales和Thermococcales。定量分析也表明氨氧化古菌amoA基因与古菌16S rRNA基因的拷贝数比例为6:94,这样的一个比例应该是比较容易的检测到,所以有可能这个样品中的氨氧化古菌与MG1并无关系。
     对热液口沉积物的古菌amoA基因及古菌16S rRNA的多样性分析表明,古菌amoA序列与深海来源的克隆子序列有比较高的同源性,表明热液口沉积物与深海沉积物的氨氧化古菌有相似起源。同样对16S rRNA多样性的分析表明,热液口沉积物的克隆子全部属于MG1,因此热液口沉积物的氨氧化古菌可能来自MG1这个广泛存在的类型。在热液口沉积物与西太平洋暖池区沉积物的比较中,两者有比较大区别,两者的OTUs类型完全独立,不互相包含。此外暖池区沉积物中部分克隆子来自Marine Bethic Group。说明热液口沉积物与其它沉积物的氨氧化古菌还是有比较大区别。
     通过Real-Time PCR定量分析所有沉积物样品(16个)中的古菌16S rRNA、AOA-amoA和AOB-amoA。结果表明古菌amoA基因在沉积物中的含量丰富,且与细菌amoA的含量相似或更高,表明在热液口沉积物中古菌氨氧化比细菌氨氧化的作用更重要。在热液口沉积物中的氨氧化古菌16S r RNA基因数量从4.598×10~4拷贝/克(干重)~7.027×10~7拷贝/克(干重),古菌amoA基因数量从4.597×10~4拷贝/克(干重)~6.701×10~6拷贝/克(干重),细菌amoA基因的数量从1.182×10~4拷贝/克(干重)~2.302×10~6拷贝/克(干重),氨氧化古菌与氨氧化细菌的数量比值在0.75~170之间。相关性分析表明古菌16S rRAN与古菌amoA基因存在相关性(r=0.652,n=16,P﹤0.01),古菌amoA拷贝数与有机物含量(包括有机氮、有机碳、有机质)、无机氮、总氮、及NH4+、NO3-、NO2-和硝化潜势、pH值有显著(P﹤0.01)或相关(P﹤0.05)关系,细菌amoA拷贝数与有机质含量、无机氮、总氮、及NH_4~+、NO_3~-、NO_2~-和硝化潜势、pH值有显著相关(P﹤0.01)或相关(P﹤0.05)关系。古菌amoA基因数量与细菌amoA基因数量间也存在显著相关(P﹤0.01,12个位点)或相关(P﹤0.05,4个位点)关系。
     此外本论文利用甲烷菌辅酶M的编码基因mcrA对热液口硫化物及墨西哥湾沉积物的甲烷菌群进行多样性调查,结果发现在这两个甲烷含量丰富的地区甲烷菌类型完全不同。在热液喷发成因的热液口地区,甲烷产生菌占主导地位;在热成因墨西哥湾地区,甲烷氧化菌占主导地位。
     本论文回答了前文提出的氨氧化古菌在洋脊热液区生态系统中的生态多样性及生态作用问题,无疑对古菌氨氧化作用的研究更进了一步,也必将推动古菌氨氧化作用的更深入的研究。同时本文以热液口样品为研究对象,对揭示热液口生态系统起到了一定的作用。
Hydrothermal vent was discovered in 1979, and its discovery improved our understanding about lives. Because the hydrothermal vent plume including kinds of chemicals and enormous energy, and a lot of life-form were brougnt up. Many of them are pizotrophic and hyperthermophilic and can decompound noxious gases. This mechianism is different with our understanding about lives on the world. Many scientists think the environments of hydrothermal vent are similar with that when the lives appeared first on the earth. The study towards the deep-sea microbes will be helpful to the understanding of the origin of life, the character of biodiversity and to the exploitation of microbial resources in deep sea. The metabolic and ecological study of life on hydrothermal vent environments will give some insights on evolution and adaptation mechanism of extremophiles.
     Ammonia-oxidizing archaea was dicovered in 2005. For a long time,β-andγ-proteobacteria were thought as the most important microbial, and studied as a amodel. But in 2005, scientists screened a fosmid clone contained a 16S rRNA gene of group 1.1b Crenarchaeota alongside genes encoding potential homologues of Bacterial AMO A and B subunits. The ultimate confirmation of AOA was achieved by cultivation of a mesophilic Crenarchaeota from a marine aquarium in Seattle, USA. This Crenarchaeota strain grows chemolithoautotrophically and uses ammonia as the sole energy source. It further raises the questions,for example, are there any AOA in other microbial system? What’s their diverisity and ubiquity? Which play more important role in ammonia oxidation, AOA or AOB? What’s kind of arhaea has the capability oxidizing annomina?
     Here, we studied 3 sulfide chimneies obtained by Atlantic/Alvin in the fall of 2005 from Juan de Fuca Ridge and 15 sediments from Middle Atlantic Ridge, East Pacific Ridge and India Ridge obtained by“Dayang number 1”in the same year. We reported here the diversity, ubiquity and quatitative of ammonia-oxidizing archaea in the 18 samples. 2 sulfide rocks and 1 sediment core were analyzed through mcrA gene survy.
     The results of diversity of AOA-amoA survey on sulfide from hydrothermal vent indicated the diversity and richness was not high, but some differential AOA-amoA sequences were derived. Low temperature sample had high richness and diversity, and high temperature has low richness and diversity. All the sequences from sulfide defined to 2 groups: Chinmney Group I and Chimney Group II. The 2 groups had observed differences and the average similarity between the 2 groups was 80%. Chimney Group I had the closest relationship with the sediment A-1 cluster from Janpan Sea (94%). The Chimney Group II had low similarity with sequences deposited in NCBI (≦89%) which indicating this group was a new cluster, and maybe the differential ammonia oxidizing arhaea habited in hydrothermal vent system.
