通过多组分缩合反应合成次膦酰肽
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膦酰肽和次膦酰肽及其衍生物作为天然肽的结构类似物,由于具有四面体结构的P-X(X=N,O)键,可以用来模拟酯和酰胺类化合物水解的过渡态,因此被广泛用作蛋白质水解酶的抑制剂,抗体酶的半抗原、以及抗菌剂、除草剂、植物生长调节剂,抗高血压药物等。该类化合物在农业和医药领域具有非常广阔的应用前景。此外,磺酰肽类化合物作为另一类重要的天然肽结构类似物,也具有重要的生物
     活性。目前已报道的合成次膦酰肽的方法大致分为以下几类:次膦酰氯合成法、缩合试剂合成法,混合酸酐合成法,固相合成法,酶促合成法、及改进的类Mannich合成法。前几种方法均要先合成氨基烷基次膦酸或其酯,相对合成路线较长,中间产物处理麻烦,累积产率往往并不理想。除此之外,固相合成法还存在着中间体不能进行提纯,合成的量受限制,并且传统的分析方法无法评价反应等缺点。采用酶促反应合成次膦酰肽化合物虽然能够得到较好的产率,但该方法受催化剂酶的限制,所以应用范围较小。前人采用改进的类Mannich方法合成次膦酰肽,底物的适用性不好,在酰胺的使用上多数使用氨基甲酸苄酯,限制了生成物膦酰肽结构的多样性,并且该酰胺的反应活性比普通酰胺高许多,所以反应比较容易进行。而且,氨基甲酸酯的使用也使肽链的延伸只能向氨基酸酯或羟基酸酯一侧进行,氨基膦酸只能在肽链的氨基端或羟基酸酯衍生物的羟基端,如果想从氨基次膦酸的氨基端进行延伸,还必须采用前面几种传统的方法。以上传统合成方法的不足已严重影响了对次膦酰肽类化合物生物活性的研究。因此,本文开发了一种简便、高效、直接合成次膦酰肽类化合物的方法。
     首先,采用该方法一锅直接合成了C末端具有α‐氨基烷基次膦酸结构的次膦酰二肽及三肽。主要以苄氧羰基(Cbz)保护的氨基酸酰胺、二肽酰胺,与不同的醛(包括脂肪醛和芳香醛)和芳基二氯化膦进行类Mannich反应,随即直接水解制得具有结构多样性的次膦酰肽类化合物,产率较高,得到的次膦酰肽均为新化合物。此外,还研究了该反应机理,通过机理确定了产物的最终构型,并对该反应过程中的立体选择性进行了合理的解释。
     其次,采用准四组分缩合的方法设计合成了一系列C‐次膦酰酯肽,均为新化合物。主要是以Cbz保护的氨基酸酰胺,醛、芳基二氯化膦为起始原料合成相应的次膦酰氯后,让其与不同结构的羟基酸酯进行醇解反应原位合成了具有不同结构的C‐次膦酰酯肽。并对其反应机理进行了研究,合理地解释了反应过程中副产物的形成原因以及产物立体选择性的控制机理。
     再者,首次合成了一系列C末端具有α‐氨基烷基次膦酸结构的杂交的磺酰次膦酰二肽。主要以Cbz保护的2‐氨基烷基磺酰胺为原料,与不同的醛及芳基二氯化膦发生类Mannich反应,反应结束后无需任何处理直接进行水解反应制得杂交的磺酰次膦酰二肽,该二肽同时具有氨基烷基次膦酸结构及氨基烷基磺酰胺结构,且产率较高。采用该方法还成功地制得了杂交的磺酰次膦酰酯肽,说明该方法也适用于该类磺酰次膦酰酯肽的合成。
     以上合成法均采用多组分汇聚式的合成法,直接原位合成了一系列次膦酰肽类化合物,具有原料易得,反应路线短,操作简便,产率高等优点,并且实现了产物的肽链同时向氨基次膦酸的两端分别延伸。从绿色化学的角度讲还具有原子经济性的特点。该反应对产物还具有一定的立体选择性。本文工作的研究对膦酰肽种类的开发具有重要的意义,填补了C末端具有α‐氨基烷基次膦酸结构的杂交的磺酰次膦酰二肽及磺酰次膦酰酯肽的合成空白。为科学家对该类化合物生物活性的研究奠定了丰富的物质基础。
     最后,本文还开发了一种高效简便地制备N-苄氧羰基‐2‐氨基烷基磺酰胺的合成方法。以邻氨基醇为原料,先后经过苄氧羰基保护、光延反应(Mitsunobu)、N-氯代丁二酰亚胺(NCS)氧化反应及氨解反应制得N-苄氧羰基2‐氨基烷基磺酰胺,采用该方法共合成出7种N-苄氧羰基-2-氨基烷基磺酰胺,其中5种为新化合物。该方法与传统合成具有类似结构的磺酰胺方法相比,不但原料无毒易得,操作简便,重现性好,而且产率较高,是目前合成氨基烷基磺酰胺的最有效方法。
Phosphonopeptides and phosphinopeptides are importantphosphorus analogues of naturally occurring peptides. They have beenwidely used as enzyme inhibitors and as haptens for production ofcatalytic antibodies because they can be considered as stable mimeticsof tetrahedral transition states in ester and amide hydrolysis andformation. Several phosphonopeptides and phosphinopeptides alsoshowed antibacterial, herbicidal, plant growth regulative andantihypertensive activities. Thus, phosphonopeptides andphosphinopeptides have widely potential application prospects. Besides,sulfonopeptides, as another sulfur analogues of naturally occurringpeptides, have also important biological activities.
     Nowadays, there were some methods for synthesis ofphosphinopeptides, such as phosphinochloridate method, couplingreagent condensation method, mixed anhydride method, solid phasemethod, enzyme-catalyzed coupling method and Mannich-type reactionmethod and so on. Most of them utilized aminoalkylphosphinic acids ortheir derivatives as starting materials, which were generally synthesized in multi-step procedure, resulting in some disadvantages, such ascomplicated multi-step procedure of preparation, isolation andpurification of products. The overall yields from the desired peptideproducts are seldom satisfactory. In solid phase method, conventionalanalytical tools for assessing the reaction could not be used, intermediatepurifications in a multi-step synthesis were not possible and the synthesisscale was limited. Although the enzyme-catalyzed coupling ofaminoalkylphosphinate and amino ester in satisfactory yields, the methodcould not be widely used due to the restriction by the sort of catalyticalenzymes.
     The Mannich-type reaction using benzyl carbamate with highlyreactive activities as amide component not only reduced the variety ofphosphinopeptides but also could only extend peptide chain fromN-terminal. The conventional methods can not be applied to giveproducts with peptide chain extending from both sides. Thus, it isnecessary to develop an efficient and facile method to synthesizephosphinopeptides. Recently, we reported the Mannich-type condensationof N-Cbz protected amino amides/peptide amides, aldehydes,aryldichlorophosphines, and subsequent aminolysis with amino acidesters/peptide esters to synthesize phosphinopeptides, in which theaminoalkylphosphinic acid was located in the middle position of thepeptides. We herein present the facile synthesis of phosphinopeptides containing different structures via the multicomponent condensationreactions.
