氩氦冷冻治疗荷9L胶质瘤鼠的疗效及其树突状细胞的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     胶质瘤是颅内最为常见的恶性肿瘤。虽然现在对于胶质瘤的治疗包括手术、放疗、化疗等治疗,胶质瘤患者的预后仍然非常差。免疫治疗因能够直接作用于肿瘤细胞目前成为比较有前景的治疗新方法。这种方法能够维持长期的抗肿瘤免疫反应,同时没有任何神经系统副作用。
     氩氦冷冻治疗技术是近年源自美国氩氦冷冻治疗设备而兴起的一种低温冷冻技术。目前,此项治疗技术发展迅速,因为它操作简单,靶向性强,适应症广,加之治疗过程中靶区可以适时监测,对病人损伤小,消融效果确切。已经成为无法外科根治性切除的实体肿瘤患者治疗的最佳手段之一,极大的推动了临床肿瘤治疗学的进步,显著改善了肿瘤患者的治疗条件、生存状况和预后。随着近年来氩氦冷冻在全世界范围内的开展,它可对多种良恶性肿瘤施行精确冷冻治疗,尤其在肝癌、肺癌、胰腺癌、前列腺癌、肾肿瘤、乳腺癌等治疗领域已广泛应用于临床。资料显示冷冻治疗效果不仅在于超低温直接杀伤肿瘤细胞,更重要的是激活机体抗肿瘤免疫系统。
     许多文献显示肿瘤通过氩氦刀治疗后能够有效的在体内传递抗原激活自身免疫系统。树突状细胞是最强的抗原呈递,它在诱导免疫方面起着至关重要的作用。目前在体外培养并通过肿瘤抗原致敏的成熟树突状细胞已作为肿瘤疫苗用于临床。但是,体内抗原刺激形成的成熟树突状细胞是最为便利的树突状细胞疫苗。
     在颅内胶质瘤治疗中,对于那些对化学治疗和放射治疗无效或不适宜手术治疗的病人,氩氦冷冻治疗为这些患者提供了一个有效的方法,但这一技术在颅内胶质瘤手术中的应用还不够成熟,临床上有少量的病例报道认为其对胶质瘤的疗效较好,但尚缺乏必要的基础研究和动物实验。本研究拟建立荷9L胶质瘤的F344大鼠动物模型,并进行氩氦冷冻治疗,观察肿瘤细胞病理以及树突状细胞的免疫变化情况,为其临床进一步应用提供理论依据。
     第一章9L/Fischer344大鼠脑胶质瘤模型及氩氦冷冻模型的建立及生存期观察
     目的
     1.成功建立胶质瘤大鼠模型。
     2.观察氩氦冷冻治疗荷脑胶质瘤鼠前后胶质瘤细胞形态学变化。
     3.空白对照组、手术切除组、氩氦冷冻组肿瘤生长情况及生存期观察。
     方法
     1.9L脑胶质瘤细胞的冻存和复苏;种植9L胶质瘤细胞于F344大鼠鼠背;荷脑胶质瘤F344大鼠模型的建立;胶质瘤标本制片,肿瘤组织病理学观察,GFAP和S-100蛋白免疫组织化学检测;动物模型的分组(空白对照组、手术切除组、氩氦冷冻治疗组)。
     2.各组胶质瘤大鼠的形态和病理学变化,观察荷脑胶质瘤大鼠;HE染色,电镜观察冷冻消融的肿瘤组织的形态;分别在干预治疗前、术后游标卡尺测量并计算、分析比较各组肿瘤的体积变化,以及各组大鼠生存期的观察。
     3.统计学分析:Kaplan-Meier生存分析描绘各组模型大鼠生存曲线;肿瘤体积的变化比较采用重复测量的方差分析。
     结果
     1.光镜下肿瘤细胞巢状排列紧密,肿瘤无包膜,瘤周小血管扩张,可见肿瘤细胞沿小血管浸润生长;瘤内新生血管丰富,瘤内常见出血、凝固性坏死灶。高倍镜下,肿瘤细胞形态多样,分化程度低,核大、多核,核质深染,异型性高。GFAP、S-100染色:肿瘤细胞未见染色,肿瘤细胞间胶质网可见阳性染色。
     2.氩氦冷冻组在冷冻后,HE染色示:冷冻中央区呈均匀性凝固性坏死。边缘区包括炎性反应带、出血水肿带(HEB)和边界带。炎性反应带主要为一些细胞碎片及大量的红、白细胞浸润;紧挨炎性反应带的是出血水肿带:微血管内也发现大量的红细胞、血小板集合和血栓形成,并可见灶性出血。电镜示:冷冻区中央、边缘区组织细胞全部坏死或凋亡。
     3.9L/Fischer344模型肿瘤持续生长;动物模型的分组(空白对照组、手术切除组、氩氦冷冻治疗组)的大鼠,平均生存时间分别为78.500±1.061、171.000±10.839、252.778±5.013天。各组模型大鼠平均生存时间经log rank检验,发现差异有统计学意义(X2=12.403,P=0.002)。
     4.接种后第30天空白对照组肿瘤体积达到5.197±0.162cm3,手术组达到5.002±0.175cm3,氩氦冷冻组5.024±0.159cm3,3组之间差异没有统计学意义(F=0.107,P=0.899)。干预后30天组间效应之间的差别有统计学意义(F=4648.049,P=0.000),各个测量时间点时肿瘤体积变化显示有统计学意义(F=1099.806,P=0.000),两者之间具有交互作用(F=1531.868,P=0.001)。
     结论
     1.9L/Fischer344大鼠胶质瘤模型成功建立。该方法建立的大鼠脑胶质瘤模型稳定可靠,大鼠脑内肿瘤持续生长,符合恶性胶质肉瘤生物学特性。模型成功率达100%。
     2.该方法简单、经济、直视下接种准确,种植肿瘤细胞30天,肿瘤体积便可达5-6cm3,背部便于消融。同时避免因为大鼠颅腔较小,消融后脑水肿造成动物死亡。因此,鼠背荷胶质瘤是氩氦冷冻治疗脑胶质瘤的理想动物模型。
     3.氩氦刀治疗后冷冻区中央区、边缘区的神经元细胞全部死亡,未发现存活的细胞结构,肿瘤逐渐消退,周围淋巴细胞浸润,其生存期显著延长,氩氦刀是治疗胶质瘤有效的方法。
     第二章氩氦冷冻治疗荷脑胶质瘤大鼠的树突状细胞的检测
     目的
     评定氩氦冷冻治疗组并与空白对照组、手术切除组比较荷脑胶质瘤大鼠的树突状细胞数目及成熟度的改变。
     方法
     1.9L脑胶质瘤细胞的冻存和复苏;种植9L胶质瘤细胞于F344大鼠鼠背;荷脑胶质瘤F344大鼠模型的建立;动物模型的分组(空白对照组、手术切除组、氩氦冷冻治疗组)。
     2.免疫组化检测干预后30天肿瘤组织内CD80+、CD83+、CD86+的表达情况并计数。
     3.免疫组化检测干预后30天脾脏组织内CD80+、CD83+、CD86+的表达情况并计数。
     4.流式细胞仪检测干预后30天引流淋巴结组织内CD80+、CD86+的阳性细胞的比例。
     5.酶联免疫吸附实验检测干预后30天外周血中IL-12、IFN-y细胞因子的变化。
     6.各组肿瘤、脾脏、淋巴组织、血清中指标比较采用重复测量的方差分析或单因素方差分析。
     结果
     1.免疫组化显示氩氦冷冻治疗组肿瘤及脾脏中CD80+、CD83+、CD86+细胞染色氩氦冷冻组较空白对照组及手术组显著密集(P<0.05)。
     2.流式细胞仪检测干预后30天引流淋巴结组织内CD80+、CD86+的阳性细胞的比例:氩氦冷冻组>手术切除组、空白对照组(P<0.05)。但是空白对照组和手术组之间没有显著差异(P>0.05)。
     3.酶联免疫吸附实验检测干预后30天外周血中IL-12、IFN-γ细胞因子的变化:外周血中IL-12:氩氦冷冻组>手术切除组、空白对照组,比较有显著差异(P<0.01),但手术切除组和空白对照组没有显著差异(P>0.05);血清IFN-γ水平:氩氦冷冻组>手术切除组、空白对照组,比较有显著差异(P<0.01),但是空白对照组和手术切除组之间没有显著的差异(P>0.05)。
     结论
     运用免疫组化、流式细胞仪、酶联免疫吸附试验等多角度多手段测定各组大鼠树突状细胞的数量、成熟度及代谢产物的情况,表明氩氦冷冻技术能够促进树突状细胞成熟激发体内免疫。本实验为氩氦冷冻技术治疗脑胶质瘤乃至中枢神经系统肿瘤术后提高免疫提供重要的参考数据,为氩氦冷冻的临床应用奠定基础。
Background
     Gliomas are the most common and devastating primary brain tumours.Despite important progresses in gliomas treatment that currently includes surgery combined to radio-and chemotherapy, gliomas patients'prognosis remains unsatisfactory. Immunotherapy is one of the new promising therapeutic approaches that can specifically target tumour cells. Such an approach can also maintain long term anti-tumour responses without inducing neurologic defects.
