轴向感应子式高温超导电机及其低温系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导电机是利用超导技术及超导材料研制的一种高性能电机。由于用超导线圈代替了常规铜绕组,提高了绕组的载流能力,可以产生很大的磁场而又几乎无焦耳热损耗,因而具有一系列的先进的技术和经济特性。随着高温超导材料技术的发展,材料的临界温度、电性能和机械性能都得到极大提升,使采用高温超导材料的电机要考虑的制冷功率比低温材料低的多。因此,高温超导电机已经成为电机研究的一个重要方向。
     对于传统结构的高温超导电机,尽管采用超导材料对电机性能上有很大提升,但是也带来一系列问题:超导绕组的绕制受限于超导材料的机械性能、超导绕组的低温冷却、旋转密封、复合力矩管等等。这些问题成为高温超导电机发展的重要限制。
     考虑到低速、大转矩电机在船舶推进和风力发电方面的应用,同时考虑传统电机结构产生的技术难点,基于先进高温超导材料的性能特性提出了一种新型高温超导电机的设计方案——轴向感应子式高温超导电机。该类电机在结构上有一些典型特点,如全超导结构、轴向气隙、超导绕组静止、液氮冷却等等。
     与高温超导电机发展对应的是低温系统的发展。相对简单、费用较低、更高效率、稳定性高的低温系统的研制是高温超导电机进一步商业化的基础。轴向感应子式高温超导电机由于感应子的结构特点,可以采用过冷氮冷却。本文将归纳分析各种过冷氮低温系统的结构流程、工作原理和初步设计,提出了一种新型过冷氮低温冷却系统。新型低温系统采用热虹吸子系统联接了正常工作模式和备份运行模式,避免了开式系统的运行成本高和闭式系统稳定性低的缺点。
     高温超导电机的设计都是基于超导材料的性能和由材料组成的绕组的性能来进行的。对于低温系统研究,更为关注的是超导绕组在给定的冷却方式和磁体所处磁场环境等条件下的热稳定性,即给定的冷却方式能否满足磁体温度裕度的要求。以磁体精确模型为分析对象,把磁滞损耗作为内热源加载,边界上采用温度稳定边界条件,进行HTS磁体稳态运行时热稳定型分析,得到稳态时磁体温度分布。最大温度点温度为66.13K,位置为靠近端部,磁体温度稳定性良好。
     另一方面,从低温系统功耗的角度,对高温超导磁体运行温度进行优化。从分析中得,当交流磁体和直流磁体工作温度在60~70K之间时,对应的低温系统具有较低的功耗。直流磁体工作温度的最优值为65K,此时系统功耗低至85W。交流磁体最优工作温度为70K,此时功耗值为245W,高达直流磁体最优功耗的两倍多。即过冷氮低温系统用于冷却HTS磁体系统功耗较小。
     最后根据12.5kW轴向感应子式样高温超导电机热负荷要求,给出了300W/66K开式过冷氮低温系统的初步设计。
Superconducting motor is a new kind high performance motor which utilizes superconducting technology and material. As using superconducting coils instead of routine copper windings, the current carrying capacity of motor windings is improved greatly. Higher magnetic field and almost no AC loss make the superconducting motor have series of advanced technology and economy characteristics. With the development of high temperature superconducting (HTS) material, critical temperature, electrical properties and mechanical properties are promoted greatly. The cooling power of superconducting motor using HTS material is much less than using LTS material. Therefore, HTS motor becomes an important research direction of motor research.
     As to conventional HTS motor, though there is great improvement of motor performance, it also bring up some problems, such as superconducting winding making method, cryogenic cooling of superconducting windings, rotary sealing, and composite torque tube etc. These problems have become key restrictions of HTS motor’s development.
     Considering the application in the field of ship propulsion and wind power generation of the low speed, large torque motor and simultaneously considering technical difficulties brought by conventional HTS motor structure, we proposed a new design scheme, axial flux and inductor type flux control high temperature superconducting motor. This kind motor has some typical structure characteristics, such as fully superconducting, axial direction air gap, static superconducting winding and liquid nitrogen cooling etc.
