~(125)I-~(103)Pd复合性放射性粒子抑瘤作用的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、构建125I-103Pd复合性放射性粒子,并与125I和103Pd粒子比较,评价其对肿瘤细胞杀伤效应及抑瘤效果;
     2、比较125I-103Pd与125I及103Pd三种粒子对肿瘤细胞凋亡、增殖及代谢的影响,探索125I_103Pd复合粒子对肿瘤细胞杀伤的机理。
     方法:
     1、采用化学镀层的方法构建125I_103Pd复合性放射性粒子,采用自显影及粒子活度测定评价粒子的均一性;
     2、细胞学实验:选取A549、GLC-82、95D及H460四株肺癌细胞,进行细胞杀伤、凋亡及增殖实验,比较125I-103Pd与125I及103Pd三种粒子对肿瘤细胞体外生长的影响。
     3、小鼠移植瘤粒子植入治疗实验:建立小鼠移植瘤模型,比较125I-103Pd与125I及103Pd三种粒子的抑瘤效果;
     4、PET-CT分子影像学实验:采用18F-FDG、18F-FLT及11C-CH三种显像剂进行小鼠肿瘤A549及95D移植瘤模型显像,比较125I-103Pd与125I及103Pd三种粒子对肿瘤代谢及增殖的影响,探索125I-103Pd复合粒子对肿瘤细胞杀伤的机理。
     结果:
     1、粒子组自显影及活度测定表明,125I-103Pd复合粒子构建成功,均一性可靠;
     2、体外粒子对肿瘤细胞杀伤实验表明,48h内103Pd粒子效果最好,125I-103Pd复合粒子次之,125I杀伤效果最弱,细胞杀伤有效范围未见明显差异,粒子周围2-3个粒子直径范围内四种肿瘤细胞的生长均受到明显抑制。
     3、细胞凋亡实验表明,2Gy照射剂量下,125I-103Pd与125I及103Pd粒子对A549细胞凋亡的影响无明显差异,对于95D细胞,103Pd粒子诱导细胞凋亡及死亡的作用较125I-103Pd及125I粒子强,125I-103Pd与125I粒子间差异不明显;4Gy照射剂量下,对于A549及95D细胞,125I-103Pd复合粒子促凋亡作用较125I及103Pd粒子强,而103Pd粒子对肿瘤细胞的致死效应较125I-103Pd及125I粒子明显。
     4、体外细胞增殖实验表明,103Pd粒子在第1~4天,对肿瘤细胞生长的抑制效果强于125I-103Pd及125I粒子(P<0.05),第5~7天125I-103Pd与103Pd粒子对肿瘤细胞生长的抑制效果相当(P>0.05);125I粒子对肿瘤增殖的影响最小(P<0.05);
     5、体内移植瘤粒子植入治疗实验表明,125I-103Pd复合粒子抑瘤作用强于103Pd和125I粒子(P<0.05),103Pd和125I粒子抑瘤效果无明显差异;
     6、A549移植瘤模型的PET-CT结果表明:125I-103Pd、125I及103Pd粒子组的葡萄糖及核苷酸代谢明显低于空白粒子组;103Pd粒子对肿瘤的葡萄糖代谢影响最明显,125I-103Pd复合粒子次之,而125I粒子最弱;粒子植入初期,103Pd粒子对肿瘤的核苷酸代谢影响最明显,而中后期125I-103Pd复合粒子对核苷酸代谢影响最明显;125I粒子在治疗初期对肿瘤核苷酸代谢影响最弱,中后期与103Pd粒子作用相当;肿瘤A549核苷酸代谢与葡萄糖代谢的趋势一致,随着观察时间的延长,摄取值均降低。
     7、95D移植瘤模型的PET-CT结果表明:125I-103Pd复合粒子对肿瘤95D的葡萄糖及核苷酸代谢的影响较125I粒子大;95D肿瘤核苷酸代谢与葡萄糖代谢趋势不一致:糖代谢水平持续走低,而核苷酸代谢在治疗中后期无明显差异。
     8、125I-103Pd,125I及103Pd粒子对肿瘤的磷脂代谢影响明显,但三个粒子组间比较无明显差异。
     结论:
     1、125I-103Pd复合性放射性粒子制备工艺可靠,粒子均一性较好;
     2、125I-103Pd与125I及103Pd粒子比较,其有效杀伤范围未见明显差异;
     3、125I粒子主要是通过诱导凋亡来杀伤肿瘤细胞;103Pd粒子则主要通过射线的直接杀伤作用,引起细胞死亡;125I-103Pd复合粒子则兼顾了两种核素的特性;
     4、125I-103Pd复合粒子的抑瘤效果强于103Pd与125I粒子,103Pd与125I粒子的抑瘤
     效果相当;
     5、125I-103Pd与125I及103Pd粒子对肿瘤的葡萄糖代谢、核苷酸代谢及磷脂代谢影响均较明显,但125I-103Pd复合粒子对肿瘤核苷酸代谢的影响较125I及103Pd粒子明显;核苷酸代谢水平高低更能反映粒子治疗后的抑瘤效果。
Objective:
     1. To develop 125I- 103Pd hybrid radioactive seeds, and to observe the killing effects and the tumor-inhibitory action of 125I- 103Pd hybrid radioactive seeds, by comparing with 125I and 103Pd radioactive seeds.