     Argon-helium cryoablation technology rises from the United States in recent years. At present, the technology developed rapidly, because it is simple, targeted specifically, broadly applicable, and that combined with timely treatment which can be monitored in the target area, the small damage, exact ablation. All of these make this technology become one of the best means in treatment of solid tumors, greatly promoting the progress of clinical oncology therapeutics, significantly improving the condition of cancer patients, survival status and prognosis. With the recent advance out worldwide, this technique allows precise cryoablation of a wide variety of neoplasms, and has been used in the clinical treatment of cancers in liver cancer, lung cancer, pancreatic cancer, prostate cancer, kidney cancer, breast cancer. All these data suggest that argon-helium cryosurgery causes not only tumor tissue destructions but also enhancement of the host immune function through several possible mechanisms.
     Dendritic cells (DC) are professional antigen-presenting cells that play a pivotal role in the induction of immunity. Ex vivo①generated, tumor antigen-loaded mature DC are currently exploited as cancer vaccines in clinical studies. However, antigen loading and maturation of DC directly in vivo would greatly facilitate the application of DC-based vaccines. Many article have previously shown that in situ tumor destruction by ablative treatments efficiently delivers antigens for the in vivo induction of antitumor immunity.
     The brain glioma patients who fail to respond to or are unsuitable for chemotherapy or radiotherapy often present difficult clinical cases, for which argon-helium cryosurgery provide a valuable therapeutic option. Nevertheless, the application of this technique in the treatment of gliomas still remains preliminary, and only a handful reported cases were available to demonstrate its good therapeutic effect in the management of gliomas without support by sufficient evidences from basic research and animal experiments. In this study, we performed argon-helium cryosurgeries in F344rat models bearing9L gliomas, and observed the pathology of tumor cells、image and cellular immunity changes.we aimed to explore the mechanism of angon-helium cryosurgery in relation to the cellular immunity and provide experimental evidences for the clinical application of this technique in glioma treatment.
     Part I The pathology change after cryoablation on rat model bearing9L gliomas and observation of the survival time.
     Objective
     ①In this study, we performed argon-helium cryosurgeries in F344rat models bearing9L gliomas.
     ②Observed the postoperative tumor cell apoptosis or necrosis in F344rat models bearing9L gliomas.
     ③We observed the survival time and tumor growth in the normal control, surgical resection, and cryosurgery groups for corresponding treatments.
     Materials and methods
     ①we established F344rat models bearing subcutaneous9L glioma rat brains were sectioned and inspected. The tumor-containing samples were prepared by haematoxylin-eosin, immunohistochemiscal GFAP and S-100protein stains. Tumor pathological characteristics were investigated with microscope, and divided the rats into the normal control, surgical resection, and cryosurgery groups for corresponding treatments.
     ②The postoperative changes in the findings by tumor growth and tumor cell morphology were observed, observation of the survival time in the normal control, surgical resection, and cryosurgery groups.