     In order to derive the possible origin of the new defined cluster, an archaeal 16S rRNA library was constructed. The analysis indicated only hyperthermophilic Crenarchaeota including Desulfococcas, Thermoproteas, were detected, but no Marine Group I existed. Assuming that one AOA cell contains only one copy of amoA genes, the AOA occupies at least 6% of the archaeal community. This large proportion of AOA should be easily detected by 16S rRNA library analysis. So,we think the AOAs don’t related to MG1.
     Another results of diversity of AOA-amoA survey on sediments from hydrothermal vent field indicated the diversity and richness was high and the sequences obtained had closest relationship with deep-sea sequences, which indicated the similar origin of hydrothermal vent sediments and deep-sea sediments. The survey on archaeal 16S rRNA indicated all the sequences derived from hydrothermal vent sediments fall in MG1 group, which suggested ammonia-oxidizing archaea may belong to MG1. Comparison the sediments from hydrothermal vent and the sediment from West Pacific, the great difference was sequences didn’t fall in the same OTUs and some sequences from West Pacific fall in Marine Bethic Group, which suggested there are diffrences between hydrothermal vent sediments and other kind of sediments.
     Fluorescence PCR used to quantitative the quantity of archaeal 16S rRNA, AOA-amoA and AOB-amoA gene. The results indicted a high value of AOA-amoA genes existed in the hydrothermal vent sediments and AOB-amoA genes were same or many times lower than AOA-amoA genes, which suggested AOA play important role in the environments of hydrothermal vent sediments. The quantity of archaeal 16S rRNA was between 4.598×10~4copies/dry g~7.027×10~7copies/dry g, AOA-amoA gene quantity was between 4.597×10~4 copies/dry g~6.701×10~6 copies/dry g , and AOB-amoA genes quantity was between 1.182×10~4 copies/dry g~2.302×10~6 copies/dry g. The ratios of AOA-amoA to AOB-amoA was between 0.75~170. Correlation analysis indicated there were significant correlation bween arhcaeal 16S rRNA and AOA-amoA gene (r=0.652,n=16,P﹤0.01). Significant (P﹤0.01) or positive correlations(P﹤0.05)were found between archaeal amoA gene copies number and organic matters (organic carbon and organic nitrogen), mineral nitrogen, total nitrogen, concentrations of NH_4~+、NO_3~-、NO_2~-, PNR, pH and similar correlations were found between bacterial amoA gene copies number and chemical or PNR except no positive correlations were found between organic carbon and nitrogen. Significant correlation between archaeal amoA gene copies number and bacterial amoA gene copies number was found from 12 sites, and positive correlation found from the other 4 sites.
     Inadditional, we investigated the microbial related to methano by constructing mcrA gene clone libraries of sulfide and Mexico sediments. The results indicated methanogenic archaea were predominant in sulfide, which surrounded by high concentration of H2 and CO2, and methano-oxidizing archaea (MOA) were predominant in Mexico Gulf sediment.
     Our study gave some explanations of the questions about ammonia-oxidizing arhaea, which will improve the study on this metabolize, and hydrothermal vent chimneys and sediments were used in the thesis, which is helpful for the discovery of this microbial system.
引文
[1]. Von Damm, K. L. 1995. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids, p. 222-247. In S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson (ed.), Seafloor Hydrothermal Systems.Physical, Chemical, Biological and Geological Interactions. American Geophysical Union, Washington DC.
    [2]. Miller, A. R., E. T. Densmore, and R. Degens. 1966. Hot brines and recent iron deposits in deeps of the Red Sea. Geochimca et Cosmochimca Acta:341-359.
    [3]. Weiss, R. F., P. Lonsdale, and J. E. Lupton. 1977. Hydrothermal plumes in the Galapagos rift. Nature: 600-603.
    [4]. Spiess, F. N., K. C. Macdonald, and S. Miller. 1980. East Pacific Rise : Hot springs and geophysical experiments. Science:1421-1433.
    [5]. Weiss, R. F., P. Lonsdale, and J. E. Lupton. 1977. Hydrothermal plumes in the Galapagos rift. Nature: 600-603.
    [6]. Lonsdale, P., and K. Becker. 1985. Hydrothermal plumes , hot springs , and convective heat flow in the southern trough of Guaymas Basin. Earth and Planetary Science Letters:211-225.
    [7]. Bach, W., N. R. Banerjee, and H. J. Dick. 2002,10.1029/2001GC0002796. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°16′E. Geochemistry , Geophysics , Geosystems.
    [8]. Edmonds, H. N., P. J. Michael, and Baker,E.T. 2003. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature 421:252-256.
    [9]. Kelley, D. S., J. A. Karson, and D. K. Blackman. 2001. An off-axis hydrothermal vent field nears the Mid2Atlantic Ridge at 30°N. Nature:145-149.
    [10]. De Ronde, C. E., E. T. Baker, and G. J. Massoth. 2001. Intra-oceanic subduction-related hydrothermal venting. Earth and Planetary Science Letters 193:359-369.
    [11]. Baker, E. T., C. R. German, and H. Elderfield. 1995. Hydrothermal plumes oversp reading center axes: Global distributions and geological inferences. Washington DC, American Geophysical Union.
    [12]. Lup ton, J. E. 1995. Hydrothermal p lumes: Near and far field. American Geophysical Union, Washington DC: GeophysicalMonograph 91.
    [13]. McDuff, R. E. 1995. Physical dynamics of deep-sea hydrothermal plumes. American Geophysical Union, Washington DC: GeophysicalMonograph 91.
    [14]. Lup ton, J. E., J. R. Delaney, and H. P. Johnson. 1985. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature:621-623.
    [15]. Walker, S. L., and E. T. Baker. 1998. Particle-size distributions within hydrothermal p lumes over the Juan de Fuca Ridge. M arine Geology:217-226.
    [16]. Baker, E. T., J. W. Lavelle, and R. A. Feely. 1989. Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. Journal of Geophysical Research:9237-9250.
    [17]. Baker,E.T., G. J. Massoth, and R. A. Feely. 1987. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge.Nature:149-151.
