力生长因子24肽修饰的聚乳酸仿生骨基质材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物材料的应用范围及发展水平已经成为当今社会衡量一个国家现代化医疗水平的重要标志。随着我们步入21世纪,寻找和人体组织天然结构和性能相类似的生物材料,即可完全整合的、使受损组织可完全再生的生物材料成为当今社会生物医用材料研究的热点。聚乳酸材料因具有良好的生物相容性和生物可降解性,被美国FDA批准可以作为手术缝合线、人造血管、药物载体和组织工程支架等材料,说明聚乳酸在体内是可以安全使用的。但是,聚乳酸缺乏人体细胞特异性识别的信号位点,不具有生物活性,限制了其在生物医学工程领域的使用。因此,对聚乳酸进行仿生改性设计和研究,无疑会对这种全生物降解无残留的生物材料的发展产生重要的科学意义和深远的社会意义。
     本研究以马来酸酐改性聚乳酸(MPLA)为原料,按照材料整体仿生修饰的思路,以1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为缩合剂,通过酰胺键将生物活性多肽力生长因子E结构域24肽(即羧基端24肽,MGF-Ct24E)共价结合到MPLA的侧链上,从而成功制备了一种新型聚乳酸基仿生骨组织工程支架材料(MGF-Ct24E-MPLA)。该材料具有适合于骨组织工程应用的力学性能和良好的生物相容性、生物降解性。本文以这种新型的聚乳酸基仿生骨组织工程支架材料为研究对象,以促进骨损伤修复为研究目标,利用傅立叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)、差示扫描量热仪(DSC)、氨基酸分析仪(AAA)、元素分析仪(EA)以及常规化学分析方法对其基本结构和性能进行测试,并详细考察了它们的基本物理性能及力学性能、体外降解性能、降解产物对炎症反应的影响和生物相容性。主要研究内容和结论如下:
     1.在不改变MPLA主链结构的前提下,以EDC和NHS为缩合剂,通过酸酐基团与生物活性多肽MGF-Ct24E的氨基之间发生N-酰化反应,成功将MGF-Ct24E引入到MPLA的酸酐分子骨架中从而制备出一种新型仿生聚乳酸基质材料:
     ①FTIR、XPS、AAA和EA分析结果表明:MGF-Ct24E成功接枝到MPLA中,并且MGF-Ct24E在MGF-Ct24E-MPLA材料中的平均含量是1.05μmol/g,接枝效率是29.91%;
     ②DSC分析显示,MPLA的玻璃化转变温度(Tg)为42.73℃,而MGF-Ct24E改性MPLA的玻璃化转变温度则升高到55.85℃。
     2.通过材料的分子量、静态水接触角、吸水率以及材料拉伸和压缩性能的测试,考察了PDLLA、MPLA和MGF-Ct24E-MPLA三种聚合物材料的基本物理性能和力学性能:
     ①三种聚合物的分子量大小依次为PDLLA> MPLA> MGF-Ct24E-MPLA。这是因为随着马来酸酐和MGF-Ct24E对PDLLA的相继改性,PDLLA在反应过程中也相继发生了热降解和氨解现象,使PDLLA的分子量不断降低;
     ②三种聚合物的亲水性依次为PDLLA     ③马来酸酐的引入使PDLLA拉伸和压缩性能增强,而MGF-Ct24E改性MPLA则降低了MPLA的拉伸和压缩强度。
     3.研究MGF-Ct24E-MPLA、PDLLA和MPLA三种聚合物材料的降解性能以及降解产物的炎症反应。聚合物降解性能的评价是通过体外降解实验实现的,主要考察了降解过程中MGF-Ct24E-MPLA、PDLLA和MPLA三种聚合物材料降解体系的pH值的变化以及它们的表面形貌、失重率和吸水率的变化。通过将巨噬细胞和MGF-Ct24E-MPLA、PDLLA、MPLA三种聚合物材料的降解产物进行共培养,研究它们对巨噬细胞的形态和TNF-α、IL-1β和NO等炎症因子分泌情况的影响:
     ①体外降解实验说明,与PDLLA和MGF-Ct24E-MPLA相比,MPLA在降解过程中降解体系的pH值增长最快,酸致自催化降解的程度最大,由此而引起的失重率最大,降解速率最快。而与MPLA和PDLLA相比,碱性多肽MGF-Ct24E的引入使MGF-Ct24E-MPLA降解体系的pH呈上升趋势,失重率减小,吸水率增大,酸致自催化降解引起的整体溶蚀降解的程度也降低。这说明MGF-Ct24E-MPLA具有良好的降解稳定性;
     (2)炎症反应的实验表明,MPLA的降解产物能够刺激巨噬细胞最大限度的铺展,伪足增多、增长,PDLLA的降解产物次之,MGF-Ct24E-MPLA降解产物的效果则没有那么明显。同时,和PDLLA相比,MPLA的降解产物能够提高巨噬细胞产生的TNF-α、IL-1β和NO,而MGF-Ct24E-MPLA的降解产物则显著降低了这三种炎症因子的产生,说明多肽MGF-Ct24E的引入能够缓解PDLLA降解过程中引发的炎症反应。
     4.通过体外实验,利用SD大鼠乳鼠的颅骨成骨细胞和MPLA、MGF-Ct24E/MPLA混合物和MGF-Ct24E-MPLA三组聚合物材料共培养的评估模型,对成骨细胞在上述三组材料上的形态、黏附、增殖、分化和矿化情况进行了系统的评价和描述:
     ①与对照组MPLA材料相比,成骨细胞在MGF-Ct24E/MPLA混合物和MGF-Ct24E-MPLA材料上黏附的数目更多,细胞形态更好,且成骨细胞在这两种材料表面的黏附和铺展没有明显差异(P <0.05)。
     ②与对照组MPLA材料相比,在细胞和生物材料相互作用的早期,MGF-Ct24E/MPLA混合物和MGF-Ct24E-MPLA两种材料更有利于成骨细胞的增殖,但随着细胞和生物材料相互作用时间的延长(大于3天),MGF-Ct24E/MPLA共混聚合物中的MGF-Ct24E大部分都已释放出来,使其促进成骨细胞增殖的作用逐渐减弱,而MGF-Ct24E-MPLA材料中的MGF-Ct24E则随着MGF-Ct24E-MPLA的降解缓慢的释放出来,这使其在长时间内能更好的促进成骨细胞的增殖。
     ③与对照组MPLA材料相比,MGF-Ct24E/MPLA混合物和MGF-Ct24E-MPLA两种材料抑制成骨细胞早期的分化,促进后期的分化,其中MGF-Ct24E-MPLA材料对成骨细胞的分化促进效果更明显。针对MGF-Ct24E-MPLA材料对成骨细胞分化的这种双重作用,我们得出MGF-Ct24E-MPLA材料并不是抑制成骨细胞的早期分化,而是延迟了其分化过程。
     ④与对照组MPLA材料相比,MGF-Ct24E-MPLA具有显著的促进成骨细胞矿化的能力,而MGF-Ct24E/MPLA混合物和MPLA材料影响成骨细胞矿化的水平是相似的。
The application range of biomaterials and its development level has been one of theimportant sign to measure a nation's modernization medical level now. As we moveforward in the new millennium, looking for biomaterials similaring to natural humantissue structure and performance, which are designed to be completely integrated andcause the full reproduction of damaged tissue, become a research hotspot of biomedicalmaterials. PDLLA have been approved by the Food and Drug Administration of UnitedStates of America (FDA) as the safety of the biodegradable biomedical materials in thebody. However, some shortcomings of PDLLA have been limited their applications inthe field of biomedical engineering, such as lack of human cell specific recognitionsignal sites and absence of bioactive. Therefore their biomimetic modification designand research has important scientific significance and profound social significance inbiomaterials and biomedical engineering fields in future.