     Results
     ③HE staining showed Central hemorrhage and necrosis was commonly seen in samples. Morphology and microscopic structures for glioma, such as intraparenchymal growth, neovascularity, no encapsulation, were observed in HE stain sections. Immunohistochemistory GFAP and S-100protein stains of tumor cells were negative. And tumor cell rupture-nuclear condensation and coagulative necrosis of the9L glioma following cryoablation. After the cry ablation, obvious congestion and bleeding occurred with formation of granulation tissues on the margin of the ablated area.
     ②All rats were divided into the normal control, surgical resection, and cryosurgery groups and its mean survival times were78.500±1.061、171.000±10.839、252.778±5.013days, respectively.
     Conclusions
     ①The9L/F344rat glioma model is successfully established. After implantation, globular brain-tumor growth occurs constantly without extracranial extension. The tumor pathological characteristics mimic human malignant gioma.
     ②F344rat models bearing9L gliomas is simple、economical, accurate and inoculated under direct vision, into the tumor rate, growing30days of, tumor volume will reach5~6cm,Ablation on the rat back avoid the small rat cranial cavity which can easily result in animal deaths of ablation of brain edema. The tumor pathological characteristics mimic human malignant gioma. Therefore, Rat bearing9L glioma on back is an ideal animal glioma model is one.
     ③After cryoablation the frozen area, all neuronal cell death and found no survival of the cell structure,and mean survival times of rats longer than other groups obviously. Therefore argon-helium cryoablation technology is a effective treatment of gliomas.
     Part II The immunity change after cryoablation on rat model bearing9L gliomas
     Objective
     To evaluate the cellular immunity change after cryoablation on F344rat models bearing9L gliomas and provide experimental evidences for the clinical application of this technique in glioma treatment.
     Materials and methods
     ①we established F344rat models bearing subcutaneous9L glioma and divided the rats into the normal control, sham-operated, surgical resection, and cryosurgery groups for corresponding treatments.
     ②The CD8+、CD83+、CD86+positive cells were detected in tumor tissue by immunohistochemistry after30days.
     ③The CD80+、CD83+、CD86+positive cells were detected in spleen tissue by immunohistochemistry after30days.
     ④Flow cytometry was performed for analysis percentage of CD80+、CD86+in lymph node respectively
     ⑤Elisa was performed to analyse IL-12、IFN-y at30days following the cryosurgery in the serum.
     Results
     ①The CD8+、CD83+、CD86+positive cells were found to obviously increase on30days after the cryosurgery by immunohistochemistry, showing significant differences from those in the other2groups (P<0.05). but,no significant differences between normal control and operation group (P>0.05)
     ②The percentages of CD80+、CD86cells in the lymph node of cryosurgery group increased significantly30days after the operation by flow cytometer, showing significant differences from those in the other2groups (P<0.05). However, no significant differences between normal control and operation group (P>0.05)
     ③The quantity of IL-12、IFN-y in the serum of cryosurgery group increased significantly30days after the operation by ELISA, showing significant differences from those in the other2groups (P<0.05). However, no significant differences between normal control and operation group (P>0.05)
     Conclusions
     Using argon-helium cryoablation F344rats bearing9L glioma model, using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assay, and other means can effectively induce, enhance the tumor immunity against tumor cells by active DC. This experiment provides important reference data in treatment of glioma patients and even the central nervous system tumors for argon-helium cryosurgery in clinical management of gliomas.
引文
[1]Lannering B, Sandstrom P E, Holm S, et al. Classification, incidence and survival analyses of children with CNS tumours diagnosed in Sweden 1984-2005[J]. Acta Paediatr,2009,98(10):1620-1627.
    [2]Deltour I, Johansen C, Auvinen A, et al. Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden,1974-2003[J]. J Natl Cancer Inst,2009,101(24):1721-1724.
    [3]Iwamoto F M, Reiner A S, Nayak L, et al. Prognosis and patterns of care in elderly patients with glioma[J]. Cancer,2009,115(23):5534-5540.
    [4]Ohgaki H. Epidemiology of brain tumors[J]. Methods Mol Biol,2009,472: 323-342.
    [5]杨初蔚,张建生.原发性脑肿瘤致病危险因素的流行病学研究[J].国际神经病学神经外科学杂志,2008,35(2):163-167.
    [6]陈强,卢凤飞,张世忠,等.氩氦冷冻治疗系统对犬脑冷冻范围的超导刀直径变量和时间相关性研究[J].中华神经医学杂志,2008,7(6):592-595.
    [7]吴沛宏.肿瘤微创治疗进展及发展趋势[J].中华医学杂志,2008,88(39):2737-2738.
    [8]朱伟良,李民英,张健,等.肝动脉化疗栓塞联合经皮氩氦冷冻及无水乙醇注射治疗肝癌的临床研究[J].肿瘤防治研究,2009(10):882-885.
    [9]屠规益.氩氦冷冻-靶向治疗-微创手术:不同治疗概念的随意叠加[J].中国耳鼻咽喉头颈外科,2009(7):362.
    [10]Sleta I V, Chizh N A, Lutsenko D G, et al.Cryosurgery in diffuse hepatic diseases[J]. Klin Khir,2010(6):27-33.
    [11]Grdovic N, Vidakovic M, Mihailovic M, et al. Proteolytic events in cryonecrotic cell death:Proteolytic activation of endonuclease P23[J]. Cryobiology,2010, 60(3):271-280.
    [12]Schumann C, Kropf C, Rudiger S, et al. Removal of an aspirated foreign body with a flexible cryoprobe[J]. Respir Care,2010,55(8):1097-1099.
    [13]Hinshaw J L, Lee F J, Laeseke P F, et al. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation[J]. J Vasc Interv Radiol,2010,21(9):1424-1428.
    [14]邢文阁,郭志,王海涛,等.42例直肠超声引导经皮氩氦冷冻治疗中晚期前列腺癌[J].中华放射学杂志,2008,42(8):807-811.
    [15]Gage A A, Baust J M, Baust J G. Experimental cryosurgery investigations in vivo[J].Cryobiology,2009,59(3):229-243.
    [16]Tozaki M, Fukuma E, Suzuki T, et al. Ultrasound-guided cryoablation of invasive ductal carcinoma inside the MR room[J]. Magn Reson Med Sci,2010, 9(1):31-36.