     Firstly, a series of phosphinopeptides containing C-terminalα-aminoalkylphosphinic acids were prepared directly in one-pot reactionsof2-(N-benzoxycarbonylamino)alkanamides/peptide amides, aldehydes,and aryldichlorophosphines in acetonitrile, followed by hydrolysis. In thecurrent method, the peptide bond was formed in a Mannich-type reaction.Through this approach, phosphinopeptides containing C-terminalα-aminoalkylphosphinic acids which have never been reported can beconveniently prepared in good yields directly from simple chemicals. Wesystematically studied the reaction mechanism through which the ultimatestructure of the product was determined.
     Secondly, a series of new depsiphosphinopeptides, theaminoalkylphosphinic acids were located in the middle position of thepeptides, were synthesized in satisfactory yields viapseudo-four-component condensation reaction of2-(N-benzoxy-carbonyl-amino)alkanamides/peptide amides, aldehydes, andaryldichlorophosphines, followed by in situ alcoholysis with hydroxylesters. The formation of byproducts was explained and the absoluteconfiguration of the desired products was determined via the mechanismstudies.
     Thirdly, we synthesized hybrid sulfonophosphinodipeptides composing of taurines and1-aminoalkylphosphinic acids for the first timein satisfactory to good yields via a convenient Mannich-type reaction ofN-benzyloxycarbonylaminoalkanesulfonamides, aldehydes, andaryldichlorophosphines, and subsequent hydrolysis. Hybriddepsisulfonophosphinopeptides were also successfully synthesized via thesimilar preparation method, indicating that the method was alsoapplicable for the synthesis of sulfonophosphinopeptides.
     The multicomponent convergent methods were utilized to synthesizevarious phosphinopeptides in good yields directly from simple chemicals.The method has several advantages over the traditional preparationmethod, such as short procedure, facile operation, high overall yields,atom-economic strategy. And the peptide chain extending from both sidesof the aminophosphonic acids was achieved. Stereoselectivity in theproducts was also observed. Our work was supplementary to thesynthesis of hybrid sulfonophosphinodipeptides anddepsisulfonophosphinopeptides with C-terminal α-aminoalkyl-phosphinates and offered excellent foundation for the research on thebiological activities of these compounds.
     Finally, we have developed a highly efficient and convenientmethod for the synthesis of N-Cbz-β-aminoalkanesulfonamides fromvicinal amino alcohols via the N-Cbz protection, the Mitsunobuesterification, N-chlorosuccinimide oxidation, and ammonolysis process. The current method is an efficient, nontoxic, simple, and reproducibleroute to synthesize N-Cbz-β-aminoalkanesulfonamides. And most ofthese sulfonamides are new products.
引文
[1]王德心.组合化学原理、技术及应用[M].北京:中国协和医科大学出版社,2005
    [2] Smith Ⅲ A B, Yager K M, Taylor C M. Enantioselective Synthesis of Diverse α-AminoPhosphonate Diesters [J]. J. Am. Chem. Soc.,1995,117:10879-10888
    [3]许家喜,傅南雁.α-氨基磷酰胺衍生物的新合成方法[J].厦门大学学报(自然科学版),1999,38:349
    [4]贺凤丹.磺酰膦酰杂交肽的合成及羟甲芬太尼的不对称合成[D].北京,首都师范大学硕士论文.2009
    [5] Kafardki P, Lejczak B. In Aminophosphonic and Aminophosphinic Acids: Chemistry andBiological Activity [M]. John Wiley: Chichrster,2000,407-442
    [6] Han L Y, Hiratake J, Kamiyama A, Sakata K. Design, Synthesis, and Evaluation ofγ-Phosphono Diester Analogues of Glutamate as Highly Potent Inhibitors and Active SiteProbes of γ-Glutamyl Transpeptidase [J]. Biochemistry,2007,46:1432-1447
    [7] Jacobsen N E, Bartlett P A. A Phosphonamidate Dipeptide Analogue as An Inhibitor ofCarboxypeptidase A [J]. J. Am. Chem. Soc.,1981,103:654-657
    [8] Oleksyszyn J, Powers J C. Irreversible Inhibition of Serine Proteases by PeptideDerivatives of (α-aminoalkyl)phosphonate Diphenyl Esters [J]. Biochemistry,1991,30:485-493
    [9] Bertrand J A, Oleksyszyn J, Kam C M, Boduszek B, Presnell S, Plaskon R R, Suddath FL, Powers J C, Williams, L D. Inhibition of Trypsin and Thrombin byAmino(4-amidinophenyl)methanephosphonate Diphenyl Ester Derivatives: X-rayStructures and Molecular Models [J]. Biochemistry,1996,35:3147-3155
    [10] Yiotakis, A.; D. Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Phosphinic Peptides:Synthesis Approaches and Biochemical Evaluation as Zn-Metalloprotease Inhibitors [J].Curr. Org. Chem.2004,8:1135-1158
    [11] Picha J, Budesinsky M, Hanclova I, Sanda M, Fiedler P, Vanek V, Jiracek J. EfficientSynthesis of Phosphonodepsipeptides Derived from Norleucine [J]. Tetrahedron,2009,65:6090-6103
    [12] Mucha A, Drag M, Dalton J P, Kafarski P. Metallo-aminopeptidase inhibitors [J].Biochimie,2010,92:1509-1529
    [13] Mucha A, Kafarski P, Berlicki L. Remarkable Potential of the α-Aminophosphonate/phosphinate Structural Motif in Medicinal Chemistry [J]. J. Med. Chem.,2011,54:5955-5980
    [14] Picha J, Budesinsky M, Sanda M, Jiracek J. Synthesis of Norleucine-derived Phosphono-peptides [J]. Tetrahedron Lett.,2008,49:4366–4368
    [15] Picha J, Budesinsky M, Fiedler P, Sanda M, Jiracek J. Synthesis ofα-Carboxyphosphinopeptides Derived from Norleucine [J]. Amino Acids,2010,39:1265-1280
    [16] Grzywa R, Sokol A M, Sienczyk M, Radziszewicz M, Koscio ek B., Carty M P,Oleksyszyn J. New Aromatic Monoesters of α-Aminoaralkylphosphonic Acids asInhibitors of Aminopeptidase N/CD13[J]. Bioorg. Med. Chem.,2010,18:2930-2936