    [18]. Nojiri, Y., J. Ishibashi, and T. Kawai. 1989. Hydrothermal p lumes along the North FijiBasinsp reading axis. Nature:667-670.
    [19]. Chadwick J r, W. W., R. W. Embley, and C. G. Fox. 1991. Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987. Nature:416-418.
    [20]. Chadwick J r, W. W., R. W. Embley, and C. G. Fox. 1995. SeaBeam depth changes associated with recent lava flows, CoAxial segment, Juan de Fuca Ridge: Evidence for multip le erup tions between1981-1993. Oceanographic L iterature Review 8:655-656.
    [21]. Vent program. 1995. Investigating theDistribution and Evolution of Hydrothermal Plumes. http://www.pmel.noaa.gov/vents/plumestudies.htm.
    [22]. Edwards, K. J., W. Bach, and T. M. McCollom. 2005. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor. TRENDS Microbiol 13:449-456.
    [23]. Holden, J. F., and M. W. W. Adams. 2003. Microbe-metal interactions in marine hydrothermal environments. Curr Opin Chem Biol:160-165.
    [24]. Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth Sci Rev:92-121.
    [25]. Rasmussen, B. 2000. Filamentous microfossils in a 3235 million year-old volcanogenic massive sulphide deposit. Nature: 676-679.
    [26]. Weber, K. A., L. A. Achenbach, and J. D. Coates. 2006. Microorganisms pumpingiron: anaerobic microbial iron oxidation and reduction. Nature:752-764.
    [27]. Alt, J. C. 1988. Hydrothermal oxide and nontronite deposits on seamounts in the eastern pacific. Mar Geol:227-239.
    [28]. Emerson, D., and C. I. Moyer. 2002. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol:3085-3093.
    [29]. Juniper, S. K., and B. M. Tebo. 1995. Microbe-metal interactions and mineral deposition at hydrothermal vents. In: Karl D M, ed. CRC Press, Boca Raton.
    [30]. Kennedy, C. B., S. D. Scott, and F. G. Ferris. 2003. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean. FEMS Microbiol Ecol:247-254.
    [31]. Kelley, D. S., J. A. Baross, and J. R. Delaney. 2002. Volcanoes, fluids, and life at a mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci:385-491.
    [32]. Luther III, G. W., T. F. Rozan, and M. Taillefert. 2001. Chemical speciation drives hydrothermal vent ecology. Nature:813-816.
    [33]. Kasama, T., and T. Murakami. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chem Geol:117-128.
    [34]. Labrenz, M., G. K. Druschel, and T. Thomsen-Ebert. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing becteria. Science:1744-1747.
    [35]. Taylor, C. D., and C. O. Wirsen. 1997. Microbiology and ecology of filamentous sulfur formation. Science:1483-1485.
    [36]. Childress, J. J., and C. R. Fisher. 1992. The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology, an Annual Review:337 - 441.
    [37]. C.L., V. D. 1988. Do " eyeless" shrimp see the light of glowing deep2sea vents. Oceanus, :47 - 52.
    [38]. Cavanaugh, C. M., C. O. Wirsen, and H. W. Jannasch. 1992. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia:Mytilidae) from the Mid-AtlanticRidge. Applied and EnvironmentalMicrobiology 58:3799- 3803.
    [39]. Minic, Z., and G. Herve. 2004. Biochemical and enzymological aspects of the symbiosis between the deep2sea tubeworm Riftia pachyp tila and its bacterial endosymbiont. Eur J Biochem:3093 - 3102.
    [40]. O'Connell, S. 1999. Hydrothermal Vent Chemistry. http://soconnell.web.wesleyan.edu/ees106/lecture_notes/vents_lecture/index.htm. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 7663-7668.
    [41]. Fustec, A., D. Desbruyères, and S. K. Juniper. 1987. Deep-sea hydrothermal vent communities at 13°N on the East Pacific Rise :microdistribution and temporal variations Biol Oceanogr:121 - 164.
    [42].和致中,彭谦, and张无敌. 1999.高温菌的细胞壁和细胞被膜.微生物学通报26:363 - 364.
    [43]. Banchetti,R., D. Marsili, and L. Galleni. 2004. Ecological modelling: from the biosphere to the everyday data gathering; filling the gap. Riv Biol 97:469-82.
    [44]. Hourdez, S., and R. E. Weber. 2005. Molecular and functional adaptations in deep-sea hemoglobins. J Inorg Biochem 99:130-141.
    [45]. Jannasch, H. W., and C. O. Wirsen. 1983. The biochemical versatility of chemosynthetic bacteria at deep-sea hydrothermal vents [J]. . Bull Biol Soc Wash:325-334.
    [46]. Narita, S., S. Matsuyama, and H. Tokuda. 2004. Lipoprotein trafficking in Escherichia coli. Arch Microbiol 182:1-6.
    [47]. Nichols, C. A., J. Guezennec, and J. P. Bowman. 2005. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol (NY) 7:253-271.
    [48]. Reysenbach, A. L., and E. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:1077-1082.
    [49]. Brock, T. D. 1975. Effect of water potential on growth and iron oxidation by Thiobacillus ferrooxidans. Appl Microbiol 29:495-501.
    [50]. Small, J., D. R. Call, and F. J. Brockman. 2001. Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 67:4708 - 4716.
    [51]. Kato, C., and Y. Nogi. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol. Ecol.:223-230.
    [52]. Kato, C., L. Li, Y. Nakaumura, Y. Nogi, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol:1510-1513.
    [53]. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochimica et Biophysica Acta:367-381.
    [54]. Bartlett, D. H., C. Kato, and K. Horikoshi. 1995. High pressure influences on gene and protein expression. Res Microbiol 146:697-706.
    [55]. Abe, F., C. Kato, and K. Horikoshi. 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447-453.
    [56]. Frankenberg, R. J., M. Andersson, and D. S. Clark. 2003. Effect of temperature and pressure on the proteolytic specificity of the recombinant 20S proteasome from Methanococcus jannaschii. Extremophiles 7:353-360.