     2. To investigate the killing mechanism of 125I-103Pd seeds, by comparing with 125I and 103Pd radioactive seeds on tumor cells apoptosis, proliferation and metabolism.
     Method:
     1.125I- 103Pd hybrid radioactive seeds was developed by using chemical plating method, and the homogenicity of the seed was estimated by nuclide autograph and the measurement of nuclide seed activity.
     2. Cytological test:4 kind of lung cancer cells including A549, GLC-82,95D and H460 cells were chosen for tumor cell killing test, cell apoptosis test and cell proliferation test, in order to compare the effects of 125I- 103Pd seeds with 125I and 103Pd seeds on tumor cell growth in vitro.
     3. Seed implanting therapeutic test:the mouse models of transplanted tumors were built and the tumor-inhibitory action was compared between 125I- 103Pd,125I and 103Pd seeds.
     4. Molecular imaging test:tracer agents including 18F-FDG、18F-FLT and 11C-CH were adopted for PET examination on A549 and 95D tumor models, to learn about the effects of 125I- 103Pd,125I and 103Pd seeds on tumor cell metabolism and proliferation, in order to investigate the the killing mechanism of 125I- 103Pd seed on tumor cells.
     Result:
     1. Nuclide autograph and the measurement of nuclide seed activity indicated that, 125I- 103Pd seed was successfully developed, and thehomogenicity of the seed was reliable;
     2. In vitro cell killing test in 48 hours showed that,103Pd seed was the most effective, while 125I- 103Pd seed was more effective than 125I seed. The killing ranges of the three kind of radioactive seeds were of no significant difference, and tumor cells around radioactive seeds in a range of about 2 to 3 lengths of a seed were inhibited obviously。
     3. Cell apoptosis test indicated that, under 2Gy irradiation, no obvious difference in A549 cell apoptosis was observed among 125I- 103Pd,125I and 103Pd seeds (P>0.05). While under 2Gy irradiation,103Pd seed could induce more 95D cells to apoptosis and death than 125I-103Pd and 125I seeds (P<0.05), no difference was found between 25I- 103Pd and 125I seeds (P>0.05). Under 4Gy irradiation, as regard to both A549 and 95D cells, 125I- 103Pd seed was more effective in inducing tumor cell to apoptosis than 125I and 103Pd seeds did, while 103Pd seed could induce more tumor cells to death than 125I-103Pd and 125I seeds did.