     Corresponding with HTS motor development, cryogenic system gained rapid development. Simple, low cost, higher efficiency and stability cooling system is the base of commercialization of HTS motor. As axial flux and inductor type flux control high temperature superconducting motor can be cooled by sub-cooled liquid nitrogen, sub-cooled liquid nitrogen cryogenic system becomes a hot research point. This paper will conclude and analyze different kinds of sub-cooled liquid nitrogen cryogenic system, including structure process, working principle and preliminary design. At last, a new structure for sub-cooled liquid nitrogen cryogenic system is proposed. The new system uses thermosyphon subsystem to connect the normal operation and back-up operation that avoid the high cost of open-cycle system and low stability of closed-cycle system.
     HTS motor is designed basing on properties of superconducting material and windings. As to cryogenic system, there is a growing concern about the thermal stability under given cooling method and magnet surrounding environment condition. That is the given cooling method can satisfy the temperature margin demand. Considering the accurate magnet model as analysis object, the thermal stability of HTS magnet was analysed to get the temperature distribution. The highest point of temperature is 66.13K and the positon is near the end region of the magnet. This means the thermal stability of HTS is high.
     On the other hand, this paper did the optimum design of HTS magnet’s operating temperature at the angle of system power dissipation. From analysis result, the cooling system has low power dissipation when the operating temperature between 60~70K. The optimal temperature for dc magnet is 65K while the power dissipation is as low as 65W. The optimal temperature for ac magnet is 70K while the power dissipation is as low as 245W. That is to say it is good to use sub-cooled nitrogen to cool the HTS magnet from power dissipation point.
     Lastly, the paper did the preliminary design of a 300W/66K sub-cooled nitrogen crygogenic system for the thermal load requirement of 12.5 kW inductor type flux control high temperature superconducting motor.
引文
1邓隐北,邓彬.超导电机的研制动态与发展前景.水利电力科技. 2006, (4):1~5
    2 Sheahen T P, Mcconnell B W, Multholand J W. Method for estimating future markets for high-temperature superconducting power devices. IEEE Transition on Applied Superconductivity. 2002,12(2): 1784~1789
    3郑陆海,金建勋.高温超导电机发展与研究现状.电机与控制应用. 2007, 34(3):1~3
    4 W. R. BUMBY.超导旋转电机.田成文,等译.西安交通大学出版社. 1985:1~4
    5 J. D. Edick, R. F. Schiferl, H. E. Jordan. High Temperature Superconductivity Applied to Electric Motors. IEEE Transactions on Applied Superconductivity. 1992,2(4):189 ~192
    6 S. S. Kalsi, N. Henderson, D. Gritter. Benefit of HTS technology to ship system. IEEE Electric Ship Technologies Symposium. 2005:437 ~443
    7朱维衡.超导电机经济分析.电工电能新技术. 1983, (1):1~5
    8 M. J. Gouge. Cryogenic cooling technology for HTS electric machinery. IEEE Power Engineering Society General Meeting. 2004,2:2049 ~2051
    9 Nick W, Nerowski G., Neumuller H W, et al. 380 kW synchronous machine with HTS rotor windings-development at Siemens and first test results. Physica C. 2002: 372~376, 1506~1512
    10 Frank M, Fraunenhofer J, Gromoll B, et al. Thermosyphon cooling system for the Siemens 400kW HTS synchronous machines. Advance in Cryogenic Engineering: Transaction of the Cryogenic Engineering Conference-CEC. 2004,49:859~866