     In this study, A novel biomimetic poly (D, L-lactic acid)(PDLLA) modification wasdesigned and synthesized based on the24amino acid peptide analog corresponding tothe unique C-terminal E-domain in mechano-growth factor (MGF-Ct24E) grafted intothe maleic anhydride modified PDLLA (MPLA). MGF-Ct24E was grafted into the sidechain of MPLA via a stable covalent amide bond by using1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide(NHS) as the condensing agent to produce biomimetic MPLA materials (MGF-Ct24E-MPLA). The characterization of the biomimetic biomaterials was by means ofthe Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy(XPS), Differential scanning calorimeter (DSC), Amino acid analyzer (AAA),Elementary analysis (EA) and classical chemical analysis to estimate the structures andthe properties. Thereafter, the basic physical properties and mechanical performance, invitro biodegradation, the influence of degradation products on the inflammatoryresponse and biocompatibility of the synthetic biomimetic biomaterials wereinvestigated. The main works and conclusions are as follows:
     1. On the condition of maintaining the main chain structure, MGF-Ct24E wasgrafted into the side chain of MPLA via a stable covalent amide bond by using EDC andNHS as the condensing agent to produce novel biomimetic MPLA materials.
     ①FTIR, XPS, DSC AAA and EA analysis revealed that, MGF-Ct24E was successfully modified into MPLA and the average contents of MGF-Ct24E inMGF-Ct24E-MPLA materials was1.05μmol/g and the coupling efficiency was29.91%.
     ②DSC results showed that the glass transition temperature of MPLAwas42.73oC,but the glass transition temperature of MGF-Ct24E-MPLA was raised to55.85oC.
     2. The basic physical properties and mechanical properties of the PDLLA, MPLAand MGF-Ct24E-MPLA materials were characterized by the molecular weight, staticwater contact Angle, water absorption rate, mechanical tensile tests and compressiontest.
     ①The molecular weight of the three kinds of polymers molecular weight was in thesequence of PDLLA> MPLA> MGF-Ct24E-MPLA. This is because that as themodification of PDLLA with maleic anhydride and MGF-Ct24E, the thermaldegradation and aminolysis phenomenon was occurred in succession in reaction process.Therefore the molecular weight of modified PDLLA continuously reduced.
     ②The hydrophilicity of three kinds of polymers materials was in the sequence ofPDLLA     ③The maleic anhydridet grafted into PDLLAmade MPLAand the tensile andcompression performance of MPLA increased as to PDLLA. Futhermore, the MPLAmodified with MGF-Ct24E then reduced the tensile and compression strength ofMGF-Ct24E-MPLA.
     3. In vitro biodegradation and the influence of degradation products on theinflammatory response of PDLLA, MPLA and MGF-Ct24E-MPLA were investigated.The evaluation indicators of in vitro biodegradation behavior were weight loss ratio,surface topography, water absorption ratio and pH value changes. Moreover, in vitro theinflammatory response of the degradation products of the three materials were evaluatedby monitoring the expression of cytokines such as the, tumor necrosis factor-α (TNF-α)and interleukin-1β (IL-1β) and the release of NO by macrophages in contact withdegradation products.
     ①Results of hydrolytic degradation of the polymers during12weeks indicated thatthe in vitro degradation stability of MGF-Ct24E-MPLA was better than PDLLA and MPLA. This was because the alkaline polypeptides MGF-Ct24E could eliminate orweaken the acid induced auto-catalysis during the degradation of MGF-Ct24E-MPLA.
     ②The inflammatory response experiments indicated that macrophages culturedwith degradation products of MPLA showed increased secretion levels of TNF-α, IL-1βand NO, whereas macrophages cultured with degradation products ofMGF-Ct24E-MPLA revealed decreased secretion levels of TNF-α, IL-1β and NO,related to macrophages cultured with degradation products of PDLLA as control. Themodification of PDLLA with polypeptides MGF-Ct24E could alleviate inflammatoryresponse during the degradation of polymers.
     4. In this study, we evaluated the cytocompatibility of MGF-Ct24E chemicallygrafted and physically blended with MPLA, relative to maleic MPLA as the control. Ratcalvarial osteoblasts were seeded on the three polymer films, and cell adhesion,spreading, proliferation, differentiation and mineralization were assessed.
     ①Compared with MPLA, MGF-Ct24E-MPLA and MGF-Ct24E/MPLA blendspromoted osteoblasts adhesion and spreading, and there was no significant difference incell viability between the MGF-Ct24E-MPLA and MGF-Ct24E/MPLA blends (p <0.05).
     ②The proliferation ability of rat calvarial osteoblasts cultured on theMGF-Ct24E-MPLA and MGF-Ct24E/MPLA blends films was significantly strongerthan that on MPLA. There was no significant difference in cell proliferation behavior onthe MGF-Ct24E-MPLA and MGFCt24E/MPLA films at the prophase of osteoblastsgrowth stage. Interestingly, the cell proliferation activity on the MGFCt24E-MPLAfilms was greater than that on the MGF-Ct24E/MPLA blends films at the anaphase ofosteoblasts growth stage. The phenomenon occurred because MGF-Ct24E blending intoMPLA easily decreases. Then the MGF-Ct24E alone was metabolized quickly duringcell metabolism over time. However, when MGF-Ct24E was grafted into MPLA byusing the chemical method, it was sustained and released as MGF-Ct24E-MPLAdegraded. Therefore, MGFCt24E-MPLA has a sustaining effect on promoting cellgrowth, compared to the MGFCt24E/MPLA blends over time
     ③MGF-Ct24E-MPLA and MGF-Ct24E/MPLA materials blends had dual influenceon the differentiation of rat calvarial osteoblasts. In the early period of cell growth, theMGFCt24E-MPLA and MGF-Ct24E/MPLA blends promoted osteoblast proliferationand temporarily restrained differentiation. During the late period of cell growth, theMGF-Ct24E-MPLA and MGF-Ct24E/MPLA blends enhanced osteoblast differentiation. MGF-Ct24E-MPLA has a stronger effect on promoting cells differentiation compared tothe MGF-Ct24E/MPLA blends. Therefore it can be conjectured thatMGF-Ct24E-MPLA did not inhibit differentiation but delayed.