    [57]. Bartlett, D. H., and T. J. Welch. 1995. ompH gene expression is regulated by multiple environmental cues in addition to high pressure in the deep-sea bacterium Photobacterium species strain SS9. J Bacteriol 177:1008-1016.
    [58]. Kato, C., M. Smorawinska, L. Li, and K. Horikoshi. 1997. Comparison of the gene expression of aspartate beta-D-semialdehyde dehydrogenase at elevated hydrostatic pressure in deep-sea bacteria. J Biochem 121:717-723.
    [59]. Nakasone, K., C. Kato, and K. Horikoshi. 1996. Molecular cloning of the gene encoding RNA polymerase alpha subunit from deep-sea barophilic bacterium. Biochim Biophys Acta 1308:107-110.
    [60]. Kato, C., M. Smorawinska, T. Sato, and K. Horikoshi. 1996. Analysis of a pressure-regulated operon from the barophilic bacterium strain DB6705. Biosci Biotechnol Biochem.:166-168.
    [61]. Jannasch, H. W., and M. J. Mottl. 1985. Geomicrobiology of Deep-Sea Hydrothermal Vents. Science 229:717-725.
    [62]. Felbeck, H., J. J. Childress, and G. N. Somero. 1981. Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature:291-293.
    [63]. Cavanaugh, C. M., S. L. Gardiner, M. L. Jones, H. W. Jannasch, and J. B. Waterbury. 1981. Prokaryotic Cells in the Hydrothermal Vent Tube Worm Riftia pachyptila Jones: Possible Chemoautotrophic Symbionts. Science 213:340-342.
    [64]. Van Dover, C. L., and B. Fry. 1989. Stable isotopic compositions of hydrothermal vent organisms. Mar. Biol. :257-263.
    [65]. Van Dover, C. L., S. E. Humphris, D. Fornari, C. M. Cavanaugh, R. Collier, S. K. Goffredi, J. Hashimoto, M. D. Lilley, A. L. Reysenbach, T. M. Shank, K. L. Von Damm, A. Banta, R. M. Gallant, D. Gotz, D. Green, J. Hall, T. L. Harmer, L. A. Hurtado, P. Johnson, Z. P. McKiness, C. Meredith, E. Olson, I. L. Pan, M. Turnipseed, Y. Won, C. R. Young, 3rd, and R. C. Vrijenhoek. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818-23.
    [66]. Preuss, A., R. Schauder, G. Fuchs, and W. Stichler. 1989. . Carbon isotope fractionation by autotrophic bacteria with 3 different CO2 fixation pathways. Z. Naturforsch. C:397-402.
    [67]. Sirevag, R., B. B. Buchanan, J. A. Berry, and J. H. Troughton. 1977. Mechanisms of CO2 fixation in bacterial photosynthesis studied by carbon isotope fractionation technique. . Arch. Microbiol. :35–38.
    [68]. Beh, M., G. Strauss, R. Huber, K. O. Stetter, G. Fuchs. . 1993. Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus. Arch. Microbiol. :306-311.
    [69]. Eisen, J. A., K. E. Nelson, I. T. Paulsen, J. F. Heidelberg, M. Wu, R. J., R. D. Dodson, M. L. Gwinn, W. C. Nelson, D. H. Haft, E. K. Hickey, J. D., A. S. D. Peterson, J. L. Kolonay, F. Yang, I. Holt, L. A. Umayam, T., M. B. Mason, T. P. Shea, D. Parksey, W. C. Nierman, T. V. Feldblyum,, M. B. C. C. L. Hansen, D. Radune, J. Vamathevan, H. Khouri,, T. M. G. O. White, K. A. Ketchum, J. C. Venter, H. Tettelin, D. A., and C. M. F. Bryant. 2002. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc. Natl. Acad. Sci. :9509-9514.
    [70]. Evans, M. C. W., B. B. Buchanan, and D. I. Arnon. 1966. A new ferredoxindependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. :928-934.
    [71]. Fuchs, G., E. Stupperich, and G. Eden. 1980. Autotrophic CO2 fixation in Chlorobium limicola—evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. :64–71.
    [72]. Ivanovsky, R. N., N. V. Sintsov, and E. N. Kondratieva. 1980. ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma Thiosulfatophilum. Arch. Microbiol. :239–241.
    [73]. Schauder, R., F. Widdel, and G. Fuchs. . 1987. Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch. Microbiol.:218–225.
    [74]. Shiba, H., T. Kawasumi, Y. Igarashi, T. Kodama, and Y. Minoda. 1985. The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus. Arch. Microbiol.:198–203.
    [75]. Fuchs, G. 1989. Alternate pathways of autotrophic CO2 fixation. Springer-Verlag, New York.
    [76]. Antranikian, G., C. Herzberg, and G. Gottschalk. . 1982. Characterization of ATP citrate lyase from Chlorobium limicola. J. Bacteriol. :1284-1287.
    [77]. Campbell, B. J., J. L. Stein, and S. C. Cary. . 2003. Evidence of chemolithoautotropy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl. Environ. Microbiol. :5070-5078.
    [78]. Campbell, B. J., C. Jeanthon, J. E. Kostka, G. W. Luther, and S. C. Cary. 2001. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl. Environ. Microbiol. :4572-4572.
    [79]. Wirsen, C. O., S. M. Sievert, C. M. Cavanaugh, S. J. Molyneaux, A. Ahmad,, and E. F. D. L. T. Taylor, and C. D. Taylor. . 2002. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. :316-325.
    [80]. Whittenbury, R., Dalton, H. 2000,256-262. The methylotrophic bacteria. Springer-Verlag kg, Berlin.
    [81]. Hanson, R. S., Hanson, T. 1996. Methanotrophic bacteria. Microbiol reviews:439-471.
    [82]. Orphan, V. J., C. H. House, K. U. Hinrichs, K. D. McKeegan, and E. F. DeLong. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484-7.
    [83]. Brazelton, W. J., M. O. Schrenk, D. S. Kelley, and J. A. Baross. 2006. Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72:6257-70.