    11 J. A. Urbahn, R. A. Ackermann, Huang X, et al. The thermal performance of a 1.5MVA HTS generator. Advance in Cryogenic Engineering: Transaction of the Cryogenic Engineering Conference-CEC. 2004,49:849~858
    12 Y. K. Kwon, M. H. Sohn, E. Y. Baik Lee, et al. Development of a S.K. 100 hp synchronous motor with HTS field coils. IEEE Transactions on Applied Superconductivity. 2005,15(2):2194 ~2197
    13 Al-MOsawi M K, Beduz C, Goddard K, et al. Design of a 100kVA high temperature superconducting demonstration synchronous generator. Physica C. 2002: 1539~1542
    14 Jo Y S. Kwon, Y K, Sohn M H, et al. High temperature superconducting synchronous motor. IEEE Transactions on Applied Superconductivity. 2002,12(1):833~836
    15 Joshic H, Prum C B, Schifer R F, et al. Demonstration of two synchronous mot ors usinghigh temperature superconducting field coils. IEEE Transactions on Applied Superconductivity. 1995,5(2):968~971
    16 Greg S, Bruce G, Swarn S K. Demonstration of two synchronous mot ors using high temperature superconducting field coils. IEEE Transactions on Applied Superconductivity. 2005,15(2):2206~2209
    17 Frankm, Frauenhofer J, Van Hasselt P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations. IEEE Transactions on Applied Superconductivity. 2003,13 (2):2120~2123
    18 Neumuller H W, Nickw, Wacker B, et al. Advances in and prospects for development of high temperature superconductor rotating machines at Siemens. Superconductor Science and Technology. 2006, 19 (3) : S1142~S117
    19 Schiferl R F, Zhang B X, Driscolld I, et al. Development status of 125 hp superconducting motor. Advance in Cryogenic Engineering,1997,42(2):977~984
    20 Dombrovskiv Driscoll D, Shoykhet B A, et al. Design and testing of a 1000-hp high temperature superconducting motor. IEEE Transactions on Energy Conversion. 2005,20(3): 638~643
    21 Gamble B B, Kalsis Snitchler G, et al. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference. 2002: 270~274
    22 Jo Y S, Kwon Y K, Sohn M H, et al. High Temperature superconducting synchronous motor. IEEE Transactions on Applied Superconductivity. 2002, 12(1): 833~836
    23 Hirohisa Matsuzaki, Yousuke Kimura, Isao Ohtani, et al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copper windings. IEEE Transactions on Applied Superconductivity. 2005, 15(2): 2222~2225
    24 Eriksson J T, Mikkonen R, Paasij, et al. A HTS synchronous motor at different temperature. IEEE Transactions on Applied Superconductivity. 1997,7(2): 523~526
    25 Fogarty J M. Development of a 100WVA high temperature superconducting generator. 2004 IEEE Power Engineering Society General Meeting. 2004: 2065~2067
    26 http://www.sei.co.jp/news_e/press/05/05_03.html
    27 T. Okazaki, K. Ohkura, T. Kato, K. Fujino, et al. Industrial Applications of HTS Coils Using DI-BSCCO Wire. IEEE Transactions on Applied Superconductivity. 2006,2(16): 1~4
    28 Hidehiko Sugimoto, Teppei Tsuda, Takaya Morishita, et al. Industrial Applications of HTS Coils Using DI-BSCCO Wire. IEEE Transactions on Applied Superconductivity. 2007,2(17): 1637~1640
    29 H. Sugimoto, T. Nishikawa, T. Tsuda, et al. Trial manufacture of liquid nitrogen cooling high temperature superconductivity motor. J. Phys.: Conf. Series. 2006(43):780~783.