    [17] Ntai I, Bachmann B O. Identification of ACE Pharmacophore in the PhosphonopeptideMetabolite K-26[J]. Bioorg. Med. Chem. Lett.,2008,18:3068-3071
    [18] Mucha A, Pawe czak M, Hurekb J, Kafarski P. Synthesis and Activity of PhosphinicTripeptide Inhibitors of Cathepsin C [J]. Bioorg. Med. Chem. Lett.,2004,14:3113-3116
    [19] Sienczyk M, Oleksyszyn J. Irreversible Inhibition of Serine Proteases-Design and In VivoActivity of Diaryl α-Aminophosphonate Derivatives [J]. Curr. Med. Chem.,2009,16:1673-1687
    [20]傅南燕,氨基膦酸衍生物的原位合成方法研究[D].北京,北京大学硕士论文.1999
    [21] Wagner J, Lerner R A, Barbas III C F. Synthesis of Five Enantiomerically Pure HaptensDesigned for In Vitro Evolution of Antibodies with Peptidase Activity [J]. Bioorg. Med.Chem.,1996,4(6):901-916
    [22] Isomura S, Ashley J A, Wirsching P, Janda K D. Antibody-Catalyzed Cleavage of theD-Ala-D-Lac Depsipeptide: An Immunological Approach to the Problem of VancomycinResistance [J]. Bioorg. Med. Chem. Lett.,2002,12:861-864
    [23] Chang Y P, Tseng M J, Chu Y H. Using Surface Plasmon Resonance to Directly MeasureSlow Binding of Low-Molecular Mass Inhibitors to a VanX Chip [J]. Anal. Biochem.,2006,359:63-71
    [24] Yang K W, Brandt J J, Chatwood L L, Crowder M W. Phosphonamidate andPhosphothioate Dipeptides as Potential Inhibitors of VanX [J]. Bioorg. Med. Chem. Lett.,2000,10:1085-1087
    [25]姚杰,徐元宏.耐万古霉素肠球菌的耐药机制及耐药基因调控的研究进展[J],国外医药(抗生素分册),2010,31(1):24-28
    [26] Vassiliou S, Grabowiecka A, Kosikowska P, Yiotakis A, Kafarski P, Berlicki L. Design,Synthesis, Evaluation of Novel Organophosphorus Inhibitors of Bacterial Ureases [J]. J.Med. Chem.,2008,51:5736-5744
    [27] Mastalerz P, Kupczyk-Subotkowska L, Herman Z S, Laskawiec G. Analgesic Activity ofEnkephalin Analogs Containing Aminophosphonic Acid Residues at C-Terminal Position[J]. Naturwissensch.,1982,69:46-47
    [28] Gigot D, Pennickx M J. New Compounds: Peptide Derivatives of the Antitumor AgentN-Phosphonoacetyl-L-aspartic Acid [J]. J. Pharm. Sci.,1984,73:275-277
    [29] Davies J, Jones A W, Sheardoon, M J, Smith D A, Watkins J C. Phosphono Dipeptidesand Piperazine Derivatives as Antagonists of Amino Acid-induced and Synaptic Excitationin Mammalian and Amphibian Spinal Cord [J]. Neurosci. Lett.,1984,52:79-84
    [30] Pierre A, Lavielle G, Hautefaye P, Seurre G, Leonce S, Saint-Dizier D, Boutin J A,Cudennec, C A. Pharmacological Properties of a New α-Aminophosphonic AcidDerivative of Vinblastine [J]. Anticancer Res.,1990,10:139-144
    [31] Patel D V, Gordon E M, Schmidt R J, Weller H N, Young M G, Zahler R, Barbacid M,Carboni J M, Guello-Brown, J L, Huniham L, Ricca C, Robinson S, Seizinger B R,Toumari A V, Manne V. Phosphinyl Acid-Based Bisubstrate Analog Inhibitors of RasFarnesyl Protein Transferase [J]. J. Med. Chem.,1995,38:435-442
    [32] Maier L. Organic Phosphorus Compounds.91. Synthesis and Properties of(1-Amino-2-arylethyl)phosphonic and-Phosphinic Acids as well as-Phosphine Oxides[J]. Phosphorus, Sulfur Silicon Relat. Elem.,1990,53:43-67
    [33] Peyman A, Budt K H, Paning J S, Stowasser B, Ruppert D. C2-Symmetric PhosphinicAcid Inhibitors of HIV Protease [J]. Tetrahedron Lett.,1992,33:4549-4552
    [34] Agawane S M, Nagarkar J M. Nano Ceria Catalyzed Synthesis of α-AminophosphonatesUnder Ultrasonication [J]. Tetrahedron Lett.2011,52:3499-3504
    [35] Maier L, Spoerri H. Organic Phosphorus Compounds.96. Resolution of1-Amino-2-(4-fluorophenyl)ethylphosphonic Acid as Well as Some Di-and Tripeptides[J]. Phosphorus, Sulfur Silicon Relat. Elem.,1991,61:69-75
    [36] Wieczorek P, Lejczak B, Kaczanowska M, Kafarskib P. Plant-Growth-RegulatingPhosphono Peptides [J]. Pestic. Sci.,1990,30:43-57
    [37] Karanewsky D S, Petrillo E W, Jr. Preparation and Formulation of PhosphonylHydroxyacyl Amino Acid Derivatives as Antihypertensives [P]. US4703043.1987-10-27.(PCT Patent, WO9414835.1995-11-14)
    [38] Campbell D A. Methods for the Synthesis of Phosphonate Esters as Intermediate forPeptide Phosphonate Analogs [P]. US5420328.1995-05-30.
    [39] Ntai I, Phelan V V, Bachmann B O. Phosphonopeptide K-26Biosynthetic Intermediates inAstrosporangium Hypotensionis [J]. Chem. Comm.,2006:4518-4520
    [40] Chalmers, M E, Kosolapoff G M. The Synthesis of Amino-substituted Phosphonic Acids.III [J]. J. Am. Chem. Soc.,1953,75:5278-5280
    [41] Oleksyszyn J, Gruszecka E. Aminoalkylation of Phosphorous Acid [J]. Tetrahedron Letts.,1981,22:3537-3540
    [42] Kudzin Z H, Stec W J. Synthesis of1-Aminoalkanephosphonates viaThioureidoalkanephosphosphonates [J]. Synthesis,1978:469-472
    [43] Yuan C Y, Qi Y M. Studies on Oganophosphorus Compounds; Part XX. A Facile Synthesisof α-Aminosubstituted Benzylphosphonic and α–Phosphinic Acids by Use ofThiophosphoramide [J]. Synthesis,1986:821-825
    [44] Oleksyszyn J, Tyka R. An Improved Synthesis of1-Aminophosphonic Acids [J].Tetrahedron Letts.,1977,18:2823-2824
    [45] Chen R Y, Dai Q. Study on the Mannich-Type Reaction of p-Toluenesulfonamide [J].Chin. Chem. Lett.,1995,6(3):181-184
    [46] Oleksyszyn J, Tyka R, Mastalerz P. Direct Synthesis of1-aminoalkanephosphinic Acidsfrom Phosphorus Trichloride or Dichlorophosphines [J]. Synthesis,1978:479-480
    [47] Dai Q, Chen R Y. A Facile Sythesis Of Phenyl Hydrogen α-(Benzyloxycarbonylamino)benzylphosphonates [J]. Syn. Commun.,1997,27(10):1653-1659
    [48] Dai Q, Chen R Y. A Facile Synthesis of Phenyl1-BenzyloxycarbonylaminoArylmethylphosphinopeptide Derivatives [J]. Syn. Commun.,1997,27(1):17-22