    [84]. Jannasch, H. W., and C. D. Taylor. 1984. Deep-sea microbiology. Annu Rev Microbiol 38:487-514.
    [85].肖天, and陈马马. 1998.深海热液活动区的微生物作用.海洋科学6.
    [86]. Jeanthon, C., S. L'Haridon, A. L. Reysenbach, E. Corre, M. Vernet, P. Messner, U. B. Sleytr, and D. Prieur. 1999. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49 Pt 2:583-9.
    [87]. Jeanthon, C., S. L'Haridon, A. L. Reysenbach, M. Vernet, P. Messner, U. B. Sleytr, and D. Prieur. 1998. Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophicmethanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48 Pt 3:913-9.
    [88]. Jones, W. J., M. J. B. Paynter, and R. Gupta. 1983a. Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol:91-97.
    [90]. Summit, M. 2000. Ecology, physiology, and phylogeny of subseafloor thermophiles from mid-ocean ridge environments. University of Washington, Seattle.
    [91]. Boetius, A., K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B. B. Jorgensen, U. Witte, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-6.
    [92]. Amann, R. I., Sludwig, W, Schleifer, K H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev.:143-169.
    [93]. Coolen, M. J., and J. Overmann. 1998. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64:4513-21.
    [94]. Girguis, P. R., A. E. Cozen, and E. F. DeLong. 2005. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725-33.
    [95]. Hesselsoe, M., K. K. Brandt, and J. Sorensen. 2001. Quantification of ammonia-oxidizing bacteria in soil usingmicrocolony technique combined with fluorescence in situ hybridization (MCFU2FISH ). FEMS Microbiology Ecology:87-95.
    [96]. Nauhaus, K., A. Boetius, M. Kruger, and F. Widdel. . 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol.:296–305.
    [97]. Nauhaus, K., T. Treude, A. Boetius, and M. Kruger. 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. :98–106.
    [98]. Cowen, J. P., M. A. Bertram, E. T. Baker, R. A. Feely, G. J. Massoth, and M. Summit. 1998. Geomicrobial transformation of manganese in Gorda Ridge event plumes. Deep-Sea Res II 45:2713-37.
    [99]. Lilley, M. D., D. A. Butterfield, E. J. Olson, J. E. Lupton, S. A. Macko, and R. E. Mcduff. 1993. Anomalous CH4 and NH4+concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45-7.
    [100]. Cowen, J. P., X. Wen, and B. N. Popp. 2002. Methane in aging hydrothermal plumes. Geochimica et Cosmochimica Acta 66:3563-3571.
    [101]. Hatzenpichler, R., E. V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims, and M. Wagner. 2008. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A 105:2134–2139.
    [102]. Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543-6.
    [103]. Torre, J. R. d. l., C. B. Walker, A. E. Ingalls, M. K?nneke, and D. A. Stahl. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810-8.
    [104]. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry foranalyzing mixed microbial populations. Appl Environ Microbiol 56:1919-25.
    [105].李牧尧. 1994.荧光原位杂交(FISH)技术.国外医学(遗传学分册):8-13
    [106].郑文岭. 1994.染色体荧光原位杂交技术.中华医学杂志74 511-513
    [107].周德庆. 1993.微生物学教程.高等教育出版社,北京.
    [108].柳承璋,宋林生, and吴青. 2002分子生物学技术在海洋微生物多样性研究中的应用.海洋科学26:27 - 30.
    [109]. Bernhard, A. E., and K. G. Field. 2000. Identification of nonpoint sources of fecal pollution in coastal waters by using host - specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66:1587 - 1594.
    [110]. Derakshani, M., T. Lukow, and W. Liesack. 2001. Novel bacterial lineages at the (sub) division level as detected by signature nucleotide - targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol 67:623 - 631.
    [111]. González, J. M., SimóR, and R. Massana. 2000 Bacterial community structure associated with a dimethylsulfonio - propionate - producing north atlantic algal bloom. Appl Environ Microbiol 66:4237 - 4246.
    [112]. Horz, H. P., J. H. Rotthauwe, and T. Lukow. 2000. Identification of major subgroups of ammonia - oxidizing bacteria in environmental samples by T- RFLP analysis of amoA PCR products. :197 - 204.
    [113]. Li, X., and L. Qin. 2005. Metagenomics2based drug discovery and marine microbial diversity. Trends Biotechnol 23:1539 - 543.
    [114]. Venter, J. C., K. Remington, and J. F. Heidelberg. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66 - 74.
    [115]. Marshall, A., and J. Hodgson. 1998. DNA chips: An array of possibilities. Nature Biotechnology:731.
    [116]. Ramsay, R. 1998. DNA chips: State-of-the-art. Nature Biotechnology:40.
    [117]. Zimmermann, K., and J. W. Mannhalter. 1996. Technical aspect of quantitative competitive PCR. Bio Techniques:268-279.
    [118]. Higuchi, R., and C. Fockler. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11:1026-1030.
    [119]. Schnell, S., and C. Mendoza. 1997. Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction(QC-PCR). Theor Biol 84:433-440.
    [120]. DNA/RNA Real-Time Quantitative PCR-Rev.
    [121]. Fitch, W. M., and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155:279-84.
    [122]. Hall, B. G. 2005. Comparison of the Accuracies of Several Phylogenetic Methods Using Protein and DNA Sequences. Mol Biol Evol:792-802
    [123]. Deni, J., and M. J. Penninckx. 1999. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil. Appl Environ Microbiol 65:4008-13.
    [124]. Fukumoto, Y., K. Suzuki, T. Osada, K. Kuroda, D. Hanajima, T. Yasuda, and K. Haga. 2006. Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria. Environ Sci Technol 40:6787-91.
    [125]. Ida, T., M. Satoh, R. Yabe, R. Takahashi, and T. Tokuyama. 2004. Identification of genusNitrosovibrio, ammonia-oxidizing bacteria, by comparison of N-terminal amino acid sequences of phosphoglycerate kinase. J Biosci Bioeng 98:380-3.