     ④MGF-Ct24E-MPLA significantly enhanced mineralization of the rat calvarialosteoblasts compared with the MGFCt24E/MPLA blends and MPLA, between whichthere was no significant difference.
引文
[1] Langer R, Vacanti JP. Tissue engineering [J]. Science,1993,260(5110):920-26.
    [2] Ma P.X. Scaffolds for tissue fabrication [J]. Mater,2004,7:30–40.
    [3] Ma P.X. Tissue engineering, in: J.I. Kroschwitz (Ed.), Third ed., Encyclopedia of PolymerScience and Technology, vol.12, JohnWiley&Sons, Inc., Hoboken, NJ,2005, pp.261–91.
    [4] Rice M.A., Dodson B.T., Arthur J.A., et al. Cell-based therapies and tissue engineering [J].Otolaryngol Clin North Am,2005,38:199–214.
    [5] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage [J]. Biomaterials.2000,21(24):2529-43.
    [6] Zhang R, Ma PX. Porous poly (L-lactic acid)/apatite composites created by biomimeticprocess [J]. J Biomed Mater Res,1999,45(4):285-93.
    [7] Gross Karlis A, Rodriguez Lorenzo L M. Biodegradable composite scaffolds with aninterconnected spherical network for bone tissue engineering [J]. Biomaterials,2004,25(20):4955-62.
    [8] Akeda K, Okuma M, Attawia M, et al. Platelet rich plasma stimulates porcine articularchondrocyte proliferation and matrix bio-synthesis [J]. Osteoarthr Cartil,2006,14(12):1272-80.
    [9] Datta N, Pham Q P, Sharma U, et al. In vitro generated extracellular matrix and fluid shearstress synergistically enhance3D osteoblastic differentiation [J]. Proc Natl Acad Sci2006,103(8):2488-93.
    [10] Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration [J]. Biomaterials,1998,19(21):1935-43.
    [11] Massia SP, Hubbell JA. An RGD spacing of440nm is sufficient for integrin aVb3-mediatedfibroblast spreading and140nm for focal contact and stress fiber formation [J]. J Cell Biol,1991,114:1089–100.
    [12] Danilov YN, Juliono RN.(Arg-Gly-Asp)n-albumin conjugates as a model substratum forintegrin-mediated cell adhesion [J]. Exp Cell Res,1989,182:186–96.
    [13] Drumheller PD, Elbert DL, Hubbell JA. Multifunctional poly(ethylene glycol)semi-interpenetrating polymer networks as highly selective adhesive substrates forbioadhesive peptide grafting [J]. Biotechnol Bioeng,1994,43:772–80.
    [14] Mohan N, Nair PD. Polyvinyl alcohol-poly (caprolactone) semi IPN scaffold with implicationfor cartilage tissue engineering [J]. J Biomed Mater Res B Appl Biomater,2008,84(2):584-94.
    [15] Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybridbiomaterial for a novel scaffold in cartilage tissue engineering [J]. Biomaterials,2005,26(6):611-9.
    [16] Niu XF, Feng QL, Wang MB, et al. Porous nano-HA/collagen/PLLA scaffold containingchitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2[J]. J.Control. Release,2009,134(2):111-7.
    [17] Healy KE. Molecular engineering of materials for bioreactivity [J]. Curr Opin Solid StateMater Sci.1999,4:381-7.
    [18] Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses [J].Ann NY Acad Sci,1999,875:24-35.
    [19] Underwood PA, Bennett FA. A comparison of the biological activities of the cell-adhesiveproteins vitronectin and fibronectin [J]. J Cell Sci,1989,93:641–9.
    [20] Humphries MJ, Akiyama SK, Komoriya A, et al. Identification of an alternatively spliced sitein human plasma fibronectin that mediates cell type specific adhesion [J]. J Cell Biol,1986,103:2637–47.
    [21] Shin H.S., Jo S.B., Mikos A.G. Biomimetic materials for tissue engineering [J]. Biomaterials,2003,24:4353–64.
    [22] Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimeticoligo(poly(ethylene glycol) fumarate) hydrogels modified with Arg-Gly-Asp peptides and apoly(ethylene glycol) spacer [J]. J Biomed Mater Res,2002,61:169–79.
    [23] Sugawara T, Matsuda T. Photochemical surface derivatization of a peptide containingArg-Gly-Asp (RGD)[J]. J Biomed Mater Res,1995,29:1047–52.
    [24] Mann BK, Schmedlen RH, West JL. Tethered TGF-b increases extracellular matrix productionof vascular smooth muscle cells[J]. Biomaterials,2001,22:439–44.
    [25] Ranieri JP, Bellamkonda R, Bekos EJ, et al. Neuronal cell attachment to fluorinated ethylenepropylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II [J].J Biomed Mater Res,1995,29:779–85.
    [26] Bellamkonda R, Ranieri JP, Aebischer P. Laminin oligopeptide derivatized agarose gels allowthree dimensional neurite extension in vitro [J]. J Neurosci Res,1995,41:501–9.
    [27] Hubbell JA, Massia SP, Desai NP, et al. Endothelial cell-selective materials for tissueengineering in the vascular graft via a new receptor [J]. Biotechnology,1991,9:568–72.
    [28] Panitch A, Yamaoka T, Fournier MJ, et al. Design and biosynthesis of elastin-like artificialextracellular matrix proteins containing periodically spaced fibronectin CS5domains [J].Macromolecules,1999,32:1701–3.
    [29] Zustiak SP, Durbal R, Leach JB. Influence of cell-adhesive peptide ligands on poly(ethyleneglycol) hydrogel physical, mechanical and transport properties [J]. Acta Biomater,2010,6(9):3404-14.
    [30] Schense JC, Bloch J, Aebischer P, et al. Enzymatic incorporation of bioactive peptides intofibrin matrices enhances neurite extension [J]. Nature Biotech,2000,18:415–9.