    30 Hidehiko Sugimoto, Teppei Tsuda, Takaya Morishita, et al. Design of an Axial Flux Inductor Type Synchronous Motor With the Liquid Nitrogen Cooled Field and Armature HTS Windings. IEEE Transactions on Applied Superconductivity. 2007:1~4
    31朱昌军. 300kW超导单极电机低温技术及试验研究.低温工程.1994,6:12~17
    32 Qium, Huo H K, Xu Z, et al. Technical analysis on the application of HTS bulk in“permanent magnet”motor. IEEE Transaction on Applied Superconductivity. 2005,15(2):3172~3175
    33 Qium, Xu Z, Yao Z H,et al. Design and performance of a small HTS bulk reluctance motor. IEEE Transaction on Applied Superconductivity. 2005,15(2):1480 ~1483
    34 Jung-Won Nam, Sangkwon Jeong, Hongseong Kim, et al. Investigation of On-Board Hybrid Pulse Tube Cryocooler for High Temperature Superconducting Rotor. IEEE Transaction on Applied Superconductivity. 2005,15(2):2190 ~2193
    35 S. Jeong and J. Jung. Modi?ed Roebuck compression device for cryogenic refrigeration system of superconducting rotating machine. Cryogenics. 2002,42: 501~507
    36 Young-Sik Jo, Yong-Kil Kwon, Myung-Hwan Sohn, et al. Temperature characteristic of rotor of HTS synchronous rotating machine cooled by solid nitrogen. Physica C. 2002: 372~376, 1536~1538
    37 Jules E. Pienkos, Philippe J. Masson, Sastry V. Pamidi, et al. Conduction Cooling of a Compact HTS Motor for Aero propulsion. IEEE Transaction on Applied Superconductivity. 2005,2 (15):2150 ~2153
    38 Yoshiaki Suzuki, Shigeru Yoshida, Yasuharu Kamioka. Subcooled liquid nitrogen refrigerator for HTS power systems. Cryogenics. 2003,43:597~602
    39 Hyoungku Kang, Hyung Jin Kim, Duck Kweon Baea, et al. Sub-cooled nitrogen cryogenic cooling system for superconducting fault current limiter by using GM-cryocooler. Cryogenics. 2005, 45: 65~69
    40 Y.F. Fan , L.H. Gong, X.D. Xu, et al. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable. Cryogenics. 2005,45:272~276
    41 Viatcheslav Dombrovski, David Driscoll, Stephen D Umans. Design and Testing of a 1000-hp High-Temperature Superconducting Motor. IEEE Transaction on Applied Superconductivity. 2005,3 (20):638~643
    42 Burt Zhang, David Driscoll, Viatcheslav Dombrovski. Construction and Testing of A 1,000HP High-Temperature Superconducting Motor. IEEE. 2002, Paper No. PCIC-2002-28:223~228
    43 D. Aized, B.B.Gamble, A.Sidi-Yekhlef et al. Status of the 1,000hp HTS Motor Development. IEEE Transaction on Applied Superconductivity.1999,2 (9):1197~1200
    44郭国才,唐文彬编译.100hp高温超导电动机的励磁线圈设计.船电技术.2004,2:16~19
    45 Toru Okazaki, Hidehiko Sugimoto, Toshio Takeda. Liquid Nitrogen Cooled HTS Motor for Ship Propulsion. IEEE, Power Engineering Society General Meeting.2006:1~6
    46沈云宝.超导电机.浙江大学出版社.1992:176~180
    47王秋良.高磁场超导磁体科学.科学出版社. 2008
    48张劲松,康伟. Bi系高温超导线材的发展历史及应用现状.超导经济. 2004:65~71
    49 www.innost.com
    50 M. Kikuchi, T. Kato, K. Ohkura, et al. Recent development of drastically innovative BSCCO wire (DI-BISCCO). Physica C. 2006: 445~448, 717~721
    51石零,王惠龄,唐跃进,等.应用高温超导线(带)的研制现状与进展.低温工程. 2004,4:22~25
    52 Masashi KIKUCHI , Naoki AYAI, Tomonobu ISHIDA, et al. Development of New Types of DI-BSCCO Wire. SEI Technical Review. 2008, 66:79~83
    53 http://www.sei.co.jp/super/
    54汪京荣.高温超导线材研究进展.稀有金属快报. 2004, 8:1~5