    [126]. Kudela, R. M., and R. C. Dugdale. 2000. Nutrient regulation of phytoplankton productivity in Monterey Bay, California. Deep-Sea Res. II 1023-1053.
    [127]. Qin, Y. Y., D. T. Li, and H. Yang. 2007. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol Lett 268:126-34.
    [128]. Sahan, E., and G. Muyzer. 2008. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol.
    [129]. Strous, M., J. G. Kuenen, and M. S. Jetten. 1999. Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248-50.
    [130]. Buckley, D. H., J. R. Graber, and T. M. Schmidt. 1998. Phylogenetic analysis of nonthermophilic members of the kingdom crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333-9.
    [131]. Francis, C. A., K. J. Roberts, J. M. Beman, A. E. Santoro, and B. B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683-8.
    [132]. Kolb, S., C. Knief, P. F. Dunfield, and R. Conrad. 2005. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. :1150–1161.
    [133]. Kimura, H., J. Ishibashi, H. Masuda, K. Kato, and S. Hanada. 2007. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl Environ Microbiol 73:2110-7.
    [134]. Okano, Y., K. R. Hristova, C. M. Leutenegger, L. E. Jackson, R. F. Denison, B. Gebreyesus, D. Lebauer, and K. M. Scow. 2004. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008-16.
    [135]. Phillips, C. J., E. A. Paul, and J. I. Prosser. 2000. Quantitative analysis of ammonia oxidising bacteria using competitive PCR. FEMS Microbiol Ecol 32:167-175.
    [136]. Sandaa, R. A., O. Enger, and V. Torsvik. 1999. Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl Environ Microbiol 65:3293-7.
    [137]. Mendum, T. A., and P. R. Hirsch. 2002. Changes in the population structure of b-group autotrophic ammonia-oxidising bacteria in arable soils in response to agricultural practice. Soil Biol. Biochem. :1479–1485.
    [138]. Schleper, C., G. Jurgens, and M. Jonuscheit. 2005. Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479-88.
    [139]. Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y. H. Rogers, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66-74.
    [140]. He, J. Z., J. P. Shen, L. M. Zhang, Y. G. Zhu, Y. M. Zheng, M. G. Xu, and H. Di. 2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria andammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol 9:2364-74.
    [141]. Park, H. D., G. F. Wells, H. Bae, C. S. Criddle, and C. A. Francis. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643-7.
    [142]. Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, and C. Schleper. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-9.
    [143]. Wuchter, C., B. Abbas, M. J. Coolen, L. Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, and J. S. Sinninghe Damste. 2006. Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317-22.
    [144]. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685-9.
    [145]. R?lleke, S., A. Witte, G. Wanner, and W. Lubitz. 1998. Medieval wall painting-a habitat for archaea: identification of archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding 16S rRNA in a medieval wall painting. Int Biodeter Biodegr:85-92.
    [146]. ?vre?s, L., S. Jensen, F. L. Daae, and V. Torsvik. 1998. Microbial community changes in a perturbed agricultural soil investigated by molecular and physiological approaches. Appl. Environ. Microbiol. :2739-2842.
    [147]. Treusch, A. H., S. Leininger, A. Kletzin, S. C. Schuster, H. P. Klenk, and C. Schleper. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985-95.
    [148]. Stephen, J. R., G. A. Kowalchuk, M. A. V. Bruns, A. E. McCaig, C. J. Phillips, T. M. Embley, and J. I. Prosser. 1998. Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958-65.
    [149]. Hales, B. A., C. Edwards, D. A. Ritchie, G. Hall, R. W. Pickup, and J. R. Saunders. 1996. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675.
    [150]. Baker, E. T. 1996. Geological indexes of hydrothermal venting. Journal of Geophysical Research 101:13741-13751.
    [151]. Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704-12.
    [152]. Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316-22.
    [153]. Wang, P., F. Wang, M. Xu, and X. Xiao. 2004. Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool. FEMS Microbiology Ecology 47:77-84.
    [154]. Wang, P., X. Xiao, and F. Wang. 2005. Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool. Extremophiles 9:209-17.
    [155]. Wang, P., X. Xiao, and F. Wang. 2005. Phylogenetic diversity of archaea in deep-sea sediments of west pacific warm pool. Extremophiles:209-17.
    [156]. Laurie, A. D., and G. L. Johes. 2000. Quantification of phnAc and nahAc in contaminated New Zealand Soils by competitive PCR. Appl. Environ. Microbiol. :1814-1817.
    [157]. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150-63.
    [158]. Schloss, P. D., and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501-6.
    [159]. Good, I. L. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40:237-64.
    [160]. Ochsenreiter, T., D. Selezi, A. Quaiser, L. Bonch-Osmolovskaya, and C. Schleper. 2003. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787-97.
    [161]. Han, J. I., and J. D. Semrau. 2004. Quantification of gene expression in methanotrophs by competitive reverse transcription-polymerase chain reaction. Environ Microbiol 6:388-99.
    [162]. Johnsen, K., O. Enger, C. S. Jacobsen, L. Thirup, and V. Torsvik. 1999. Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol 65:1786-8.
    [163]. Nakagawa, S., K. Takai, F. Inagaki, H. Chiba, J. Ishibashi, S. Kataoka, H. Hirayama, T. Nunoura, K. Horikoshi, and Y. Sako. 2005. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141-55.
    [164]. Brugger, K., L. Chen, M. Stark, A. Zibat, P. Redder, A. Ruepp, M. Awayez, Q. She, R. A. Garrett, and H. P. Klenk. 2007. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea 2:127-35.
    [165].张春明等. 1991.海洋检测规范, vol. 3.海洋出版社出版.
    [166]. Kurola, J., M. Salkinoja-Salonen, T. Aarnio, J. Hultman, and M. Romantschuk. 2005. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil. FEMS Microbiol Lett 250:33-8.
    [167]. Mincer, T. J., M. J. Church, L. T. Taylor, C. Preston, D. M. Karl, and E. F. DeLong. 2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162-75.