    [31] Kam L, Shain W, Turner JN, et al. Selective adhesion of astrocytes to surfaces modified withimmobilized peptides [J]. Biomaterials,2002,23:511–5.
    [32] Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading,cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells[J]. Biotechnol Prog,1999,15:19–32.
    [33] Dee KC, Anderson TT, Bizios R. Design and function of novel osteoblast-adhesive peptidesfor chemical modification of biomaterials [J]. J Biomed Mater Res,1998,40:371–7.
    [34] Suzuki Y, Tanihara M, Suzuki K, et al. Alginate hydrogel linked with synthetic oligopeptidederived from BMP-2allows ectopic osteoinduction in vivo [J]. J Biomed Mater Res,2000,50:405–9.
    [35] West JL, Hubbell JA. Polymeric biomaterials with degradation sites for proteases involved incell migration [J]. Macromolecules,1999,32:241–4.
    [36] Mann BK, Gobin AS, Tsai AT, et al. Smooth muscle cell growth in photopolymerizedhydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogsfor tissue engineering [J]. Biomaterials,2001,22:3045–51.
    [37] Stile RA, Healy KE. Thermo-responsive peptide-modified hydrogels for tissue regeneration[J]. Biomacromolecules,2001,2:185–94.
    [38] Marler JJ, Guha A, Rawley J,et al. Soft-tissue augmentation with injectable alginate andsyngeneic fibroblasts [J]. Plast Reconstr Surg,2000,105:2049–58.
    [39] Niu X, Luo Y, Li Y, et al. Design of bioinspired polymeric materials based on poly(D, L-lacticacid) modifications towards improving its cytocompatibility [J]. J Biomed Mater Res A,2008,84:908–16.
    [40] Schense JC, Hubbell JA. Cross-linking exogenous bifunctional peptides into fibrin gels withfactor XIIIa [J]. Bioconjugate Chem,1999,10:75–81.
    [41] Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implantsfor internal fixation: A review [J]. Biomaterials,2000,21:2615–21.
    [42] Dubois P, Narayan R. Biodegradable compositions by reactive processing of aliphaticpolyester/Polysaccharide blends [J]. Macromol Symp,2003,198:233-43.
    [43] Cui W, Li X, Xie C, et al. Controllable growth of hydroxyapatite on electrospunpoly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds [J].Polymer,2010,51:2320–8.
    [44] Elisseeff J, Anseth K, Langer R, et al. Synthesis and characterization of photo-cross-linkedpolymers based on poly(L-lactic acid-co-L-aspartic acid)[J]. Macromolecules,1997,30:2182–4.
    [45] Wang Z, Zhao H, Wang Q, et al. Synthesis of poly (D, Llactic acid) modified by cholic acidvia direct melt copolycondensation and its characterization [J]. J Appl Polym Sci,2010,117:1405–15.
    [46] Arvanitoyannis I, Nakayama A, Kawasaki N, et al. Novel star-shaped polylactide withglycerol using stannous octoate or tetraphenyl tin as catalyst:1. Synthesis, characterizationand study of their biodegradability [J]. Polymer,1995,36:2947–56.
    [47] Cannizzaro SM, Padera RF, Langer R, et al. A novel biotinylated degradablepolymer forcell-interactive applications [J]. Biotechnol Bioeng,1998,58:529–35.
    [48] Li J, Zhai Y, Zhang B, et al. Methoxy poly (ethylene glycol)-block-poly (D, L-lactic acid)copolymer nanoparticles as carriers for transdermal drug delivery [J]. Polym Int,2008,57:268–74.
    [49] Ruan C, Wang Y, Zhang M, et al. Design, synthesis and characterization of novelbiodegradable shape memory polymers based on poly(D, L-lactic acid) diol, hexamethylenediisocyanate and piperazine [J]. Polym Int,2011,61:524–30.
    [50] Wan Y, Fang Y, Wu H, et al. Porous polylactide/chitosan scaffolds for tissue engineering [J]. JBiomed Mater Res A,2007,80:776–89.
    [51] Liu HC, E LL, Wang DS, et al. Reconstruction of alveolar bone defects using bonemorphogenetic protein2mediated rabbit dental pulp stem cells seeded onnano-hydroxyapatite/collagen/poly(L-lactide)[J]. Tissue Eng Part A,2011,17:2417-33.
    [52] Carlisle ES, Mariappan MR, Nelson KD, et al. Enhancing hepatocyte adhesion by pulsedplasma deposition and polyethylene glycol coupling [J]. Tissue Eng,2000,6:45–52.
    [53] Sodergard A. Modification of polylactide [J]. Recent Res Dev Polym Sci,1998,2:263–75.
    [54] Barrera DA, Zylstra E, Lansbury PT, et al. Synthesis and RGD peptide modification of a newbiodegradable copolymer: poly(lactic acid-co-lysine)[J]. J Am Chem Soc,1993,115:11010-11.
    [55] Yu H, Guo XJ, Qi XL, et al. Synthesis and characterization of arginine-glycine-asparticpeptides conjugated poly(lactic acid-co-L-lysine) diblock copolymer [J]. J Mater Sci: MaterMed,2008,19:1275-83.
    [56] Cook AD, Hrkach JS, Gao NN, et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial [J]. J BiomedMater Res.1997,35:513-523.
    [57] Quirk RA, Chan WC, Davies MC, et al. Poly(L-lysine)-GRGDS as a biomimetic surfacemodifier for poly(lactic acid)[J]. Biomaterials,2001,22(8):865-72.
    [58] Chen R, Curran SJ, Curran JM, et al. The use of poly(l-lactide) and RGD modifiedmicrospheres as cell carriers in a flow intermittency bioreactor for tissue engineeringcartilage[J]. Biomaterials,2006,27(25):4453-60
    [59] Hu YH, Winn SR, Krajbich I, et al. Porous polymer scaffolds surface-modified witharginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro [J]. JBiomed Mater Res A,2003,64(3):583-90.
    [60] Shavlakadze T, Winn N, Rosenthal N, et al. Reconciling data from transgenic mice thatoverexpress IGF-I specifically in skeletal muscle [J]. Growth Horm IGF Res,2005,15(1):4–18.
    [61] Yang S, Alnaqeeb M, Simpson H, et al. Cloning and characterization of an IGF-1isoformexpressed in skeletal muscle subjected to stretch [J]. J Muscle Res Cell Motil,1996,17(4):487–95.
    [62] Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation [J]. Physiology(Bethesda),2005,20:232–8.