    [49] Dai Q, Chen R. Y. A Modified Method for Synthedid of Alkyl Hydrogenα-(Benzyloxycarbonylamino)benzylphosphonates [J]. Syn. Commun.1997,27(19):3341-3347
    [50] Dai Q, Chen R Y, Zhang C X, Liu Z. Synthesis of2-([Benzyloxycarbonylamino)phenyl-methyl]-1,3,2-benzodioxaphosphole2-oxides[J]. Synthesis,1998,4:405-408
    [51] Yuan C Y, Chen S J, Wang, G H. Studies on Organophosphorus Compound XLVII: AcetylChloride-A Versatile Reagent for the Synthesis of1-Aminoalkyl-and Amino(aryl)methylPhosphonic Acid Derivatives [J]. Synthesis,1991:490-493
    [52] Yuan C Y, Wang G H. Studies on Organophosphorus Compound; XLI. A ConvenientSynthesis of Alkyl Hydrogen α–(Bennzyloxycarbonylamino)benzylphosphonates [J].Synthesis,1990:256-258
    [53] Liu H, Xu J X. Synthesis of1-(N-Ethoxycarbonylamino)alkylphosphonic Monoesters [J].Amino Acids,2005,29:241-243
    [54] Fu N Y, Xu J X. A Novel and Convenient Method for Synthesizing UnsymmetricalN-Benzyloxycarbonyl-protected1-Amino-1-arylalkylphosphonatemixed Diesters [J]. J.Chem. Soc., Prekin Trans.1,2001:1223-1226
    [55] Wei M, Xu J X. A Convenient Method for the Synthesis of N-Protected1-Aminoalkylphosphonate Mixed Monothioesters and Dithioesters[J]. Synth. Commun.,2001,31(10):1489-1497
    [56] Liu, H., Cai, S. Z., Xu, J.X., Asymmetric Synthesis of N-protected Chiral1-AminoalkylPhosphonic Acids and Synthesis of Side Chain–functionalized Depsiphosphonopeptides[J]. J. Peptide Sci.,2006,12:337-340
    [57] Tajbakhsh M, Heydari A, Alinezhad H, Ghanei M, Khaksar S. Coupling of Aldehydes,Amines, and Trimethyl Phosphite Promoted by Amberlyst-15: Highly Efficient Synthesisof α–Aminophosphonates [J]. Synthesis,2007,3:352-354
    [58] Lukszo J, Tyka R. New protective Groups in the Synthesis of1-AminoalkanephosphonicAcids and Esters [J]. Synthesis,1977:239-240
    [59] Queffelec C, Ribiere P, Montchamp J L. Synthesis of P,N-Heterocycles fromω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs [J]. J.Org. Chem.,2008,73:8987-8991
    [60] Yiotakis A, Georgiadis D, Matziari M, Makaritis A, Dive V. Phosphinic Peptides:Synthetic Approaches and Biochemical Evaluation as Zn-Metalloprotease Inhibitors [J].Curr. Org. Chem.,2004,8:1135-1158
    [61] Kudzin Z H, Kotynski A. Synthesis of O, O-Dialkyl1-Aminoalkanephosphonates [J].Synthesis,1980:1028-1032
    [62] Hirschmann R, Yager K M, Taylor C M, Moore W, Sprengeler P A, Witherington J,Phillips B W, Smith III A B. Phosphonyltriethylammonium Salts: Novel Reactive Speciesfor the Synthesis of Phosphonate Esters and Phosphonamides [J]. J. Am.Chem. Soc.,1995,117(23):6370-6371
    [63] Gajda T, Matusiak M. An Efficient Synthesis of Diethyl1-AminoalkylphosphonateHydrochlorides via the Intermediate Diethyl1-Azidoalkylphosphonates [J]. Syn.Commun.,1992,22(15):2193-2203
    [64] Maier L. Organic Phosphorus Compounds LXXI. Preparation, Properties, and Structure ofBis(aminomethyl)phosphinic Acid,(H2NCH2)2P(O)OH).[J]. J. Organometallic Chem.,1979,178(1):157-169
    [65] Genet J P, Uziel J, Port M, Touzin A M, Roland S, Thorimbert S, Tainer S. A PraticalSynthesis of α–Aminophosphonic Acids [J]. Tetrahedron Lett.,1992,33(1):77-80
    [66]许家喜,于力.氨基膦酸及其酯的合成[J].合成化学,1999,7(2):153-158
    [67] Drag M, Pawelczak M, Kafarski P. Stereoselective Synthesis of1-Aminoalkanephosphonic Acids With Two Chiral Centers and Their Activity TowardsLeucine Aminopeptidase [J]. Chirality,2003,15:104-107
    [68] Drag M, Oleksyszyn J. Synthesis of α1-(Cbz-aminoalkyl)-α2-(hydroxyalkyl)phosphinicEsters [J]. Tetrahedron Lett.,2005,46:3359-3362
    [69] Yamauchi K, Ohtsuki S, Kinoshita M. Synthesis of Peptide Analogs Containing(2-Aminoethyl)Phosphonic Acid (Ciliatine)[J]. J. Org. Chem,1984,49:1158-1163
    [70] Elhaddadi M, Jacquier R, Petrus C, Petrus F. N-Benzyloxyaminophosphinyl Peptides.[J].Phosphorus Sulfur Silicon,1991,63:255–259
    [71] Sampson N S, Bartlett P A. Synthesis of Phosphonic Acid Derivatives by OxidativeActivation of Phosphinate Esters [J]. J.Org. Chem.,1988,53,4500-4503
    [72] Musiol H J, Grams F, Rudolph-Bohner S, Moroder L. On the Synthesis ofPhosphonamidate Peptides [J]. J. Org, Chem.,1994,59:6144-6146
    [73] Grembecka J, Mucha A, Cierpicki T, Kafarsk P. The Most Potent OrganophosphorusInhibitors of Leucine Aminopeptidase. Structure-Based Design, Chemistry, and Activity[J]. J. Med. Chem.,2003,46(13):2641-2655
    [74] Sikora D, Nonas T, Gajda T. O-Ethyl1-Azidoalkylphosphonic Acids Versatile Reagentsfor the Synthesis of Protected Phosphonamidate Peptides [J]. Tetrahedron,2001,57:1619-1625
    [75] Neidlein R, Greulich P. Syntheses of Phosphonic and Phosphinic Analogs of PantothenicAcid Ethyl Ester and of the Phosphonic Analog of Pantetheine [J]. Helv. Chim. Acta,1992,75:2545-2552
    [76] Morgan B P, Holland D R, Matthews B W, Bartlett P A. Structure-Based Design of anInhibitor of the Zinc Peptidase Thermolysin [J]. J. Am. Chem. Soc.,1994,116(35):3251-3260
    [77] Elliott R L, Marks N, Berg M J, Portoghese P S. Synthesis and Biological Evaluation ofPhosphonamidate Peptide Inhibitors of Enkephalinase and Angiotensin-ConvertingEnzyme [J]. J. Med. Chem.,1985,28(9):1208-1216
    [78] Hariharan M, Chaberek S, Martell A E. Synthesis of Phosphonopeptide Derivatives [J].Synth. Commun.,1973,3(5),375-379
    [79] Much A, Kafarski P. The Preparation of Phosphono Peptides Containing aPhosphonamidate Bond [J]. Tetrahedron,1994,50(44),12743-12754