    [17]Carrara S, Arcidiacono P G, Albarello L, et al. Endoscopic ultrasound-guided application of a new hybrid cryotherm probe in porcine pancreas.-a preliminary study[J]. Endoscopy,2008,40(4):321-326.
    [18]Chiu D, Niu L, Mu F, et al. The experimental study for efficacy and safety of pancreatic cryosurgery [J]. Cryobiology,2010,60(3):281-286.
    [19]Mues A C, Okhunov Z, Haramis G, et al. Comparison of percutaneous and laparoscopic renal cryoablation for small renal masses[J]. J Endourol,2010, 24(7):1097-1100.
    [20]Schmit G D, Atwell T D, Callstrom M R, et al. Ice ball fractures during percutaneous renal cryoablation:risk factors and potential implications[J]. J Vase Interv Radiol,2010,21(8):1309-1312.
    [21]Kaufman C S, Rewcastle J C. Cryosurgery for breast cancer[J]. Technol Cancer Res Treat,2004,3(2):165-175.
    [22]Staren E D, Sabel M S, Gianakakis L M, et al. Cryosurgery of breast cancer[J]. ArchSurg,997,132(1):28-33,34.
    [23]Rabin Y, Julian TB, Olson P, et al. Long-term follow-up post-cryosurgery in a sheep breast model[J]. Cryobiology,1999,39(1):29-46.
    [24]Otterson M F, Redlich P N, Mcdonald A, et al. Sequelae of cryotherapy in breast tissue[J]. Cryobiology,2003,47(2):174-178.
    [25]Sabel M S, Su G, Griffith K A, et al. Rate of freeze alters the immunologic response after cry oablation of breast cancer [J]. Ann Surg Oncol,2010,17(4): 1187-1193.
    [26]Hamad G G, Neifeld J P. Biochemical, hematologic, and immunologic alterations following hepatic cryotherapy [J]. Semin Surg Oncol,1998,14(2): 122-128.
    [27]Wen J, Duan Y, Zou Y, et al. Cryoablation induces necrosis and apoptosis in lung adenocarcinoma in mice[J]. Technol Cancer Res Treat,2007,6(6): 635-640.
    [28]Ko Y H, Kang S H, Park Y J, et al. The biochemical efficacy of primary cryoablation combined with prolonged total androgen suppression compared with radiotherapy on high-risk prostate cancer:a 3-year pilot study[J]. Asian J Androl,2010,12(6):827-834.
    [29]Sabel M S, Nehs M A, Su G, et al. Immunologic response to cryoablation of breast cancer [J]. Breast Cancer Res Treat,2005,90(1):97-104.
    [30]Kyte J A, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad H P, Ryder T, Lislerud K, Hammerstad H, Gaudernack G. Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.2006.13(10):905-918.
    [31]Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan T E, Mintz A H, Engh J A, Bartlett D L, Brown C K, Zeh H, Holtzman M P, Reinhart T A, Whiteside T L, Butterfield L H, Hamilton R L, Potter D M, Pollack I F, Salazar A M, Lieberman F S. Induction of CD8+T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol.2011.29(3):330-336.
    [32]Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol.1999.161(3):777-782.
    [33]Wang H, Su X, Zhang P, Liang J, Wei H, Wan M, Wu X, Yu Y, Wang L. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine.2011. 29(12):2328-2335.
    [34]Debenedette M A, Calderhead D M, Tcherepanova I Y, Nicolette C A, Healey D G. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother.2011.34(1):45-57.
    [35]Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A.2000.97(6):2715-2718.
    [36]Szanto A, Balint B L, Nagy Z S, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans R M, Barak Y, Schwabe J, Nagy L. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity.2010.33(5):699-712.
    [37]Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res.2002.26(8):757-763.
    [38]Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc.2010.42(8):3301-3305.
    [39]den Brok M H, Sutmuller R P, Nierkens S, Bennink E J, Frielink C, Toonen L W, Boerman O C, Figdor C G, Ruers T J, Adema G J. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer.2006.95(7):896-905.
    [40]Li M, Liu J, Zhang S Z, et al. Cellular immunologic response to primary cryoablation of 9L gliomas in rats[J]. Technol Cancer Res Treat,2011,10(1): 95-100.
    [41]张世忠,张积仁.立体定向引导氩氦刀靶向冷冻治疗脑胶质瘤[J].中国微侵袭神经外科杂志,2000,5(2):103-106.
    [1]林健,王伟民,徐如祥.C6大鼠胶质瘤模型及其在脑胶质瘤治疗研究中应用的缺陷[J].中华神经医学杂志,2003;2(2):154-156.
    [2]Beutly AS, Banck MS, Wedekind D, et al. Tumor gene therapy made easy: Allogeneic major histocompatibility complex in the C6 rat glioma model [J]. Hum Gene Ther,1999; 10(1):95-101.
    [3]Parsa AT, Chakrabarti I, Hurley PT, et al. Limitations of the C6/Wistar rat intracerebral glioma model:Implications for evaluating immunotherapy [J]. Neurosurg,2000; 47(4):993-999.
    [4]屠规益.氩氦冷冻靶向治疗微创手术:不同治疗概念的随意叠加[J].中国耳鼻咽喉头颈外科,2009(7):362.
    [5]吴沛宏.肿瘤微创治疗进展及发展趋势[J].中华医学杂志,2008,88(39):2737-2738.
    [6]邢文阁,郭志,工海涛,等.42例直肠超声引导经皮氩氦冷冻治疗中晚期前列腺癌[J].中华放射学杂志,2008,42(8):807-811.
    [7]Hamad G G, Neifeld J P. Biochemical, hematologic, and immunologic alterations following hepatic cryotherapy[J]. Semin Surg Oncol,1998,14(2): 122-128.
    [8]Li M, Liu J, Zhang S Z, et al. Cellular immunologic response to primary cryoablation of C6 gliomas in rats[J]. Technol Cancer Res Treat,2011,10(1): 95-100.
    [9]Sabel M S, Su G, Griffith K A, et al. Rate of freeze alters the immunologic response after cryoablation of breast cancer[J]. Ann Surg Oncol,2010,17(4): 1187-1193.