    [63] Matheny Jr RW, Nindl BC, Adamo ML. Minireview: mechano-growth factor: a putativeproduct of IGF-I gene expression involved in tissue repair and regeneration [J].Endocrinology,2010,151(3):865–75.
    [64] Philippou A, Papageorgiou E, Bogdanis G, et al. Expression of IGF-1isoforms afterexercise-induced muscle damage in humans: characterization of the MGF E peptide actions invitro [J]. In Vivo,2009,23(4):567–75.
    [65] Dluzniewska J, Sarnowska A, Beresewicz M, et al. A strong neuroprotective effect of theautonomous C-terminal peptide of IGF-1Ec (MGF) in brain ischemia [J]. FASEB,2005,19(13):1896–8.
    [66] Carpenter V, Matthews K, Devlin G, et al. Mechano-growth factor reduces loss of cardiacfunction in acute myocardial infarction [J]. Heart Lung Circ,2008,17(1):33–9.
    [67] Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymalstem cells is stimulated by different regions of the mechano-growth factor prohormone [J]. JMol Cell Cardiol,2010,49(6):1042-5.
    [68] Ronald W, Matheny Jr., Bradley C, et al. Minireview: Mechano-Growth Factor: A PutativeProduct of IGF-I Gene Expression Involved in Tissue Repair and Regeneration [J].Endocrinology,2010,151:865-75.
    [69] Dluzniewska J, Sarnowska A, Beresewicz M, et al. A strong neuroprotective effect of theautonomous C-terminal peptide of IGF-1Ec (MGF) in brain ischemia [J]. FASEB,2005,19:1896-98.
    [70] Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I inmyoblast proliferation and differentiation [J]. FEBS Lett,2002,522:156–60.
    [71] Mills P., Dominique J.C., Lafreniere J.F.,et al. A synthetic mechano growth factor E Peptideenhances myogenic precursor cell transplantation success [J]. Transplant,2007,7:2247–59.
    [72] Hao W, Dong J, Jiang M, et al. Enhanced bone formation in large segmental radial defects bycombining adipose-derived stem cells expressing bone morphogenetic protein2withnHA/RHLC/PLA scaffold [J]. Int Orthop,2010,34(8):1341-9.
    [73] Lin ZY, Duan ZX, Guo XD, et al. Bone induction by biomimetic PLGA-(PEG-ASP)ncopolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo [J]. JControl Release,2010,144(2):190-5.
    [74] Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering [J].Biomaterials,2010,13:14-22.
    [75]吴斌.胶原矿化仿生骨联合骨形态发生蛋白2相关多肽促进骨再生的实验研究.湖北.华中科技大学,博士学位论文,2009.
    [76] Luo YF, Wang YL, Niu XF, ET AL. Synthesis and characterization of a novel biomaterial:Maleic anhydride-modified poly(D, Llactic acid)[J]. Chin Chem Lett,2004,15:521–4.
    [77] Dai Z, Wu F, Yeung EW, et al. IGF-IEc expression, regulation and biological function indifferent tissues [J]. Growth Horm IGF Res,2010,20(4):275-81.
    [78] V. Carpenter, K. Matthews, G. Devlin, et al., Mechano-Growth Factor Reduces Loss ofCardiac Function in Acute Myocardial Infarction [J]. Heart Lung Circ,2008,17:33-9.
    [79] A. Stavropoulou, A. Halapas, A. Sourla, et al., Igf-1Expression in Infarcted Myocardium andMgf E Peptide Actions in Rat Cardiomyocytes in Vitro [J]. Mol Med,2009,15:127-35.
    [80] Matheny RW Jr, Nindl BC, Adamo ML. Minireview: Mechano-growth factor: a putativeproduct of IGF-I gene expression involved in tissue repair and regeneration [J].Endocrinology,2010,151(3):865-75.
    [81] John M. Collins, Paul H. Goldspink, et al. Migration and proliferation of human mesenchymalstem cells is stimulated by different regions of the mechano-growth factor prohormone [J]. JMol Cell Cardiol,2010,49(6):1042–1045.
    [82] Goldspink G. Impairment of IGF-I gene splicing and MGF expression associated with musclewasting. Int J Biochem Cell Biol2006;38:481–489.
    [83] Zhang B, Jiang P, Xian C, ET AL. Expression of mechano-growth factor in Escherichia coliand activity analysis [J]. Chin J Biotechnol,2008,24:1180–5.
    [84]王镜岩,朱圣庚,徐长法.生物化学(上)(第三版)(M).北京:高等教育出版社.2002:152-3.
    [85] Qiu K, Wan CX, Chen X, et al. Acrylic acid-RGD as a biomimetic surface modifier forpoly(ethylene terephthalate)[J]. Chin J Biomed Eng,2003,12(1):22-31.
    [86]赵强,万昌秀,刘建伟等.生物活性短肽RGD在PET表面接枝方法的研究[J].生物医学工程学杂志,2003,20(3):384-7.
    [87] Im O, Li J, Wang M, et al. Biomimetic three-dimensional nanocrystalline hydroxyapatite andmagnetically synthesized single-walled carbon nanotube chitosan nanocomposite for boneregeneration [J]. nt J Nanomedicine,2012,7:2087-99.
    [88] Bagher Z, Rajaei F, Shokrgozar M. Comparative study of bone repair using poroushydroxyapatite/β-tricalcium phosphate and xenograft scaffold in rabbits with tibia defect [J].Iran Biomed J,2012,16(1):18-24.
    [89] Ullmark G, S rensen J, Nilsson O. Analysis of bone formation on porous and calciumphosphate-coated acetabular cups: a randomised clinical [18F] fluoride PET study [J]. Hip Int,2012,22(2):172-8.
    [90] Hao Y, Yan H, Wang X, et al. Evaluation of osteoinduction and proliferation on nano-Sr-HAP:a novel orthopedic biomaterial for bone tissue regeneration [J]. J Nanosci Nanotechnol,2012,12(1):207-12.
    [91]胡巧玲,钱秀珍,李保强,沈家骢.原位沉析法制备壳聚糖棒材的研究[J].高等学校化学学报,2003,3(1):4~7.
    [92]张文毓.新型仿生材料的研究进展[J].传感器世界,2009,6:6-9.
    [93]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2003,17(4):337~44.
    [94] Langer R, Tirrell DA. Designing materials for biology and medicine [J]. Nature,2004,428:487-92.
    [95] Drotleff S, Lungwitz U, Breunig M, et al. Biomimetic polymers in pharmaceutical andbiomedical sciences [J]. Eur J Pharm and Biopharm,2004,58:385-407.
    [96] Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for the designof innovative materials and systems [J]. Nat Mater,2005,4:277-283.