    [80] Hirschmann R, Yager K M, Taylor C M, Witherington J, Sprengeler P A, Phillips B W,Moore W, Smith III A B. Phosphonate Diester and Phosphonamide Synthesis. ReactionCoordinate Analysis by31P NMR Spectroscopy: Identification of PyrophosphonateAnhydrides and Highly Reactive Phosphonylammonium Salts [J]. J. Am. Chem. Soc.,1997,119:8177-8190
    [81] Rushing S D, Hammer R P. Synthesis of Phosphonamide and ThiophosphonamideDipeptides [J]. J. Am. Chem. Soc.,2001,123(20):4861-4862
    [82] Maffre-Lafon D, Escale R, Dumy P, Vidal J P, Girard J P. Solid Phase Synthesis ofPhosphonopeptides from Fmoc Phosphonodipeptides [J]. Tetrahedron Lett.1994,35(24):4097-4098
    [83] Natchev I A. Organophosphorus Analogues and Derivatives of the NaturalL-Aminocarboxylic Acid and Peptides VII. Enzyme Synthesis of Phospha-C Peptides [J].Tetrahedron,1991,47(7):1239-1248
    [84] Fu N Y, Zhang Q H, Duan L F, Xu J X. Facile Synthesis of Phosphonamidate andPhosphonate-linked Phosphonopeptides [J]. J. Pept. Sci.,2006,12:303-309
    [85] Xu J X, Fu N Y. A Facile Synthesis of N-Protected1-AminoalkylphosphonamidateDerivatives [J]. Synth. Commun.,2000,30(22):4137-4145
    [86] Li B N, Cai S Z, Du D M, Xu J X. Synthesis of Phosphinopeptides via the MannichLigation [J]. Org. Lett.,2007,12(9):2257-2260
    [87] Lukas M, Vojtisek P, Hermann P, Rohovec J, Lukes I. Synhesis of Phosphinic AcidAnalogues of Glycyl-glycine and Crystal Structure ofN-Glycylaminomethyl(phenylphosphinic) Acid [J]. Synth. Commun.2002,32(1):79-88
    [88] Palacios F, Alonso C, de los Santos J M. β-Phosphono-and Phosphinopeptides Derivedfrom β-Amino-Phosphonic and Phosphinic Acids [J]. Curr. Org. Chem.,2004,8(15),1481-1496
    [89] Galeotti N, Coste J, Bedos P, Jouin P. A Straightforward Synthesis of α-AminoPhosphonateMonoesters Using BroP or TPyCIU [J]. Tetrahedron Lett.,1996,37(23),3997-3998
    [90] Whitteck J T, Ni W J, Griffin B M, Eliot A C, Thomas P M, Kelleher N L, Metcalf W W,van Der Donk W A. Reassignment of the Structure of the Antibiotic A53868Reveals anUnusual Amino Dehydrophosphonic Acid [J]. Angew. Chem. Int. Ed.,2007,46:9089-9092
    [91] Ravaschino E L, Docampo R, Rodriguez J B. Design, Synthesis, and BiologicalEvaluation of Phosphinopeptides Against Trypanosoma Cruzi Targeting TrypanothioneBiosynthesis [J]. J. Med. Chem.,2006,49(1):426-435
    [92] Khomutov R M, Osipova T I, Khurs E N, Dzhavakhiya V G. Synthesis of Alafosfalin andIts Phosphinic Analogue and their Fungicidal Activity [J]. Mendeleev Commun.,2008,18:295-296
    [93] Atherton F R, Hassall C H, Lambert R W. Synthesis and Structure-Activity Relationshipsof Antibacterial Phosphonopeptides Incorporating (l-Aminoethy1)phosphonic Acid and(Aminomethy1)-phosphonic Acid [J]. J. Med. Chem.1986,29:29-40
    [94] Lukas M, Vojtisek P, Hermann P, Rohovec J, Lukes I. Syntheis of Phosphinic AcidAnalogues of Glycyl-Glycine and Crystal Structure ofN-Glycyl-amniomethyl-(phenylphosphinic) Acid [J].Synth. Commun.,2002,32(1),79-88
    [95] Hammerschmidt, F.; K hlig, H.; Müller, N. Biosynthesis of Natural Products with aPhospho Rus-carbon Bond. Part6. Preparation of Deuterium and Carbon-13LabeledL-Alanyl-and L-Alanyl-L-alanyl-(2-aminoethyl)phosphonic Acids and their Use inBiosynthetic Studies of Fosfomycin in Streptomyces Fradiae [J]. J. Chem. Soc., PerkinTrans.1,1991:365-369
    [96] sapay G, Szilàgyi I, Seres J. Conversion of Amino Acids and Dipeptides into TheirPhosphonic Analogs. Aminoalkylphosphonic Acids and Peptides. II.[J]. Tetrahedron,1987,43:2977-2983
    [97] Hariharan M, Chaberek S, Martell A E. Synthesis of Phosphonopeptide Derivatives [J].Synth. Commun.,1973,3:375-379
    [98] Solodenko V, Kasheva T, Kukhar V. Preparation of N-Acylated Phosphonopeptides withFree Phosphonic Group [J]. Synth. Commun.,1991,21(15-16):1631-1641
    [99] Kafarski P, Lejczak B. A Facile Conversion of Aminoalkanephosphonic Acids into TheirDiethyl Esters. The Use of Unblocked Aminoalkanephosphonic Acids in PhosphonoPeptide Synthesis [J]. Synthesis,1988,4,307-310
    [100] Rinnova′M, Nefzi A, Houghten R A. An Expedient Method for the Solid-Phase Synthesisof α-Aminoalkyl Phosphonopeptides [J]. Tetrahedron Lett.,2002,43:4103–4106
    [101] Kudzin Z H, Depczynski R, Kudzin M H, Drabowicz J.1-(N-Chloroacetylamino)-alkylphosphonic Acid–Synthetic Precursors of Phosphonopeptides [J].Amino Acids,2008,34:163-168
    [102] Malachowski W. P, Coward J K. The Chemistry of Phosphapeptides: Formation ofFunctionalized Phosphonochloridates under Mild Conditons and Their Reaction withAlcohols and Amines [J]. J. Org. Chem.,1994,59(25):7616-7624
    [103] Giannousis P P, Bartlett P A. Phosphorus Amino Acid Analogues as Inhibitors of LeucineAminopeptidase [J]. J. Med. Chem.,1987,30(9):1603-1609
    [104] Vo-Quang Y, Gravey A M, Simonneau R Vo-Quang L, Lacoste A M, Le Goffic F. TowardsNew Inhibitors of D-Alanine: D-Alanine Ligase: The Synthesis of3-Aminobutenylphosphonic and Aminophosphonamidic Acids.[J]. Tetrahedron Lett.,1987,28:6167-6170
    [105] Bartlett P A, Lamden L A. Inhibition of Chymotrypsin by Phosphonate and Phosphonami-date Peptide Analogs [J]. Bioorg. Chem.,1986,14(4):356-377
    [106] De Fatima M, Fernandez V C P, Fan H, Liu Y H, Fronczek F R, Hammer R P. Synthesis ofPhosphonate and Thiophosphonate Esters and Amides from Hydrogen-Phosphinates by aNovel One-Pot Activation-Coupling-Oxidation Procedure [J]. J. Org. Chem.,1995,60(23):7390-7391