    [10]Ko Y H, Kang S H, Park Y J, et al. The biochemical efficacy of primary cryoablation combined with prolonged total androgen suppression compared with radiotherapy on high-risk prostate cancer:a 3-year pilot study[J]. Asian J Androl, 2010,12(6):827-834.
    [11]张世忠,张积仁.立体定向引导氩氦刀靶向冷冻治疗脑胶质瘤[J].中国微侵袭神经外科杂志,2000,5(2):103-106.
    [12]Peterson DL, Sheridan PJ, Brown WE. Animal models for brain tumors: historical perspectives and future directions [J]. J Neurosurg,1994; 80(5):865-876.
    [13]Schmidek HH, Nielsen SL, Schiller AL, et al. Morphological studies of rat brain tumors induced by N-nitosomethylurea [J]. J Neurosurg,1971; 34(3):335-340.
    [14]Benda P, Someda K, Messer J, et al. Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture [J]. J Neurosurg,1971; 34(3):311-323.
    [15]Schubert D, Heinemann S, Carlisle W, et al. Clonal cell lines from the rat central nervous system [J]. Nature,1974; 249(454):224-227.
    [16]Barth RF. Rat brain tumor models in experimental neuro-oncology:the 9L, C6, T9, F98, RG2(D74), RT-2 and CNS-1 gliomas [J]. J Neurooncol,1998; 36(1):91-102.
    [17]Beutly AS, Banck MS, Wedekind D, et al. Tumor gene therapy made easy. Allogeneic major histocompatibility complex in the C6 rat glioma model [J]. Hum Gene Ther,1999; 10(1):95-101.
    [18]Parsa AT, Chakrabarti I, Hurley PT, et al. Limitations of the C6/Wistar rat intracerebral glioma model:Implications for evaluating immunotherapy [J]. Neurosurg,2000; 47(4):993-999.
    [19]LiM, Zhang S, Zhou Y, et al. Argon-helium cryosurgery for treatment of C6 gliomas in rats and its effect on cellular immunity [J]. Technol Cancer Res Treat, 2010,9(1):87-94.
    [20]付锐,徐航,张力,等.冷冻治疗大鼠C6脑胶质瘤的实验研究[J].中国微侵袭神经外科杂志,2007,12(6):276-278.
    [21]付锐,涂汉军,徐航,等.冷冻治疗对荷瘤Wistar大鼠生存期的影响和机制[J].中国肿瘤,2008,17(11):961-963.
    [22]陈强,卢凤飞,张世忠,等.氩氦冷冻治疗系统对犬脑冷冻范围的超导刀直径变量和时间相关性研究[J].中华神经医学杂志,2008,7(6):592-595.
    [23]李成利,张传臣,谢国华,等.MRI导引与实时监控冷冻消融治疗兔VX2脑肿瘤[J].中华放射学杂志,2008,42(6):650-654.
    [24]杨望,蒋先惠,蒋凡,等.银杏叶提取物对兔冷冻伤脑水肿的保护作用及其机制[J].中国临床康复,2003,7(31):4198-4199.
    [25]贺声,王洪武,等.超声引导下肿瘤的氩氦刀治疗[J].中国医学影像技术, 2003,19(2):216-218.
    [26]刘建刚,葛成林,谭莹,等.荷瘤大鼠氩氦冷冻治疗前后免疫功能的变化[J].重庆医学,2010,39(7):784-786.
    [27]刘建刚,管洪在,葛成林,等.氩氦冷冻对SD大鼠皮下移植瘤细胞凋亡及T细胞免疫的影响[J].世界华人消化杂志,2009(23):2362-2366.
    [28]李宝平,周云芝,尹晓明,等.肺部肿瘤CT导向氩氦刀冷冻治疗前后的影像表现[J].中华放射学杂志,2007,41(7):745-749.
    [29]王洪武.晚期肺癌的多学科微创综合治疗[J].中华医学信息导报,2005,20(7):15.
    [30]Permpongkosol S, Nicol T L, Link R E, et al. Differences in ablation size in porcine kidney, liver, and lung after cryoablation using the same ablation protocol[J].AJR Am J Roentgenol,2007,188(4):1028-1032.
    [31]Kopelman D, Shpoliansky G, Ben-Izhak O, et al. The necrotizing effect of pulse cryocycling on liver tissue[J]. Arch Surg,2004,139(3):245-250.
    [32]Litvinenko A A. Character and dynamics of structural changes in the liver under the effects of low temperature [J]. Klin Khir,1994(10):51-54.
    [33]Kopelman D, Klein Y, Zaretsky A, et al. Cryohemostasis of uncontrolled hemorrhage from liver injury [J]. Cryobiology,2000,40(3):210-217.
    [34]Buch B, Papert A I, Shear M. Microscopic changes in rat tongue following experimental cryosurgery[J].J Oral Pathol,1979,8(2):94-102.
    [35]Clarke D M, Baust J M, Van Buskirk R G, et al. Addition of anticancer agents enhances freezing-induced prostate cancer cell death:implications of mitochondrial involvement[J]. Cryobiology,2004,49(1):45-61.
    [36]Grdovic N, Vidakovic M, Mihailovic M, et al. Proteolytic events in cryonecrotic cell death:Proteolytic activation of endonuclease P23[J]. Cryobiology,2010, 60(3):271-280.
    [37]Whittaker D K. Mechanisms of tissue destruction following cryosurgery[J]. Ann R Coll Surg Engl,1984,66(5):313-318.
    [38]Gage A A, Baust J.Mechanisms of tissue injury in cryosurgery [J]. Cryobiology, 1998,37(3):71-186.
    [39]邢金春,张开颜.冷冻与射频治疗对猪肾盂肾盏肾段血管的损伤作用[J].中华实验外科杂志,2005,22(7):862-863.
    [40]Korpan N N. Cryosurgery:early ultrastructural changes in liver tissue in vivo[J]. J Surg Res,2009,153(1):54-65.
    [41]Rolle C E, Sengupta S, Lesniak M S. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am.2010.21(1): 201-214.