    [97] Guo XD, Song YL, Zheng QX. Surface modification of biomometic PLGA-[ASP-PEG]matrix with RGD containing peptides: a new mom-viral vector for gene transfer and tissueengineering [J]. J Wuhan Univer Technol: Mater Sci Ed,2004,21(3):41-3.
    [98] Wozeny J, Seeherman H. Proten-basen tissue engineering in bone and cartilage repair [J].Curr Opin Biotechnol,2004,15:392-8.
    [99] Lee JY, Choo JE, Choi YS, et al. Characterization of the surface immobilized syntheticheparin binding domain derived from human fibroblast growth factor-2and its effect onosteoblast differentiation [J]. J Biomed Mater Res A,2007,83(4):970-9.
    [100] Richert L, Boulmedais F, Lavalle P, et al. Improvement of stability and cell adhesionproperties of polyelectrolyte multilayer films by chemical cross-linking [J].Biomacromolecules,2004,5(2):284-94.
    [101] Staros, J.V., et al. Enhancement by N-hydroxysulfosuccinimide of water-solublecarbodiimide-mediated coupling reactions [J]. Anal Biochem,1986,156:220-2.
    [102] Cuatrecaseas, P. and Parikh, I. Adsorbents for affinity chromatography. Use ofN-hydroxysulfosuccinimide esters of agarose [J]. Biochemistry,1972,11:291-9.
    [103] Grabarek, Z. and Gergely, J. Zero-length crosslinking procedure with the use of active esters[J]. Anal Biochem,1990,185:131-5.
    [104] Nela Angelova, David Hunkeler. Rationalizing the design of polymeric biomaterials [J].Trends Biotechnol,1999,17(10):409-21.
    [105] Mark E. Furth, Anthony Atala, Mark E, et al. Smart biomaterials design for tissue engineeringand regenerative medicine [J]. Biomaterials,2007,28(34):5068-73.
    [106] Folkman J, Moscona A. Role of cell shape in growth control [J]. Nature,1978,273:345–349.
    [107] Robert P. Lanza, Robert Langer, William L. Chick. Principles of tissue engineering.1thedition. Georgetown, Texas, U. S. A: R. G. Lands Company,1997.
    [108] Thomson RC, Yaszemski MJ, Powers JM, et al. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration [J]. Biomaterials,1998,19(21):1935-1943.
    [109] D.P Fyhrie, D Vashishth. Bone stiffness predicts strength similarly for human vertebralcancellous bone in compression and for cortical bone in tension [J]. Bone,2000,26(2):169-173.
    [110]向鸿照.纳米羟基磷灰石/聚酰胺/壳聚糖复合骨组织修复材料研究[D].成都.四川大学,博士学位论文,2007.
    [111] Kricheldorf H R, Kreiser-Saunders I, Boettcher C. Polylactones:31. Sn(Ⅱ)octoate-initiatedpolymerization of L-lactide: a mechanistic study [J]. Polymer,1995,36(6):1253-9.
    [112] Wachem PBV, Hogt AH, Beugeling T, et al. Adhesion of cultured human endothelial cellsonto methacrylate polymers with varying surface wettability and charge [J]. Biomaterials,1987,8(5):323-328.
    [113] Lee JH, Khang G, Lee JW, et al. Interaction of different types of cells on polymer surfaceswith wettability gradient [J]. J Coll Interf Sci,1998,205(2):323-330.
    [114] Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and chargedfunctional groups on NIH3T3fibroblast attachment, spreading and cytoskeletal organization[J]. J Biomed Mater Res,1998,41(3):422-430.
    [115] Peluso G, Petillo O, Anderson JM, et al. The differential effects of poly (2-hydroxyethylmethacrylate) and poly (2-hydroxyethyl methacrylate)/poly (caprolactone) polymers on cellproliferation and collagen synthesis by human lung fibroblasts [J]. J Biomed Mater Res,1997,34(3):327-336.
    [116] Barrera DA, Zylstra E, Lansbury PT, et al. Copolymerization and degradation of poly(lacticacid-co-lysine)[J]. Macromolecules,1995,28(2):425-432.
    [117] Wachem PBV, Beugeling T, Feijen J, et al. Interaction of cultured human endothelial cellswith polymeric surfaces of different wettabilities [J]. Biomaterials,1985,6(6):403-408.
    [118]曹雪波,王远亮,潘君,等.马来酸酐改性聚乳酸的力学性能研究.高分子材料科学与工程,2002,(181):115-8.
    [119] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues-state ofthe art and future perspectives [J]. J Biomater Sci Polym E,2001,12(1):107-124.
    [120]杨子彬.基础医学卷—生物医学工程学(M).黑龙江:黑龙江科学技术出版社.2000:396-397.
    [121]朱莉芳,闫玉华.聚乳酸的合成与降解机理[J].生物骨科材料与临床研究,2006,3(1):42-47.
    [122] Minna Hakkarainen, Ann-Christine Albertsson, Sigbritt Karlsson. Weight losses andmolecular weight changes correlated with the evolution of hydroxyacids in simulated in vivodegradation of homoand copolymers of PLA and PGA [J]. Polym Degrad Stab,1996,52:283-91.
    [123] Wei Bai, Li-Fang Zhang, Qing Li, et al. In vitro hydrolytic degradation ofpoly(para-dioxanone)/poly(d,l-lactide) blends [J]. Mater Chem Phys,2010,1(122):79-86
    [124] Kikku Fukushima, Jose Luis Feijoo, Ming-Chien Yang. Abiotic degradation ofpoly(dl-lactide), poly(-caprolactone) and their blends [J]. Polym Degrad Stab,2012,11(97):2347-55.
    [125] Zhihua Gan, Donghong Yu, Zhiyuan Zhong, et al. Enzymatic degradation ofpoly(ε-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution [J]. Polymer,1999,10(40):2859-62
    [126] Wolfgang Heidemann, Stephanie Jeschkeit-Schubbert, Kurt Ruffieux, et al. pH-stabilizationof predegraded PDLLA by an admixture of water-soluble sodiumhydrogenphosphate—resultsof an in vitro-and in vivo-study [J]. Biomaterials,2002,17(23):3567-74
    [127] Everton Luiz de Paula, Valdir Mano, Fabiano Vargas Pereira. Influence of cellulosenanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide)[J]. Polym DegradStab,2011,9(96):1631-8.
    [128] Rozema F R, Bergsma J E, Bos R R, et al. Late degradation simulation of poly (L-lactide)[J].J Mater Sci: Mater Med,1994,5:575-81.