     4. Tumor cell proliferation test in vitro showed that:From day 1 to day 4,103Pd seed was much more effective in cell growth inhibition than 125I- 103Pd and 125I seeds(P<0.05); From day 5 to day 7,125I- 103Pd and 103Pd seeds were identical in cell growth inhibition (P>0.05). While 125I seed was relatively the weakest radioactive seed in whole observation period (P<0.05);
     5. Seed implanting test in transplanted tumors showed that, 125I- 103Pd seed was the most effective in tumor inhibition, while 103Pd and 125I seeds were identical;
     6. PET-CT of A549 tumor models indicated that,125I- 103Pd,125I and 103Pd seeds could obviously inhibit A549 cells metabolism in glucose and nucleotide. As to glucose metabolism,103Pd seed is the more powerful than 125I-103Pd and 125I seeds, while 125I seeds is the weakest among the three kind of radioactive seeds. In the early observation time,103Pd seed was the most effective in the inhibition of the nucleotide metabolism, while 125I- 103Pd seed was the most powerful in the mid-and-later observation time; 125I seed was the weakest in the early observation time, while it was as effective as 103Pd seed in the mid-and-later observation time. The tendency of glucose metabolism is concordant to nucleotide metabolism, while the uptake value descended gradually along with the time of irradiation.
     7. PET-CT of 95D tumor models indicated that,125I- 103Pd was more effective than 125I seeds to inhibit cell metabolism in glucose and nucleotide. However, the tendency of glucose metabolism is inconcordant to nucleotide metabolism:the uptake value of glucose metabolismdescended gradually, while nucleotide metabolism was of little change in mid to late time of irradiation。
     8. The influence of 125I- 103Pd,125I and 103Pd seeds on the phospholipid metabolism of tumor cell were obvious. However, no difference was found among the 3 radioactive seed groups.
     Conclusion:
     1. The manufacture of 125I- 103Pd hybrid radioactive seed is possible, the homogenicity of the seed is reliable;
     2.125I- 103Pd,125I and 103Pd seeds are of no difference in effective killing range.
     3.125I seeds mainly induce tumor cells to apoptosis, and 10 Pd seeds mainly kill tumor cells directly, while 125I- 103Pd seeds may combine the character of the two nuclide.
     4. In tumor-inhibitory action,125I- 103Pd seed is more effective than 103Pd and 125I seeds, while 103Pd seed is comparable with 125I seed.
     5.125I- 103Pd,125I and 103Pd seeds can influence tumor cell metabolism in glucose, nucleotide and phospholipid. However, 125I- 103Pd seed is more powerful in inhibiting the nucleotide metabolism, than 125I and 103Pd seeds; Nucleotide metabolism could better reflect the tumor-inhibitory effect of radioactive seeds.
引文
1. Abourbeh G, Dissoki S, Jacobson O, et al. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl Med Biol,2007,34(1):55-70.
    2. Cachin F, Princo HM, Hogg A, et al. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol,2006,24(19): 3026-3031.
    3. Chen Z, Nath R. Biologically effective dose (BED) for interstitial seed implants containing a mixture of radionuclides with different half-lives. Int J Radiat Oncol Biol Phys,2003,55(3):825-834.
    4.陈武,孙艳丽,席妍.肿瘤标志物水平与肺癌分期、近期疗效及生存时间的相关性的临床观察.标记免疫分析与临床.2008,8(4):209-221.
    5. Claen P, Wei XZ, Hang WJ, et al. Preliminary study of permanent 103Pd radioactive seed implantation on malignant tumor in brachytherapy. J Mod Clin Med Bioeng. 2001,7(6):426-428.
    6. Eschmann SM, Pfannenberg AC, Rieger A,et al.Comparison of 11 C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin. 2007;46(5):161-168; Fernando HC, Santos RS, Benfield JR. Lobar and sublobar resection with and without brachytherapy for small stage IA non—small cell lung cancer. J Thorac Cardiovasc Surg.2005,129(2):261-267.
    7.高惠波,李忠勇,张文辉等.钯-103和碘-125复合密封籽源、源芯及源芯制备方法.(国家发明专利,申请号:201010104700.7,公开号:101797392A)
    8. George Fred, Max Taghizadeh. Hybrid source containing multi-radionuclides for use in radiation therapy. Pub.No:US 2008/0249398 A1.