    [168]. Lam, P., M. M. Jensen, G. Lavik, D. F. McGinnis, B. Muller, C. J. Schubert, R. Amann, B. Thamdrup, and M. M. Kuypers. 2007. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc Natl Acad Sci U S A 104:7104-9.
    [169]. Santoro, A. E., Franics,C.A., de Sieyes,N.R. and Boehm,A.B. 2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ. Microbiol.(In press).
    [170]. Beman, J. M., K. J. Roberts, L. Wegley, F. Rohwer, and C. A. Francis. 2007. Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. Appl Environ Microbiol 73:5642-7.
    [171]. Urakawa, H., Y. Tajima, Y. Numata, and S. Tsuneda. 2008. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltrationsystems. Appl Environ Microbiol 74:894-900.
    [172]. Nakagawa, T., K. Mori, C. Kato, R. Takahashi, and T. Tokuyama. 2007. Distribution of Cold-Adapted Ammonia-Oxidizing Microorganisms in the Deep-Ocean of the Northeastern Japan Sea. Microbes Environ. 22:365-372.
    [173]. David, C. G., and D. Bruno. 2007. The archaebacterial communities in Antarctic bathypelagic sediments. Deep-Sea Research II 1682-1690.
    [174]. Sander, K. H., R. H. Ralf, W. J. J. v. d. W. Paul, J. F. Larry, and J. D. v. Elsas. 2007. Use of 16S rRNA Gene Based Clone Libraries to Assess Microbial Communities Potentially Involved in Anaerobic Methane Oxidation in a Mediterranean Cold Seep. Microb. Ecol. 53:384-398.
    [175]. Brandt, A., A. J. Gooday, S. N. Brandao, S. Brix, W. Brokeland, T. Cedhagen, M. Choudhury, N. Cornelius, B. Danis, I. De Mesel, R. J. Diaz, D. C. Gillan, B. Ebbe, J. A. Howe, D. Janussen, S. Kaiser, K. Linse, M. Malyutina, J. Pawlowski, M. Raupach, and A. Vanreusel. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307-11.
    [176]. Arakawa, S., T. Sato, R. Sato, J. Zhang, T. Gamo, U. Tsunogai, A. Hirota, Y. Yoshida, R. Usami, F. Inagaki, and C. Kato. 2006. Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles 10:311-9.
    [177]. Inagaki, F., T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, M. Suzuki, K. Takai, M. Delwiche, F. S. Colwell, K. H. Nealson, K. Horikoshi, S. D'Hondt, and B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci U S A 103:2815-20.
    [178]. Inagaki, F., M. Suzuki, K. Takai, H. Oida, T. Sakamoto, K. Aoki, K. H. Nealson, and K. Horikoshi. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of okhotsk. Appl Environ Microbiol 69:7224-35.
    [179]. Vetriani, C., H. W. Jannasch, B. J. MacGregor, D. A. Stahl, and A. L. Reysenbach. 1999. Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375-84.
    [180]. Chao, A. 1984. Non-parametric estimation of the nmuber of classes in a population. Scand.J.Stat.:265-270.
    [181]. Chao, A., and S. M. Lee. 1992. Estimationg the number of classes via sample coverage. J Am Stat Assoc:210-217.
    [182]. Nolling, J., A. Elfner, J. R. Palmer, V. J. Steigerwald, T. D. Pihl, J. A. Lake, and J. N. Reeve. 1996. Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46:1170-3.
    [183]. Slesarev, A. I., K. V. Mezhevaya, K. S. Makarova, N. N. Polushin, O. V. Shcherbinina, V. V. Shakhova, G. I. Belova, L. Aravind, D. A. Natale, I. B. Rogozin, R. L. Tatusov, Y. I. Wolf, K. O. Stetter, A. G. Malykh, E. V. Koonin, and S. A. Kozyavkin. 2002. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci U S A 99:4644-9.
    [184]. Klein, A., R. Allmansberger, M. Bokranz, S. Knaub, B. Muller, and E. Muth. 1988. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenicbacteria. Mol Gen Genet 213:409-20.
    [185]. Metje, M., and P. Frenzel. 2005. Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Appl Environ Microbiol 71:8191-200.
    [186]. Bult, C. J., O. White, G. J. Olsen, L. Zhou, R. D. Fleischmann, G. G. Sutton, J. A. Blake, L. M. FitzGerald, R. A. Clayton, J. D. Gocayne, A. R. Kerlavage, B. A. Dougherty, J. F. Tomb, M. D. Adams, C. I. Reich, R. Overbeek, E. F. Kirkness, K. G. Weinstock, J. M. Merrick, A. Glodek, J. L. Scott, N. S. Geoghagen, and J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058-73.
    [187]. Earl, J., G. Hall, R. W. Pickup, D. A. Ritchie, and C. Edwards. 2003. Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequences. Microb. Ecol. 46:270-278.
    [188]. Erkel, C., M. Kube, R. Reinhardt, and W. Liesack. 2006. Genome of Rice Cluster I archaea--the key methane producers in the rice rhizosphere. Science 313:370-2.
    [189]. Fricke, W. F., H. Seedorf, A. Henne, M. Krüer, H. Liesegang, R. Hedderich, G. Gottschalk, and R. K. Thauer. 2006. The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis. J. Bacteriol. 188:642-658.
    [190]. Euzeby, J. P., and B. J. Tindall. 2001. Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriate nomenclatural types of classes and subclasses. Int. J. Syst. Evol. Microbiol.:725-727.
    [191]. Savant, D. V., Y. S. Shouche, S. Prakash, and D. R. Ranade. 2002. Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int. J. Syst. Evol. Microbiol.:1081-1087.
    [192]. Simankova, M. W., O. R. Kotsyurbenko, T. Lueders, A. N. Nozhevnikova, B. Wagner, R. Conrad, and M. W. Friedrich. 2003. Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst. Appl. Microbiol.:312-318.