    [129] Nagata M, Okano F, Sakai W, et al. Separation and enzymatic degradation of blend films ofpoly (l-lactic acid) and cellulose [J]. J Polym sci. Part A: Poly Chem,1998,36:1861-4.
    [130] Gazzetti P, Laaaerini G. Degradation products of poly (ester-ether-ester) block copolymers donot alter endothelial metabolism in vitro [J]. J Mater Sci: Mater Med,1995,6:824-828.
    [131]张亮,靳安民,郭志民.三维多孔骨修复材料D,L-PLA及β-TCP/DL-PLA的体外降解研究[J].骨与关节损伤杂志,2001,16(3):184-186.
    [132] Jiang H L, Zhu K J. Synthesis, characterization and in vitro degradation of a new family ofalternative poly (ester-anhydrides) based on aliphatic and aromatic diacids [J]. Biomaterials,2001,22:211-218.
    [133] Wu X S, Wang N. Synthesis, characterization, biodegradation, and drug delivery applicationof biodegradable lactic/glycolic acid polymers. Part Ⅱ: Biodegradation [J]. J Biomater SciPolymer Edn,2001,12(1):21-34.
    [134] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials [J]. SeminImmunol,2008,20(2):86–100.
    [135] Hamlet S, Ivanovski S. Inflammatory cytokine response to titanium chemical compositionand nanoscale calcium phosphate surface modification [J]. Acta Biomater,2011,7(5):2345-53.
    [136] Anish C, Goswami DG, Kanchan V, et al. The immunogenic characteristics associated withmultivalent display of Vi polysaccharide antigen using biodegradable polymer particles [J].Biomaterials,2012,33(28):6843-57.
    [137] Jacobs JJ, Shanbhag A, Glant TT, et al. Wear debris in total joint replacements [J]. J Am AcadOrthop Surg,1994,2(4):212–20.
    [138] Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement.Biomaterials,2005,26(11):1271–86.
    [139] Taira M, Kagiya T, Harada H, et al. Microscopic observations and inflammatory cytokineproductions of human macrophage phagocytising submicron titanium particles [J]. J MaterSci Mater Med,2010,21(1):267–75.
    [140] Bi Y, Van De Motter RR, Ragab AA, et al. Titanium particles stimulate bone resorption byinducing differentiation of murine osteoclasts [J]. J Bone Joint Surg Am,2001,83-A(4):501–8.
    [141] McNally AK, DeFife KM, Anderson JM. Interleukin-4-induced macrophage fusion isprevented by inhibitors of mannose receptor activity [J]. Am J Pathol,1996,149:975–85.
    [142] McNally AK, Anderson JM. Foreign body-type multinucleated giant cell formation is potentlyinduced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022[J].Am J Pathol,2003,163:1147–56.
    [143] Williams D. The role of nitric oxide in biocompatibility [J]. Med Device Technol,2008,19(8):10-5.
    [144]郭圣荣.医药用生物降解性高分子材料[M].北京:化学工业出版社,2004:1-8.
    [145]罗彦凤,王远亮,潘君,等.新型改性聚乳酸及其亲/疏水性研究[J].高技术通讯,2003,2:23-26.
    [146]罗彦凤,王远亮,牛旭锋,等.新型改性聚乳酸及其体外生物可降解性研究[J].高技术通讯,2005,2:52-5.
    [147] Petit A, Catelas I, Antoniou J, Zukor DJ, et al. Differential apoptotic response of J774macrophages to alumina and ultrahigh-molecular-weight polyethylene particles [J]. J OrthopRes,2002,20:9–15.
    [148] Prabhu A, Shelburne CE, Gibbons DF. Cellular proliferation and cytokine responses ofmurine macrophage cell line J774A.1to polymethylmethacrylate and cobalt-chrome alloyparticles [J]. J Biomed Mater Res,1998,42:655–63.
    [149] Refai AK, Textor M, Brunette DM, et al. Effect of titanium surface topography onmacrophage activation and secretion of proinflammatory cytokines and chemokines [J]. JBiomed Mater Res A,2004,70:194–205.
    [150] DiPietro LA. Wound healing: The role of the macrophage and other immune cells [J]. Shock,1995,4:233–40.
    [151] Kao WJ. Evaluation of protein-modulated macrophage behavioron biomaterials: Designingbiomimetic materials for cellular engineering [J]. Biomaterials,1999,20:2213–21.
    [152] Anderson JM. Biological responses to materials [J]. Annu Rev Mater Res,2001,31:81–110.
    [153] Refai AK, Textor M, Brunette DM, et al. Effect of titanium surface topography onmacrophage activation and secretion of proinflammatory cytokines and chemokines [J]. JBiomed Mater Res A,2004,70(2):194–205.
    [154] Tan KS, Qian L, Rosado R, et al. The role of titanium surface topography on J774A.1macrophage inflammatory cytokines and nitric oxide production [J]. Biomaterials,2006,27(30):5170–7.
    [155] Soskolne WA, Cohen S, Sennerby L, et al. The effect of titanium surface roughness on theadhesion of monocytes and their secretion of TNF-alpha and PGE2[J]. Clin Oral ImplantsRes,2002,13(1):86–93.
    [156]戴建国.生物材料生物相容性的分子生物学研究进展[J].国外医学生物医学工程分册,2004,27(6):360-364.
    [157]王远亮.生物材料——生物学与材料科学的交叉[M].北京:科学出版社,2009.
    [158] Ratner BD, Hoffman AS, Schoen FJ, et al.“Biomaterials Science: A MultidisciplinaryEndeavor,” in Biomaterials Science: An Introduction to Materials in Medicine,2nd ed [M].San Diego: Elservier Academic Press,2004.
    [159] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application toproliferation and cytotoxicity assays [J]. J Immunol Meth,1983,65(1-2):55-63.
    [160]李玉宝.生物医学材料[M].北京:化学工业出版社,2003,265-269.
    [161] Williams DF. The Williams Dictionary of biomaterials [M]. Liverpool: Liverpool UniversityPress,1999.
    [162]愈耀庭,张兴栋.生物医用材料.天津:天津大学出版社.2000:12-24.
    [163] Sevastianov VI. Biocopatibile biomaterials: current status and future perspectives [J]. TrendsBiomater Artif Organs,2002,15(2):20-30.
    [164] Piolettl DP, Takei H, Lin T, et al. The effects of calcium phosphate cement particels onosteoblast fucntion [J]. Biomaterials,2000,21(6):1103-7.
    [165]贺亚敏,黄培林,吕晓迎.几种医用材料的细胞生物相容性评价的实验研究[J].东南大学学报(医学版),2003,22(2):75-9.
    [166]林红赛,王春仁,王志杰,张华.生物材料的细胞生物相容性评价方法的研究进展[J].中国医疗器械信息,2011,9:10-4.