    [42]Brem S S, Bierman P J, Black P, Brem H, Chamberlain M C, Chiocca E A, Deangelis L M, Fenstermaker R A, Friedman A, Gilbert M R, Glass J, Grossman S A, Heimberger A B, Junck L, Linette G P, Loeffler J J, Maor M H, Moots P, Mrugala M, Nabors L B, Newton H B, Olivi A, Portnow J, Prados M, Raizer J J, Shrieve D C, Sills A J. Central nervous system cancers. J Natl Compr Canc Netw. 2008.6(5):456-504.
    [43]Short S C. Survival from brain tumours in England and Wales up to 2001. Br J Cancer.2008.99 Suppl 1:S102-S103.
    [44]Li M, Zhang S, Zhou Y, Guo Y, Jiang X, Miao L. Argon-helium cryosurgery for treatment of C6 gliomas in rats and its effect on cellular immunity. Technol Cancer Res Treat.2010.9(1):87-94.
    [45]Li M, Liu J, Zhang S Z, Zhou Y, Guo Y W, Chen Q, Ke Y Q, Jiang X D, Cai Y Q. Cellular immunologic response to primary cryoablation of C6 gliomas in rats. Technol Cancer Res Treat.2011.10(1):95-100.
    [46]Yamanaka R, Homma J, Yajima N, et al. Clinical evalttion of dendritic cell vaccination for patients with recurrent glioma:results of a clinical phase IPII trial [J]. Clin Cancer Res,2005; 11(11):4160-4167.
    [47]Zhu X, Lu C, Xiao B, et al. An experimental study of dendritic cells mediated immunotherapy against intracranial gliomas in rats EJ]. JNearooncol,2005; 74(1): 9-17.
    [1]Deltour I, Johansen C, Auvinen A, Feychting M, Klaeboe L, Schuz J. Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974-2003. J Natl Cancer Inst.2009.101(24):1721-1724.
    [2]Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol.2009.472: 323-342.
    [3]Rolle C E, Sengupta S, Lesniak M S. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am.2010.21(1): 201-214.
    [4]Brem S S, Bierman P J, Black P, Brem H, Chamberlain M C, Chiocca E A, Deangelis L M, Fenstermaker R A, Friedman A, Gilbert M R, Glass J, Grossman S A, Heimberger A B, Junck L, Linette G P, Loeffler J J, Maor M H, Moots P, Mrugala M, Nabors L B, Newton H B, Olivi A, Portnow J, Prados M, Raizer J J, Shrieve D C, Sills A J. Central nervous system cancers. J Natl Compr Canc Netw.2008.6(5):456-504.
    [5]Short S C. Survival from brain tumours in England and Wales up to 2001. Br J Cancer.2008.99 Suppl 1:S102-S103.
    [6]Li M, Zhang S, Zhou Y, Guo Y, Jiang X, Miao L. Argon-helium cryosurgery for treatment of C6 gliomas in rats and its effect on cellular immunity. Technol Cancer Res Treat.2010.9(1):87-94.
    [7]Li M, Liu J, Zhang S Z, Zhou Y, Guo Y W, Chen Q, Ke Y Q, Jiang X D, Cai Y Q. Cellular immunologic response to primary cryoablation of C6 gliomas in rats. Technol Cancer Res Treat.2011.10(1):95-100.
    [8]Gage A A, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998.37(3):171-186.
    [9]He X, Bischof J C. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng.2003.31(5-6):355-422.
    [10]Whittaker D K. Mechanisms of tissue destruction following cryosurgery. Ann R Coll Surg Engl.1984.66(5):313-318.
    [11]Bischof J C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu Rev Biomed Eng.2000.2:257-288.
    [12]Donahue M J, Hua J, Pekar J J, van Zijl P C. Effect of inflow of fresh blood on vascular-space-occupancy (VASO) contrast. Magn Reson Med.2009.61(2): 473-480.
    [13]Sabel M S, Nehs M A, Su G, Lowler K P, Ferrara J L, Chang A E. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat.2005.90(1): 97-104.
    [14]Hamad G G, Neifeld J P. Biochemical, hematologic, and immunologic alterations following hepatic cryotherapy. Semin Surg Oncol.1998.14(2): 122-128.
    [15]Matin S F, Sharma P, Gill I S, Tannenbaum C, Hobart M G, Novick A C, Finke J H. Immunological response to renal cryoablation in an in vivo orthotopic renal cell carcinoma murine model. J Urol.2010.183(1):333-338.
    [16]Gazzaniga S, Bravo A, Goldszmid S R, Maschi F, Martinelli J, Mordoh J, Wainstok R. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol.2001.116(5):664-671.
    [17]Johnson J P. Immunologic aspects of cryosurgery:potential modulation of immune recognition and effector cell maturation. Clin Dermatol.1990.8(1): 39-47.
    [18]Ullrich E, Bonmort M, Mignot G, Chaput N, Taieb J, Menard C, Viaud S, Tursz T, Kroemer G, Zitvogel L. Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells. Cancer Res.2007.67(3):851-853.
    [19]Kyte J A, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad H P, Ryder T, Lislerud K, Hammerstad H, Gaudernack G. Phase Ⅰ/Ⅱ trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.2006.13(10):905-918.
    [20]Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan T E, Mintz A H, Engh J A, Bartlett D L, Brown C K, Zeh H, Holtzman M P, Reinhart T A, Whiteside T L, Butterfield L H, Hamilton R L, Potter D M, Pollack I F, Salazar A M, Lieberman F S. Induction of CD8+T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol.2011.29(3):330-336.
    [21]Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol.1999.161(3):777-782.
    [22]Wang H, Su X, Zhang P, Liang J, Wei H, Wan M, Wu X, Yu Y, Wang L. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine.2011. 29(12):2328-2335.
    [23]Debenedette M A, Calderhead D M, Tcherepanova I Y, Nicolette C A, Healey D G. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother.2011.34(1):45-57.
    [24]Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A.2000.97(6):2715-2718.
    [25]Szanto A, Balint B L, Nagy Z S, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans R M, Barak Y, Schwabe J, Nagy L. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity.2010.33(5):699-712.
    [26]Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res.2002.26(8):757-763.
    [27]Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc.2010.42(8):3301-3305.
    [28]den Brok M H, Sutmuller R P, Nierkens S, Bennink E J, Frielink C, Toonen L W, Boerman O C, Figdor C G, Ruers T J, Adema G J. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer.2006.95(7):896-905.