    9. Hara T, Kosaka N, Suzuki T, et al.Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis:a positron emission tomography study. Chest.2003 Sep;124(3):893-901.
    10. Hong H. Chen M.SC, Rong F. Jia, et al. Bystander effects induced by continuous low-dose-rate 125I seeds potentiate the killing action of irradiation on human lung cancer cells in vitro.Int. J. Radiation Oncology Biol.2008,5:1560-1566.
    11. Hutchings M, Loft A, Hansen M, et. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma[J]. Blood,2006,107(1):52-59.
    12. Huang Z, Zuo C, Guan Y, et al.Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun.2008 Apr;29(4):354-358.
    13. Jasanoff A. Functional MRI using molecular imaging agents. Trends neurosci,2005, 28(3):120-126.
    14. Jean-Philippe Pignol, M.D, PH.D, F.R.C.P.C, Eileen Rakovitch, M.D,et al. Tolerance and acceptance results of a palladium-103 permanent breast seed implant phase Ⅰ/Ⅱ study. Int. J. Radiation Oncology Biol. Phys.,2009,5:1482-1488.
    15. Jin B, Huang AM, Zhong RB, Han BH. The value of tumor markers in evaluating chemotherapy response and prognosis in Chinese patients with advanced non-small cell lung cancer. Chemotherapy.2010;56(6):417-423.
    16. Juweid ME, Cheson BD. Positron emission tomography and assessment of cancertherapy[J]. N Sngl JMed,2006,354(5):496-507.
    17. Khan N, Oriuchi N, Zhang H, et al.A comparative study of 11C-choline PET and [18F]fluorodeoxyglucose PET in the evaluation of lung cancer. Nucl Med Commun. 2003 Apr;24(4):359-366
    18. Lee CG, Kwon HK, Ryu JH, et al.Abalone visceral extract inhibit tumor growth and metastasis by modulating Cox-2 levels and CD8+ T cell activity. BMC Complement Altern Med.2010,10:60.
    19. Lee KJ, Moon JY, Choi HK, et al. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance. Clin Exp Immunol.2010,8, 161(2):298-305. Epub 2010 May 18.
    20. Li L, Song LH, Ding SC, Zhang XJ, Qiang L, Han CY, Yuan XT, Xu DD. Clinical value of CEA and CYFRA21-1 as an assessment indicator of therapeutic efficacy in advanced non-small cell lung cancer patients]. Zhonghua Zhong Liu Za Zhi.2010 Nov;32(11):850-854.
    21. Ling CC. Permanent implants using Au-198, Pd-103 and I-125 radiobiogical considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys,1992, 23:81-87.
    22. Ling CC, Li WX, Anderson LL. The relative biological effectiveness of I-125 and Pd-103. Int J Radiat Oncol Biol Phys.1995;32:373-378.
    23. Liu B, Zhi X, Liu L,et al. Evaluation of Three-Dimensional Reconstruction CT in Percutaneous Radiofrequency Ablation (RFA) of the Unresectable Lung Tumor with a Clustered Electrode.Zhongguo Fei Ai Za Zhi.2009 Jul 20;12(7):775-9.
    24. Madar I, Bencherif B, Lever J, et al. Imaging delta- and mu-opioid receptors by PET in lung carcinoma patients. J Nucl Med,2007,48(2):207-213.
    25. Mark J. Rivard, Wayne M. Butler, Phillip M. Devlin, et al. American Brachytherapy Society recommends no change for prostate permanent implant dose prescriptions using iodine-125 or palladium-103. Brachytherapy 6 (2007) 34-37.
    26. Meisetschlager G, Poethko T, Stahl A, et al. Gluc-Lys(18F-FP)-TOCA PET in patients with SSTR-positive tumors:biodistribution and diagnostic evaluation compared with 111 In-DTPA-octreotide. J Nucl Med,2006,47(4):566-573.