    [167]杨晓芳,奚廷裴.生物材料生物相容性评价研究进展[J].生物医学工程学杂志,2001,18(1):123-128.
    [168]裴国献,金丹.骨组织工程学种子细胞研究进展[J].中华创伤骨科杂志,2003,5(1):55-8.
    [169] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone andcharacterization of their osteoblastic activities during in vitro mineralization [J]. Arch PhysiolBiochem,1997,105(2):158-166.
    [170] Huang WB, Carlsen B, Rudkin G, et al. Osteopontin is a negative regulator of proliferationand differentiation in MC3T3-E1pre-osteoblastic cells [J]. Bone,2004,34:799-808.
    [171]黄美娜.可预防骨不连的骨修复用新型形状记忆聚氨酯-脲的研究(D).重庆.重庆大学博士学位论文,2010.
    [172] Ishiyama M, Tominaga H, Shiga M, et al.A combioned assay of cell viability and in vitrocytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet [J].Biol Pharm Bull,1996,19(11):1518-20.
    [173] Yoshimura K, Tanimoto A, Abe T, et al. Shiga toxin1and2induce apoptosis in the amnioticcell line WISH [J]. J Soc Gynecol Investig,2002,9(1):22-26.
    [174] Gregory CA, Gunn WG, Peister A, et al. An alizarin red-based assay of mineralization byadherent cells in culture: comparison with cetylpyridinium chloride extraction [J]. AnalBiochem,2004,329:77-84.
    [175] Sittichockechaiwut A, Scutt AM, Ryan AJ. Use of rapidly mineralizing osteoblasts and shortperiods of mechanical loading to accelerate matrix maturation in3D scaffolds [J]. Bone,2009,44:822-9.
    [176] Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by humanbbone cellswith a sirius red-based colorimetric microassay: effects of transforming growth factor beta2and ascorbic acid2-phosphate [J]. Histochem Cell Biol,1999,112:271–276.
    [177] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone andcharacterization of their osteoblastic activities during in vitro mineralization [J]. Arch PhysiolBiochem,1997,105(2):158-166.
    [178]阮长顺.新型骨修复材料可降解哌嗪基聚氨酯脲的研究[D].重庆.重庆大学博士学位论文.2011.
    [179]林福春.力生长因子E肽(MGF-Ct24E)与应力作用对成骨细胞基因表达影响的基因芯片分析[D].重庆.重庆大学.2011.
    [180] Yan Hu, Kaiyong Cai, Zhong Luo, et al. Regulation of the differentiation of mesenchymalstem cells in vitro and osteogenesis in vivo by microenvironmental modification of titaniumalloy surfaces [J]. Biomaterials,2012,33:3515-28.
    [181] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application toproliferation and cytotoxicity assay [J]. J Immunol Meth,1983,65(1-2):55-63.
    [182] Osnes T, Sandstad O, Skar V, et al. Total protein in common duct bile measured byacetonitrile precipitation and a micro bicinchoninic acid (BCA) method [J]. Scand J Clin LabInvest,1993,53(7):757-63.
    [183] Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility ofosteoset, a calcium sulfate bone void filler [J]. Biomaterials,2000,21:2413-25.
    [184] Oxlund H, Mosekilde L, Ouoft G, et al. Reduced concentration of collagen reducible crosslinks in human trabecullar bone with respect to age and osteoporosis [J]. Bone,1996,19:479-84.
    [185] Garnero P, Sornay-rendu E, Hapuy MC, et al. Increased bone turnover in latepost-menopausal women is a major determinant of osteoporosis [J]. J Bone Miner Res,2006,11:337-349.
    [186]秦廷武,杨志明,蔡绍皙等.组织工程中细胞与材料的粘附作用[J].中国修复重建外科杂志,1999,13(1):31-37.
    [187] Massia SP, Hubbell JA. Immobilized amines and basic amino acids as mimeticheparin-binding domains for cell surface proteoglycan-mediated adhesion [J]. J Biol Chem,1992,267(14):10133–41.
    [188] Lom B, Healy KE, Hockberger PE. A versatile technique for patterning biomolecules ontoglass substrates [J]. J Neurosci Meth,1993,50:385–97.
    [189] Healy KE, Lom B, Hockberger PE. Spatial distribution of mammalian cells dictated bymaterial surface chemistry [J]. Biotechnol Bioeng,1994,43:792–800.
    [190] Hallab NJ, Bundy KJ, O’Connor K, et al. Evaluation of metallic and polymeric biomaterialsurface energy and surface roughness characteristics for directed cell adhesion [J]. Tissue Eng,2001,7(1):55-71.
    [191] Deligianni DD, Katsala ND, Koutsoukos PG, et al. Effect of surface roughness ofhydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation anddetachment strength [J]. Biomaterials,2001,22(1):87-96.
    [192] Curtis A, Wilkinson C. Topographical control of cells [J]. Biomaterials,1997,18(24):1573-83.
    [193] Flemming RG, Murphy CJ, Abrams GA, et al. Effects of synthetic micro-and nano-structuredsurfaces on cell behavior [J]. Biomaterials,1999,20(6):573-588.
    [194] Zimmermann E, Geiger B, Addadi L. Initial stages of cell–matrix adhesion can be mediatedand modulated by cellsurface hyaluronan [J]. Biophys J,2002,82:1848–57.
    [195] Khan AI, Kerfoot SM, Heit B, et al. Role of CD44and hyaluronan in neutrophil recruitment[J]. J Immunol,2004,173:7594–601.
    [196] Cohen M, Kam Z, Addadi L, et al. Dynamic study of the transition from hyaluronan tointegrin-mediated adhesion in chondrocytes [J]. EMBO,2006,25:302–11.
    [197] Nebe B, Finke B, Lüthen F, et al. Improved initial osteoblast functions onamino-functionalized titanium surfaces [J]. Biomol Eng,2007,24(5):447-54.
    [198] Mittal N, Voldman J. Nonmitogenic survival-enhancing autocrine factors includingcyclophilin A contribute to density-dependent mouse embryonic stem cell growth [J]. StemCell Res,2011,6(2):168-76.
    [199] Farley JR,Wergedal JE,Barlink DJ. Fluoride directly stimulates proliferation and alkalinephosphatese activity of boneforming cells [J]. Science,1983,222(4621):330-2.
    [200] BassettCA, PillaAA, PawlukRJ. Anon-operative salvage of surgically-resistant pseudarthrosisand non-unions by pulsing electromagnetic fields [J]. A preliminary report.Clin Orthop RelatRes,1977,124:128-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700