    [107] Yamauchi K, Mitsuda Y, Kinoshita M. Peptides Containing Aminophosphonic Acids. III.Synthesis of Tripeptide Analogs Containing Aminomethylphosphonic Acid [J]. Bull.Chem. Soc. Jpn.,[J].1975,48(11):3285-3286
    [108] Malachowski W P, Coward J K. The Chemistry of Phosphapeptides: Investigations on theSynthesis of Phosphonamidate, Phosphonate, and Phosphinate Analogues ofGlutamyl-γ-glutamate [J]. J. Org. Chem.,1994,59(25):7625-7634
    [109] Chen S J, Lin C H, Kwon D S, Walsh C T, Coward J K. Design, Synthesis, andBiochemical Evaluation of Phosphonate and Phosphonamidate Analogs ofGlutathinylspermidine as Inhibitors of Glutathinylspermidine Synthetase/Amidase fromEscherichia Coli [J]. J. Med. Chem.,1997,40(23),3842-3850
    [110] Bartlett P A, Giangiordano M A. Transition State Analogy of Phosphonic Acid PeptideInhibitors of Pepsin [J]. J. Org. Chem.,1996,61(10):3433-3438)
    [111] Mucha A, Kafarski P. Transesterification of Monophenyl Phosphonamidates-ChemicalModelling of Serine Protease Inhibition [J]. Tetrahendron,2002,58:5855-5863
    [112] Burger A, Anderson J. Monoesters and Ester-amidates of Aromatic Phosphonic Acids [J].J. Am. Chem. Soc.,1957,79:3575-3579
    [113] Hoffmann M. A Convenient Synthesis of Alkyl Hydrogen1-(Benzyloxycarbonylamino)alkanephosphonates [J]. Synthesis,1986:557-559
    [114] Karanewsky D S, Badia M C. Synthesis of Phosphonic Monoesters from PhosphonousAcids [J].Tetrahedron Lett.,1986,27:1751-1754
    [115] Oleksyszyn J, Bubotkowska L, Mastalerz P. Diphenyl1-Aminoalkanephosphonates [J].Synthesis,1979:985-986
    [116] Campbell D A. The Synthesis of Phosphonate Esters, an Extension of the MitsunobuReaction [J]. J. Org. Chem.,1992,57(23):6331-6335
    [117] Campbell D A, Bermak J C. Phosphonate Ester Synthesis Using a Modified MitsunobuCondensation [J]. J. Org. Chem.,1994,59:658-660
    [118] Campbell D A, Bermak J C. Solid-Phase Synthesis of Peptidylphosphonates [J] J. Am.Chem. Soc.,1994,116:6039-6040
    [119] Campagne J M, Coste J, Jouin P. Solid Phase Synthesis of Phosphonopeptides [J].Tetrahedron Lett.,1995,36(12):2079-2082
    [120] Senten K, Van der Veken P, Bal G, Haemers A, Augustyns K. Polymer-AssistedSolution-Phase Parallel Synthesis of Dipeptide p-Nitroanilides and Dipeptide DiphenylPhosphonates [J]. Tetrahedron Lett.,2001,42:9135-9138
    [121] Bentley D J, Moody C. Asymmetric Synthesis of the Central Tryptophan Residue ofStephanotic Acid [J]. J. Org. Biomol. Chem.,2004,2:3545-3547
    [122] Sikora D, Gajda T. A New Synthesis of Protected Phosphonodipeptides with AnN-terminal Amino Acid [J]. Tetrahedron,2000,56:3755-3761
    [123] Cristau H J, Coulombeau A, Genevois-Borella A, Pirat J L. Convenient One-pot Synthesisof Phosphino-Dipeptide Analogs [J]. Tetrahedron Lett.,2001,42:4491-4494
    [124] Xu J X, Gao Y H. Straightrorward Synthesis of Depsiphosphonopeptides viaMannich-Type Multicomponent Condensation [J]. Synthesis,2006,5:783-788
    [125] Bagley M C, Buck R T, Hind S L, Moody C J. Synthesis of Functionalized Oxazoles andBis-Oxazoles [J]. J. Chem. Soc. Perkin Trans1,1998,3:591-600
    [126] Schmuck C, Rehm T, Geiger L, Schaefer M. Synthesis and Self-Association Properties ofFlexible Guanidiniocarbonylpyrrole-Carboxylate Zwitterions in DMSO: Intra-versusIntermolecular Ion Pairing [J]. J. Org. Chem.,2007,72(16):6162-6170
    [127] Fieser M, Fieser L F, Toromanoff E, Hirata Y. Heymann H., Tefft M., Bhattacharya S.Synthetic Emulsifying Agents [J]. J. Am. Chem. Soc.,1956,78:2825-2832
    [128] Schmuck C, Rehm T, Geiger L, Schaefer M. Synthesis and Self-Association Properties ofFlexible Guanidiniocarbonylpyrrole-Carboxylate Zwitterions in DMSO: Intra-VersusIntermolecular Ion Pairing. J. Org. Chem.,2007,72(16):6162-6170.
    [129] Schwarz H, Bumpus F M, Page I H. Synthesis of a Biologically Active OctapeptideSimilar to Natural Isoleucine Angiotonin Octapeptide [J]. J. Am. Chem. Soc.,1957,79(5):5697-5703
    [130] Goodman M, Stueben K C. Alkali metal complexes of phenylalanine derivatives [J]. J.Org. Chem.,1956,24:112-113
    [131] Joaquina M, Trigo S A A, Santos M, Isabel A O. New Approach to the Use of2-Bromoethyl Esters in Peptide Synthesis [J]. Collect. Czech. Chem. Commun.,1988,53(11B):2787-2790
    [132] Fruton J S, Johnston R B, Fried M. Elongation of Peptide Chains in Enzyme-CatalyzedTransamidation Reactions [J]. J. Biol. Chem.,1951,190:39-53
    [133] Zehavi U, Ben-Ishai D. Reactions of Carbobenzoxyamino Acid Amides with CarbonylCompounds [J]. J. Org. Chem.,1961,26:1097-1101
    [134] Rapport M M, Mead J F, Maynard J T, Senear A E, Koepfli J B. Derivatives of Taurineand β-Alanine [J]. J. Am. Chem. Soc.,1947,69:2561-2563
    [135] Nagamine T, Inomata K, Endo Y. A New Chiral Synthesis of a Bicyclic EnedioneContaining a Seven-Membered Ring Mediated by a Combination of Chiral Amine andBronsted Acid [J]. Heterocycles,2008,76(2):1191-1204
    [136] Huang H T, Niemann C. The Formation of Diketopiperazines from Dipeptide amides.[J].J. Am. Chem. Soc.,1950,72:921-922
    [137]戈鹏,李巧玲,汪建红,王亚坤,张丽萍.苯基二氯化膦的合成工艺改进[J].合成化学,2006,14(6):609-611
    [138]李伯南.膦酰肽新合成方法研究.北京,北京大学本科生毕业论文[D].2007
    [139]汪茂田,谢培山,王忠东,王海棠,吴云驥,周海梅.天然有机化合物提纯分离与结构鉴定[M].北京:化学工业出版社,2004,77
    [140] Sampson N S, Bartlett P A. Peptidic Phosphonylating Agents as Irreversible Inhibitors ofSerine Proteases and Models of the Tetrahedral Intermediates Peptidic PhosphonylatingAgents as Irreversible Inhibitors of Serine Proteases and Models of the TetrahedralIntermediates.[J]. Biochemistry,1991,30(8):2255-2263.