    [193]. Simankova, M. W., S. N. Parshina, T. P. Tourova, T. V. Kolganova, A. J. Zehnder, and A. N. Nozhevnikova. 2001. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst. Appl. Microbiol.:362-367.
    [194]. Singh, N., M. M. Kendall, Y. Liu, and D. R. Boone. 2005. Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int. J. Syst. Evol. Microbiol.:2531-2538. .
    [195]. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woses, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. :260-296.
    [196]. Delaney, J. R., D. S. Kelley, M. D. Lilley, D. A. Butterfield, J. A. Baross, W. S. D. Wilcock, R. W. Embley, and M. Summit. 1998. The Quantum Event of Oceanic Crustal Accretion: Impacts of Diking at Mid-Ocean Ridges. Science 281:222-30.
    [197]. McCollom, T. M. 2000. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Res. I:85-101.
    [198]. McCollom, T. M., and E. L. Shock. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.Geochim Cosmochim Acta 61:4375-91.
    [199]. Kormas, K. A., Meziti, A., Dahlman, A., de Lange,G., and Lykousis, V. 2005. Molecular fingerprinting of methanogens in eastern Mediterranean Sea mud volcanoes. Geochimica et cosmochimica acta 69 (suppl. 1):A77.
    [200]. Hallam, S. J., N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, and E. F. Delong. 2004. Reverse mathanogenesis: testing the hypothesis with environmental genome. Science:1457-1462.
    [201]. Inagaki, F., U. Tsunogai, M. Suzuki, A. Kosaka, H. Machiyama, K. Takai, T. Nunoura, K. H. Nealson, and K. Horikoshi. 2004. Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70:7445-55.
    [202]. Boetius, A., and E. Suess. 2004. Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 291-310.
    [203]. Valentine, D. L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review Antonie Van Leeuwenhoek 271-282.
    [204]. Strous, M., and M. S. M. Jetten. 2004. Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 99-117.
    [205]. Valentine,D.L., and W. S. Reeburgh. 2000. New perspectives on anaerobic methane oxidation. Environ Microbiol 477-484.
    [206]. Girguis, P. R., V. J. Orphan, S. J. Hallam, and E. F. DeLong. 2003. Growth and methane oxidation rates of anaerobic methanotrophic archaea in a continuous-flow bioreactor. Appl Environ Microbiol 5472-5482.
    [207]. Hinrichs, K. U., J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong. 1999. Methane-consuming archaebacteria in marine sediments. Nature:802-805.
    [208]. Blumenberg, M., R. Seifert, J. Reitner, T. Pape, and W. Michaelis. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA:11111-11116.
    [209]. Orphan, V. J., C. H. House, K. U. Hinrichs, K. D. McKeegan, and E. F. DeLong. 2002
    [210]. Stadnitskaia, A., G. Muyzer, B. Abbas, M. J. L. Coolen, E. C. Hopmans, M. Baas, T. C. E. van Weering, M. K. Ivanov, E. Poludetkina, and J. S. S. Damste. 2005. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 67-96.
    [211]. Elvert, M., A. Boetius, K. Knittel, and B. B. J?rgensen. 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 403-419.
    [212]. Knittel, K., A. Boetius, A. Lemke, H. Eilers, K. Lochte, O. Pfannkuche, P. Linke, and R. Amann. 2003. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon) Geomicrobiol J 269-294.
    [213]. Marteinsson, V. T., S. Hauksdottir, C. F. Hobel, H. Kristmannsdottir, G. O. Hreggvidsson, and J. K. Kristjansson. 2001. Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242-8.
    [214]. Nunoura, T., H. Hirayama, H. Takami, H. Oida, S. Nishi, and S. Shimamura. 2005. Genetic and functional roperties ofuncultivated thermophilic crenarchaeotes from a subsurface goldmine as revealed by analysis of genome fragments. Environ Microbiol 7:1967-1984.
    [215]. Daly, K., R. J. Sharp, and A. J. McCarthy. 2000. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 146 ( Pt 7):1693-705.
    [216]. Thomsen, T. R., K. Finster, and N. B. Ramsing. 2001. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646-56.
    [217]. Nunoura, T., H. Oida, T. Toki, J. Ashi, K. Takai, and K. Horikoshi. 2006. Quantification of mcrA by quantitative fluorescent PCR in sediments from methane seep of the Nankai Trough. FEMS Microbiol Ecol 57:149-57.
    [218]. Knittel, K., T. Lo¨sekann, A. Boetius, R. Kort, and R. Amann. 2005. . Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ.Microbiol. :467-479.
    [219]. Niemann, H. M. E., M. Hovland, B. Orcutt, A. G. Judd, I. Suck, J. Gutt,S. B. Joye, E. Damm, K. Finster, and A. Boetius. . 2005. Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 335-351.
    [220]. Michaelis, W., R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B. B.J?rgensen, F. Widdel, J. Peckmann, N. V. Pimenov, and M. B. Gulin. . 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 1013–1015.
    [221]. Orcutt, B., A. Boetius, M. Elvert, V. Samarkin, and S. B. Joye. . 2005. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim. Cosmochim. Acta 4267–4281.
    [222]. Niemann, H., T. Lo¨sekann, D. de Beer, M. Elvert, T. Nadalig, K. Knittel, R. Amann, E. J. Sauter, M. Schlu¨ter, M. Klages, J. P. Foucher, and A. Boetius. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 854–858.
    [223]. Hallam, S. J., P. R. Girguis, C. M. Preston, P. M. Richardson, and E. F. DeLong. 2003. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol 69:5483-91.
    [224]. Hallam, S. J., N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, and E. F. DeLong. 2004. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457-62.
    [225]. Kru¨ger, M., A. Meyerdierks, F. O. Glo¨ckner, R. Amann, F. Widdel, M. Kube,R. Reinhardt, J. Kahnt, R. Bo¨cher, R. K. Thauer, and S. Shima. . 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 881–881.
    [226]. Hermansson, A., and Lindgren, P.E. (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67: 972–976.
    [227]. Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E.,Denison, R.F., Gebreyesus, B., et al. (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70: 1008–1016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700