    [29]Martins A, Han J, Kim S O. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life.2010.62(8):611-617.
    [30]Lee J H, Roh M S, Lee Y K, Kim M K, Han J Y, Park B H, Trown P, Kirn D H, Hwang T H. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther.2010.17(2):73-79.
    [31]Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother.2009.32(1): 86-91.
    [32]Ward J E, Mcneel D G. GVAX:an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther.2007.7(12):1893-1902.
    [33]Nemunaitis J. Vaccines in cancer:GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines.2005.4(3):259-274.
    [34]Ullrich E, Bonmort M, Mignot G, Chaput N, Taieb J, Menard C, Viaud S, Tursz T, Kroemer G, Zitvogel L. Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells. Cancer Res.2007.67(3):851-853.
    [35]Kyte J A, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad H P, Ryder T, Lislerud K, Hammerstad H, Gaudernack G. Phase Ⅰ/Ⅱ trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther.2006.13(10):905-918.
    [36]Brem S. S., Bierman P. J., Black P., et al. Central nervous system cancers: Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw.2005.3(5). 644-690
    [37]Lannering B., Sandstrom P. E., Holm S., et al Classification, incidence and survival analyses of children with CNS tumours diagnosed in Sweden 1984-2005. Acta Paediatr.2009.98(10).1620-1627
    [38]梁思泉, 焦德让.儿童大脑半球胶质瘤.中国城乡企业卫生.2005.(1).21-22
    [39]孙德马, 孙明国.神经胶质瘤.中国保健营养:临床医学学刊.2009.18(8).165
    [40]王建军, 何妙侠, 刘伟强, 等.间变性节细胞胶质瘤复发为幕上原始神经外胚层肿瘤一例报告并文献复习.中国神经肿瘤杂志.2008.6(3).197-201
    [41]张世忠, 张积仁.立体定向引导氩氦刀靶向冷冻治疗脑胶质瘤.中国微侵袭神经外科杂志.2000.5(2).103-106
    [42]王煜,牛洪泉,董芳永,等.树突状细胞疫苗免疫治疗策略[J].中华实验外科杂志,2005;22(6):757
    [43]王万祥,欧阳晓晖,杨成旺.基于肿瘤抗原的肿瘤免疫治疗[J].内蒙古医学院学报,2005;27(3):245—250
    [44]刘福生,金贵善,历俊华,等.树突状细胞与反义TGF—B1基因修饰的胶质瘤细胞融合瘤苗治疗脑胶质瘤的实验研究[J].中华神经外科杂志,2006;22(1):47—50
    [45]Yamanaka R, Homma J, Yajima N, et al. Clinical evalua tion of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase IPII trial [J]. Clin Cancer Res, 2005; 11(11): 4160—4167
    [46]Zhu X, Lu C, Xiao B, et al. An experimental study of dendritic cells mediated immunotherapy against intracranial gliomas in rats [J]. J Nearooncol, 2005; 74(1): 9—17
    [47]孟凡东,隋承光,王晓华,等.体外培养的树突状细胞与细胞因子诱导的杀伤细胞相互作用的研究[J].中国老年学杂志,2006;26(6):818—820
    [48]Held FJ, LuOohann B, Ungerfroren H, etal. Interaction of transforming growth factor — beta(TGF — beta)and epidermalgrowthfactor(EGF)in human gliomaceHs[J]. JNeurooncol, 2003; 63(2): 117—127
    [49]Yang T, Witham TF, Villa L, etal. Glioma—associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomasfJ]. Cancer Res, 2002; 62(9): 2583—2591
    [50]Gervais A, Levdque J, Bouet—Toussaint F, et al. Dendritic ceUs are defective in breast cancer patients : a potential role for polyamine in this immunodeficiency [J]. Breast Cancer Research, 2005; 7(1): 326—335
    [51]Den Brok MH, Sutmuller RP, van der Voort R, et al.In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 2004;64:4024 - 9.
    [52]Li M., Zhang S., Zhou Y., et al.Argon-helium cryosurgery for treatment of 9L gliomas in rats and its effect on cellular immunity. Technol Cancer Res Treat. 2010.9(1).87-94
    [53]Li M., Liu J., Zhang S. Z., et al. Cellular immunologic response to primary cryoablation of 9L gliomas in rats. Technol Cancer Res Treat.2011.10(1). 95-100
    [54]Sabel M. S., Nehs M. A., Su G., et al. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat.2005.90(1).97-104
    [55]Westphal M., Stummer W. Local therapy of primary brain tumors. Nervenarzt. 2010.81(8).913-914,916-917
    [56]den Brok M. H., Sutmuller R. P., Nierkens S., et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer.2006.95(7). 896-905
    [57]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells [J]. Annu Rev Immunol,2000,18:767-811.
    [58]Mellman I, Steinman RM. Dendritic cells:specialized and regulated antigen processing machines [J]. Cell,2001,106(3):255-258.
    [59]ChenS, Akbar SMF, TanimotoK, etal. Absence of CD83 positive mature and activated dendritic cells at cancer nodules from patientswith hepatocelhlar carcinoma:relevanceto hepatocarcinogenesis[J]. Cancer lett,2000,1(148): 49-57.
    [60]孟凡东,隋承光,王晓华,等.体外培养的树突状细胞与细胞因子诱导的杀伤细胞相互作用的研究[J].中国老年学杂志,2006;26(6):818—820
    [61]TaiebJ, Chaput N, Menard C, et al. A hovel dendritic cell subset involved in tumor immunosurveil lance [J]. Nat Med,2006,12:214-219.
    [62]Chan C W, Crafton E. Fan H N, et al. Interferon producing killer dendritic cells provide a link between innate and adaptive immunity [J]. Nat Med,2006, 12:207-213.
    [1]Deltour I, Johansen C, Auvinen A, Feychting M, Klaeboe L, Schuz J. Time trends in brain tumor incidence rates in Denmark, Finland, Norway, and Sweden, 1974-2003. J Natl Cancer Inst.2009.101(24):1721-1724.
    [2]Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol.2009.472: 323-342.