    [141] Morgan B P, Scholtz J M, Ballinger M D, Zipkin I D, Bartlett P A. Differential BindingEnergy: a Detailed Evaluation of the Influence of Hydrogen-Bonding and HydrophobicGroups on the Inhibition of Thermolysin by Phosphorus-Containing Inhibitors.[J]. J. Am.Chem. Soc.,1991,113(1):297-307
    [142] Meyer J H, Bartlett P A. Macrocyclic Inhibitors of Penicillopepsin.1. Design, Synthesis,and Evaluation of an Inhibitor Bridged between P1and P3[J]. J. Am. Chem. Soc.,1998,120(19):4600-4609
    [143] Gobec S, Plantan I, Mravljak J, Svajger U, Wilson R A, Besra G S, Soares S L, AppelbergR, Kikelj D. Design, Synthesis, Biochemical Evaluation and Antimycobacterial Action ofPhosphonate Inhibitors of Antigen85C, a Crucial Enzyme Involved in Biosynthesis of theMycobacterial Cell Wall.[J]. Eur. J. Med. Chem.,2007,42(1):,54-63
    [144] Meng F H, Xu J X. Diect Synthesis of Phosphinopeptides Containing C-Terminalα-AminoalkylphosphinicAcids [J]. AminoAcids,2010,39(2):533-538.
    [145] He F D, Meng F H, Song X Q, Hu W X, Xu J X. First and Convergent Synthesis ofHybrid Sulfonophosphinopeptides [J]. Org. Lett.,2009,11(17):3922-3925
    [146] Xu J.X. Synthesis of Hydroxyalkanesulfonic Acids, Aminoalkanesulfonic Acids andSulfonopeptides [J]. Chin. J. Org. Chem.,2003,23(1):1-9
    [147] Moree W J, van der Marel G A, van Boom J H, Liskamp R M J. Peptides Containing theNovel Methylphosphinamide Transition-State Isostere [J].Tetrahedron,1993,49:11055-11064
    [148] Piscitelli F, Coluccia A, Brancale A, Regina G L, Sansone A, Giordano C,Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, Torre F L, Lavecchia A, Novellino E,Silvestri R. Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery ofPotent Inhibitors of HIV-1Non-Nucleoside Wild Type and Resistant Mutant StrainsReverse Transcriptase and Coxsackie B4Virus [J]. J. Med.Chem.,2009,52(7):1922-1934
    [149] Lowik D W P M, Liskamp R M J. Synthesis of α-and β-Substituted AminoethaneSulfonamide Arginine-Glycine Mimics [J]. Eur. J. Org. Chem.,2000,7:1219-1228.
    [150] Hanna N B, Dimitrijevich S D, Larson S B, Robins R K, Revankar G R. Synthesis andSingle-Crystal X-Ray Diffraction Studies of1-β-D-Ribofuranosyl-1,2,4-triazole-3-sulfonamide and Certain Related nucleosides [J]. J. Heterocyclic Chem.,1988,25(6):1857-1868
    [151] Bonina L, Orzalesi G, Merendino R, Arena A, Mastroeni P. Structure-ActivityRelationships of New Antiviral Compounds [J]. Antimicrob. Agents Chemother.1982,22:1067-1069.
    [152] Ohnishi H, Yamaguchi K, Shinada S, Himuro S, Suzuki Y. Antiviral activity of sodium5-aminosulfonyl-2,4-dichlorobenzoate (M12325)[J]. Antimicrob. Agents Chemother.1982,22:250-254
    [153] Ramasamy K, Imamura N, Hanna N B, Finch R A, Avery T L, Robins R K, Revankar G R.Synthesis and Antitumor Evaluation in Mice of Certain7-Deazapurine(pyrrolo[2,3-d]pyrimidine) and3-Deazapurine(imidazo[4,5-c]pyridine) NucleosidesStructurally Related to Sulfenosine, Sulfinosine, and Sulfonosine [J]. J. Med. Chem.,1990,33(4):1220-1225
    [154] Gennari C, Ceccarelli S, Piariulli P, Montalbetti C A G N, Jackson R F W. Investigation ofa New Family of Chiral Ligands for Enantioselective Catalysis via Parallel Synthesis andHigh-Throughput Screening. J. Org. Chem.,1998,63(16):5312-5313
    [155] Brouwer A J, Van der Linden H J, Liskamp R M J. Combinatorial Chemistry for LigandDevelopment in Catalysis: Synthesis and Catalysis Screening of PeptidosulfonamideTweezers on the Solid Phase [J]. J. Org. Chem.,2000,65(6):1750-1757
    [156] Lowik D W P M, Liskamp R M J. Synthesis of α-and β-Substituted AminoethaneSulfonamide Arginine-Glycine Mimics [J]. Eur. J. Org. Chem.,2000,7:1219-1228
    [157] Chen Z L, Demuth Jr T P, Wireko F C. Stereoselective Synthesis and AntibacterialEvaluation of4-Amido-isothiazolidinone Oxides [J]. Bioorg. Med. Chem. Lett.,2001,11(16):2111-2115
    [158] Yan S Q, Appleby T, Larson G, Wu J Z, Hamatake R K, Hong Z, Yao N H.Thiazolone-Acylsulfonamides as Novel HCV NS5B Polymerase Allosteric Inhibitors:Convergence of Structure-Based Drug Design and X-Ray Crystallographic Study [J].Bioorg. Med. Chem. Lett.2007,17(7):1991-1995
    [159] Najafi R, Jain R K, Shiau T P, Low E, Nair S K. N-Halogenaced Amino Compounds andDerivatives [P]. US2007/089143.2007-12-28
    [160] Brouwer A J, Monnee M C F, Liskamp R M J. An Efficient Synthesis of N-Protectedβ-Aminoethanesulfonyl Chlorides: Versatile Building Blocks for the Synthesis ofOligopeptidosulfonamides [J]. Synthesis,2000,11:1579-1584
    [161] Piscitelli F, Coluccia A, Brancale A, La Regina G, Sansone A, Giordano C, Balzarini J,Maga G, Zanoli S, Samuele A, Cirilli R, La Torre F, Lavecchia A, Novellino E, Silvestri R.Indolylarylsulfones Bearing Natural and Unnatural Amino Acids. Discovery of PotentInhibitors of HIV-1Non-Nucleoside Wild Type and Resistant Mutant Strains ReverseTranscriptase and Coxsackie B4Virus [J]. J. Med. Chem.,2009,52(7):1922–1934
    [162] Shangguan N, Katukojvala S, Greenberg R, Williams L J. The Reaction of Thio Acidswith Azides: A New Mechanism and New Synthetic Applications [J]. J. Am. Chem. Soc.,2003,125(26):7754-7755.
    [163] Rijkers D T S, Merkx R, Yim C B, Brouwer A J, Liskamp R M J.‘Sulfo-Click’ forLigation as well as for Site-Specific Conjugation with Peptides, Fluorophores, and MetalChelators [J]. J. Pept. Sci.,2010,16:1-5
    [164] Brouwer A J, Merkx R, Dabrowska K, Rijkers D T S, Liskamp R M J. Synthesis andApplications of β-Aminoethanesulfonyl Azides [J]. Synthesis,2006,3:455-460.