    27. Minn H, Clavo A C, Grenman R, et al. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyghcose and L-methionine in squamous-cell carcinoma of the head and neck.J Nucl Med,1995,36(2):252-258.
    28. Nag S, Riborich M., Cai JZ, et al. Palladium-103 vs. iodine-125 brachytherapy in the Danning-PAP rat prostate tumor, Endocuriether. Hypertherm. Oncol.12 (1996) 119-124.
    29.Peschel RE,Colberg JW, Chen Z et al.Iodine 125 versus palladium 103 implants for prostate cancer:clinical outcomes and complications.Cancer J 2004;10:170-174.
    30.秦维昌.医学影像技术的现状与发展.中华放射学杂志,2007,41(2):113-114.邱晓华,邵增务,廖翔等.放射性粒子植入在恶性骨肿瘤治疗中的应用.中国骨肿瘤骨病,2006(3):172-174.
    31.Raben A,Mychalcza KB.Branchytherapy for non-small cell lung cancer and selected neoplasms of the chest.Chest,1997,112:276-286.
    32.Shields A F,Ggrieson J R,Dohmen B M,et al.Imaging proliferation in vivo with [F-18]FLT and positron emission tomography[J].Nat Med,1998,4(11):1334-1336.
    33.苏庆光.PET在肿瘤学的临床应用.中华临床医学实践杂志中华临床医学实践杂志.2002,12(1):63-64.
    34.Van Westreenen HL.Cobben DC,Jager PL,et al.Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer.J Nuel Med,2005,46(3):400-404.
    35.Vesselle H,Schmidt RA,Pugsley JM,et,al.Lung Cancer proliferation correlates with[F-18]fluorodeoxyglucose uptake by positron emission tomography[J].Clin Cancer Res,2000,6(10):38373844.
    36.Vesselle H, Grierson J,Muzi M, et al.In vivo validation of 3-deoxy-3-18F fluorothymidine(18F-FLT)as a proliferation imaging tracer in humans:correlation of[18F]FLT uptake by positron emission tomography with Ki67 immunohistochemistry and flow cytometry in human lung tumors.Clin Cancer Res,2002,8(11):3315-3323.
    37.王俊杰.放射性粒子植入治疗颅内肿瘤.中国微创外科杂志.2002,2(4):269-270;
    38.王俊玲,郑慕白,李志平等.超声造影对肝肿瘤微波局部消融治疗早期疗效评估的临床价值研究.2010,12(26):1102-1105.
    39.Wang J,Zhang N,Li B,Wang Z,Sun H,Yi Y, Huang W.Decline of serum CYFRA21-1 during chemoradiotherapy of NSCLC:a probable predictive factor for tumor response.Tumour Biol.2011 3:16.
    40. Weissleder R. Molecular imaging in cancer[J]. Science,2006,312(5777): 1168-1171.
    41. Wilson I K, Chatterje S, Wolf W. Synthesis of 3'-fluoro-3'-deoxythymdine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the bio-distribution of drugs against AIDS. J Fluorine Chem,1991,55(3):283-289.
    42. Yanagawa T, Watanabe H, Inoue T. Carbon-11 choline positron emission tomography in musculoskeletal tumors:comparison with fluorine-18 flurodeoxyglucose positron emission tomography. Compm Assist Tomogr.2003,27(2):175.
    43. Yap CS, Czernin J, Fishbein MC, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglueose-positron emission tomography. Chest, 2006,129(2):393-401.
    44. Yap CS, Czernin J, Fishbein MC, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose positron emission tomography. Chest, 2006,129(2):393-401.
    45. Zhang H, Tian M, Oriuehi N, et al. 11C-choline PET for the detection of bone and soft tissue tumours in comparison with FDG PET. Nucl Med Commun,2003,24(3): 273.
    46.赵周社,辛军,郭启勇等.多种正电子示踪剂PET联合显像在肿瘤基础研究、临床诊断和疗效监测中的应用进展.中国临床医学影像杂志.2009,10(20):764-769.