    [3]Rolle C E, Sengupta S, Lesniak M S. Challenges in clinical design of immunotherapy trials for malignant glioma. Neurosurg Clin N Am.2010.21(1): 201-214.
    [4]Brem S S, Bierman P J, Black P, Brem H, Chamberlain M C, Chiocca E A, Deangelis L M, Fenstermaker R A, Friedman A, Gilbert M R, Glass J, Grossman S A, Heimberger A B, Junck L, Linette G P, Loeffler J J, Maor M H, Moots P, Mrugala M, Nabors L B, Newton H B, Olivi A, Portnow J, Prados M, Raizer J J, Shrieve D C, Sills A J. Central nervous system cancers. J Natl Compr Canc Netw. 2008.6(5):456-504.
    [5]Short S C. Survival from brain tumours in England and Wales up to 2001. Br J Cancer.2008.99 Suppl 1:S102-S103.
    [6]Li M, Zhang S, Zhou Y, Guo Y, Jiang X, Miao L. Argon-helium cryosurgery for treatment of C6 gliomas in rats and its effect on cellular immunity. Technol Cancer Res Treat.2010.9(1):87-94.
    [7]Li M, Liu J, Zhang S Z, Zhou Y, Guo Y W, Chen Q, Ke Y Q, Jiang X D, Cai Y Q. Cellular immunologic response to primary cryoablation of C6 gliomas in rats. Technol Cancer Res Treat.2011.10(1):95-100.
    [8]Gage A A, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998.37(3):171-186.
    [9]He X, Bischof J C. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit Rev Biomed Eng.2003.31(5-6):355-422.
    [10]Whittaker D K. Mechanisms of tissue destruction following cryosurgery. Ann R Coll Surg Engl.1984.66(5):313-318.
    [11]Bischof J C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu Rev Biomed Eng.2000.2:257-288.
    [12]Donahue M J, Hua J, Pekar J J, van Zij1 P C. Effect of inflow of fresh blood on vascular-space-occupancy (VASO) contrast. Magn Reson Med.2009.61(2): 473-480.
    [13]Sabel M S, Nehs M A, Su G, Lowler K P, Ferrara J L, Chang A E. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat.2005.90(1): 97-104.
    [14]Hamad G G, Neifeld J P. Biochemical, hematologic, and immunologic alterations following hepatic cryotherapy. Semin Surg Oncol.1998.14(2):122-128.
    [15]Matin S F, Sharma P, Gill I S, Tannenbaum C, Hobart M G, Novick A C, Finke J H. Immunological response to renal cryoablation in an in vivo orthotopic renal cell carcinoma murine model. J Urol.2010.183(1):333-338.
    [16]Gazzaniga S, Bravo A, Goldszmid S R, Maschi F, Martinelli J, Mordoh J, Wainstok R. Inflammatory changes after cryosurgery-induced necrosis in human melanoma xenografted in nude mice. J Invest Dermatol.2001.116(5):664-671.
    [17]Johnson J P. Immunologic aspects of cryosurgery:potential modulation of immune recognition and effector cell maturation. Clin Dermatol.1990.8(1): 39-47.
    [18]Ullrich E, Bonmort M, Mignot G, Chaput N, Taieb J, Menard C, Viaud S, Tursz T, Kroemer G, Zitvogel L. Therapy-induced tumor immunosurveillance involves IFN-producing killer dendritic cells. Cancer Res.2007.67(3):851-853.
    [19]Kyte J A, Mu L, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad H P, Ryder T, Lislerud K, Hammerstad H, Gaudernack G. Phase Ⅰ/Ⅱ trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer GeneTher.2006.13(10):905-918.
    [20]Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan T E, Mintz A H, Engh J A, Bartlett D L, Brown C K, Zeh H, Holtzman M P, Reinhart T A, Whiteside T L, Butterfield L H, Hamilton R L, Potter D M, Pollack I F, Salazar A M, Lieberman F S. Induction of CD8+T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol.2011.29(3):330-336.
    [21]Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol.1999.161(3):777-782.
    [22]Wang H, Su X, Zhang P, Liang J, Wei H, Wan M, Wu X, Yu Y, Wang L. Recombinant heat shock protein 65 carrying PADRE and HBV epitopes activates dendritic cells and elicits HBV-specific CTL responses. Vaccine.2011. 29(12):2328-2335.
    [23]Debenedette M A, Calderhead D M, Tcherepanova I Y, Nicolette C A, Healey D G. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother.2011.34(1):45-57.
    [24]Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A.2000.97(6):2715-2718.
    [25]Szanto A, Balint B L, Nagy Z S, Barta E, Dezso B, Pap A, Szeles L, Poliska S, Oros M, Evans R M, Barak Y, Schwabe J, Nagy L. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity.2010.33(5):699-712.
    [26]Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res.2002.26(8):757-763.
    [27]Wertel I, Bednarek W, Stachowicz N, Rogala E, Nowicka A, Kotarski J. Phenotype of dendritic cells generated from peripheral blood monocytes of patients with ovarian cancer. Transplant Proc.2010.42(8):3301-3305.
    [28]Den Brok M H, Sutmuller R P, Nierkens S, Bennink E J, Frielink C, Toonen L W, Boerman O C, Figdor C G, Ruers T J, Adema G J. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer.2006.95(7):896-905.
    [29]Martins A, Han J, Kim S O. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life.2010.62(8):611-617.
    [30]Lee J H, Roh M S, Lee Y K, Kim M K, Han J Y, Park B H, Trown P, Kirn D H, Hwang T H. Oncolytic and immunostimulatory efficacy of a targeted oncolytic poxvirus expressing human GM-CSF following intravenous administration in a rabbit tumor model. Cancer Gene Ther.2010.17(2):73-79.
    [31]Si T, Guo Z, Hao X. Combined cryoablation and GM-CSF treatment for metastatic hormone refractory prostate cancer. J Immunother.2009.32(1): 86-91.
    [32]Ward J E, Mcneel D G. GVAX:an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther.2007.7(12):1893-1902.
    [33]Nemunaitis J. Vaccines in cancer:GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines.2005.4(3):259-274.
    [34]Harzstark A L, Small E J. Sipuleucel-T for the treatment of prostate cancer. Drugs Today (Barc).2008.44(4):271-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700