    [165] Hara T, Durell S R, Myers M C, Appella D H. Probing the Structural Requirements ofPeptoids that Inhibit HDM2-p53Interactions [J] J. Am. Chem. Soc.,2006,128(6):1995-2004
    [166] Zhang W, Wang B Y, Chen N, Du D M, Xu J X. Expeditious and Practical Synthesis ofVarious Substituted Taurines from Amino Alcohols [J]. Synthesis,2008,2:197-200
    [167] Chen N, Jia W Y, Xu J X. A Versatile Synthesis of Various Substituted Taurines fromVicinal Amino Alcohols [J]. Eur. J. Org. Chem.,2009,33:5841-5846
    [168] Sylla-Iyarreta V M, Brun P L, Jorda P, Falguieres A, Ferroud C. Synthesis of NovelN-protected3-Amino Nitriles: Study of Their Hydrolysis Involving a Nitrilase-catalyzedStep [J]. Tetrahedron: Asymmetry,2009,20:2077-2089
    [169] Miller D J, Surfraz M B U, Akhtar M, Gani D, Allemann R K. Removal of The PhosphateGroup in Mechanism-based Inhibitors of Inositol Monophosphatase Leads to UnusualInhibitory Activity [J]. Org. Biomol. Chem.2004,2(5):678-688.
    [170] Kung C H, Kwon C H. Carbamate Derivatives of Felbamate as Potential AnticonvulsantAgents [J]. Med. Chem. Res.,2010,19(5):498-513
    [171] Kumar G D K, Baskaran S. A Facile, Catalytic, and Environmentally Benign Method forSelective Deprotection of tert-Butyldimethylsilyl Ether Mediated by PhosphomolybdicAcid Supported on Silica Gel [J]. J. Org. Chem.,2005,70(11):4520-4523
    [172] Correa A, Denis J N, Greene A E. A Safe, Simple, One-pot Preparation of N-derivatizedβ-amino Alcohols and Oxazolidinones from Amino Acids [J]. Synth. Commun.,1991,21(1):1-9
    [173] Kumar P S, Kumar G D K, Baskaran S. Truly Catalytic and Chemoselective Cleavage ofBenzylidene Acetal with Phosphomolybdic Acid Supported on Silica Gel [J]. Eur. J. Org.Chem.,2008,36:6063-6067
    [174] Moree W J, van der Marel G A, Liskamp R J. Synthesis of Peptidosulfinamides andPeptidosulfonamides: Peptidomimetics Containing the Sulfinamide or SulfonamideTransition-State Isostere [J]. J. Org. Chem.,1995,60(16):5157-5169
    [175] Wang B Y, Zhang W, Zhang L L, Du D M, Liu G, Xu J X. Versatile Synthesis of Free andN-benzyloxycarbonyl-protected2,2-disubstituted Taurines [J]. Eur. J. Org. Chem.2008,2:350-355
    [176] Nishiguchi A, Maeda K, Miki S. Sulfonyl Chloride Formation from Thiol Derivatives byN-chlorosuccinimide Mediated Oxidation [J]. Synthesis,2006,24:4131-4134.
    [177] Stapersma J, Deuling H H, Van G R. Hydroxy Alkane Sulfonate (HAS), a New SurfactantBased on Olefins [J] J. Am. Oil Chem. Soc.1992,69(1):39-43
    [178] Moree W J, Van der Marel G A, Liskamp R M. Peptides Containing a Sulfinamide or aSulfonamide Moiety: New Transition-state Analogs [J]. Tetrahedron Lett.1991,32(3):409-412
    [179] Gennari C, Longari C, Ressel S, Salonm B, Piarulli U, Ceccarelli S, Mielgo A. Synthesisof Combinatorial Libraries of Vinylogous Sulfonamido Peptides (Vs-peptides)[J]. Eur. J.Org. Chem.1998,11:2437-2449
    [180] Carson K G, Schwender C F, Shroff H N, Cochran N A, Gallant D L, Briskin M J.Sulfonopeptide inhibitors of leukocyte adhesion [J]. Bioorg. Med. Chem. Lett.1997,7(6):711-714
    [181] Neelakantan L, Hartung W H. alpha.-Aminoalkanesulfonic Acids [J]. J. Org. Chem.1959,24,1943-1948.
    [182] Lowik D W P M, Liskamp R M J. Synthesis of α-and β-substituted AminoethaneSulfonamide Arginine-glycine Mimics [J]. Eur. J. Org. Chem.2000,7,1219-1228.
    [183] Moree W J, van der Marel G A, Liskamp R J. Synthesis of Peptidosulfinamides andPeptidosulfonamides: Peptidomimetics Containing the Sulfinamide or SulfonamideTransition-State Isostere [J]. J. Org. Chem.1995,60(16),5157-5169
    [184] Moree W J, van Gent L C, van der Marel G A, Liskamp R M J. Synthesis of PeptidesContaining a Sulfinamide or a Sulfonamide Transition-state Isostere [J]. Tetrahedron1993,49(5),1133-1150.
    [185] de Bont D B A, Moree W J, Liskamp R M J. Molecular Diversity of Peptidomimetics:Approaches to The Solid-phase Synthesis of Peptidosulfonamides [J]. Bioorg Med.Chem.1996,4(5),667-672
    [186] Moree W J, van der Marel G A, Liskamp R M J. Synthesis of Peptides Containing theβ-substituted Aminoethane Sulfinamide or Sulfonamide Transition-state Isostere Derivedfrom Amino Acids [J]. Tetrahedron Lett.1992,33(42),6389-6392
    [187] Gude M, Piarulli U, Potenza D, Salom B, Gennari C. A new method for the solution andsolid phase synthesis of chiral β-sulfonopeptides under mild conditions [J]. TetrahedronLett.1996,37(47):8589-8592.
    [188] de Bont D B A, Dijkstra G D H, den Hartog J A J, Liskamp R M J. Solid-phase Synthesisof Peptidosulfonamide Containing Peptides Derived from Leu-enkephalin [J]. Bioorg.Med. Chem. Lett.1996,6(24),3035-3040
    [189] Crowder M W, Sigdel T K, Golich F C, Yang K W. Phosphinate, Sulfonate, andSulfonamidate Dipeptides as Potential Inhibitors of Escherichia Coli Aminopeptidase N[J]. Bioorg. Med. Chem. Lett.2005,15(23),5150-5153
    [190] Biasone A, Tortorella P, Campestre C, Agamennone M, Preziuso S, Chiappini M, Nuti E,Carelli P, Rossello A, Mazza F, Gallina C. α-Biphenylsulfonylamino2-methylpropylPhosphonates: Enantioselective Synthesis and Selective Inhibition of MMPs [J]. Bioorg.Med. Chem.2007,15(2),791-799
    [191] Zhu S Z, Jin X L. Synthesis of Perfluoroalkanesulfonylaminoalkylphosphonic Acids [J]. J.Fluorine Chem.1995,72(1),19-22
    [192] Pochetti G, Gavuzzo E, Campestre C, Agamennone M, Tortorella P, Consalvi V, Gallina C,Hiller O, Tschesche H, Tucker P A, Mazza F. Structural Insight into the StereoselectiveInhibition of MMP-8by Enantiomeric Sulfonamide Phosphonates [J]. J. Med. Chem.2006,49(3),923-931.
    [193] Chen R Y, Dai Q. Study on the Mannich-type Reaction of P-toluenesulfonamide [J]. Chin.Chem. Lett.1995,6(3),181-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700