    1.Claen P, Wei XZ, Hang WJ, et al. Preliminary study of permanent 103Pd radioactive seed implantation on malignant tunlor in brachytherapy.J Mod Clin Med Bioeng.2001,7(6):426-428.
    2. Ling CC. Permanent implants using Au-198, Pd-103 and 1-125 radiobiogical considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys,1992, 23:81-87.
    3. Pisch J, Belsley SJ, Ashton R, et al. Placement of 125I implants with the da Vinci robotic system after video-assisted thoracoscopic wedge resection:a feasibility study. Int J Rad iat O nco 1 Bio 1 Phys,2004,60(3):928-932.
    4. Fernando HC, Santos RS, Benfield JR. Lobar and sublobar resection with and without brachytherapy for small stage IA non—small cell lung cancer. J Thorac Cardiovasc Surg.2005,129(2):261-267.
    5. Birdas TJ, Koehler RP, Colonias A. Sublobar resection with brachytherapy versus lobectomy for stage Ib non small cell lung cancer. Ann Thorac Surg,2006,81(2): 434-439.
    6. Santos R, Colonias A, Parda D,et al. 125I brachytherapy after sublobar resection in high-risk patients with stage I non-small-cell lung cancer. Surgery,2003,134(4):691-697.
    7.柴树德,郑广钧.放射性粒子植入治疗胸部肿瘤[M].天津:天津科技出版社,2007:260-265.
    8.戚良晨,韩振国,杨斌等.放射性125I粒子植入对犬正常支气管、食管、肺动脉、肺静脉和肺泡结构的影响及安全性.吉林大学学报(医学版).2008,34(5):821-824
    9. Mark G Trombetta, Athanasios Colonias, Daryl Makishi, et al. Tolerance of the aorta using intraoperative iodine-125 interstitial brachytherapy in cancer of the lung. Brachytherapy 7 (2008) 50-54.
    10. Peschel RE. Prostate implant therapy:iodine-125 versus palladium-103[J]. Cancer J, 2005,11:383-384.
    11. Martinez-Monge R, Pagola M, Vivas I, Lopez-Picazo JM, CT-guided permanent brachytherapy for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC).Lung Cancer.2008; 61:209-213.
    12. Martinez-Monge R, Garran C, Vivas I, Lopez-Picazo JM. Percutaneous CT-guided 103Pd implantation for the medically inoperable patient with T1N0M0 non-small cell lung cancer:a case report. Brachytherapy 2004;3(3):179-81.
    13.张福君,陈栋,韩建军等.放射性125I粒子联合化疗治疗晚期非小细胞肺癌的临床研究.当代医学,2010,16(23).
    14.赵斗贵,杨素君,郭志远.CT引导下125I放射性粒子组织间植入联合化疗治疗非小细胞肺癌的评价.介入放射学杂志.2007,16(7).
    15. Yang SF, Fan XW, Zhang GQ, Shan L. Efficacy and safety of chemotherapy combined with interstitial (125)I seed implantation brachytherapy in unresectable stage Ⅲa/Ⅲb non-small cell lung cancer. Zhonghua Zhong Liu Za Zhi.2010 Aug;32(8):626-9.
    16.刘春香、刘涛、李德杰.经支气管动脉化疗药物灌注术联合125I粒子植入治疗老年中心性肺癌近期疗效分析.中华肿瘤防治杂志2007,14(12):951-952
    17.冯字,高宏,李力军.放射性粒子125I及缓释化疗粒子联合治疗晚期非小细胞肺癌临床研究.山东医药.2009,49(28),29-30.
    18.李纪远,马健群,崔亚力.放射性粒子125I在肺癌治疗中的应用.实用肿瘤学杂志.2007,21(6):572-574.
    19.王洪武,马洪明,罗凌飞等.氩氦刀联合放/化疗粒子植入治疗肺癌.中国肺癌杂志.2009,12(5):408-411.
    20. Chen Z, Nath R. Biologically effective dose (BED) for interstitial seed implants containing a mixture of radionuclides with different half-lives. Int J Radiat Oncol Biol Phys,2003,55(3):825-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700