    55 Michael Tomsic, Matthew Rind?eisch, Jinji Yue, et al. Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method. Physica C. 2007: 203~208
    56 M. Hirakawa, S. Inadama, K. Kikukawa, et al. Developments of superconducting motor with YBCO bulk magnets. Physica C. 2003: 392~396,773~776
    57 K. Yoshida, H. Matsumoto. Design and simulation of HTS bulk linear synchronous motor. Physica C. 2002: 378~381, 833~837
    58 Hirohisa Matsuzaki, Yousuke Kimura, Isao Ohtani, et al. An axial Gap-Type HTS bulk synchronous motor excited by pulsed-field magnetization with Vortex-Type armature copper windings. IEEE Transaction on Applied Superconductivity. 2005,2 (15):2222~2225
    59汪京荣,滕鑫康,李成山,等. 2T高温超导Bi22223带材磁体.低温物理学报. 2003, 25: 214~218
    60 M. Polak, P.Usak, J.Pitel, et al. Comparison of solenoid and pancake model windings for a superconducting transformer. IEEE, Transaction on Applied Superconductivity.2001,11:1478~1481
    61程德威,王惠龄,李嘉.高Tc超导材料正常态与超导态热导率的研究.低温工程. 1999,4: 280~282
    62 Lehtonen J., Mikkonen R., Paasi J., et al. Effective thermal conductivity in HTS coils. Cryogenics. 2000,(42):245~249
    63 K. Tasaki, T. Kuriyama, S. Nomura, et al. Thermal stability of a cryocooler-cooled HTS pancake coil wound with Bi2223 tape. Physica C. 2003, 392~396, 1210~1213
    64 Larry K. Forbes, Stuart Crozier, David M. Doddrell. Rapid Computation of Static Fields Produced by Thick Circular Solenoids. IEEE Transaction on Magnetics. 1997, 5(32): 4405~4409
    65 Zhang GM, Lin LZ, Xiao LY, et al. A theoretical model for the angular dependence of the critical current for a BSCCO/Ag tapes. Physica C, 2003, 390:321~324
    66张京业,陈敬林. Bi2223/Ag高温超导带的侧向弯曲率对载流能力的影响.低温与超导. 2002,4(30):26~29
    67 T. Kiss, H. van Eck, B. ten Haken, et al. Transport properties of multifilamentary Ag-sheathed Bi-2223 tapes under the influence of strain. IEEE, Transaction on Applied Superconductivity. 2001,11: 3888~3891
    68 J. X. Jin, S. X. Dou, H. K. Liu et al. Critical current degradation caused by winding process of Bi-2223/Ag HTS wire in the form of a coil. IEEE, Transaction on Applied Superconductivity. 1999,9: 138~141
    69 S. J. Sun, W. Liu, X. P. Chen, et al. Effect of bending strain on the critical current of Bi-2223/Ag tapes with different structures, Supercond. Sci. Technol.2003,16: 984~987
    70 Kozo Osamura, Michinaka Sugano Kaname Matsumoto. Mechanical property and its influence on the critical current of Ag/Bi2223 tapes. Superconductor and Technology. 2003,16:971~975
    71 J. K. F. Yau, N. Savvides, C. C. Sorrell. Influence of mechanical strain on critical current density and microstructure of silver-sheathed Bi(Pb)2223 superconducting tapes. Physica C. 1996, 266:223~229
    72 Zhang Hong Hie, Li Qing fu, Zong Jun, et al. Study on the factors determining the critical current of HTS Magnets.低温物理学报. 2006,2(28):126~129
    73 Bejamin J. Haid, Haigun Lee, Yukikazu Iwasa, et al. A“permanent”high-temperature superconducting magnet operated in the thermal communication with a mass of solid nitrogen. Cryogenics. 2002,42: 229~244
    74张国民.高温超导带材及线圈的交流损耗.博士学位论文.北京,中科学院电工研究所, 2003
    75 Shin-ichi Kobayashi, Tetsuyuki Kaneko, Takeshi Kato, et al. A novel scaling of magnetic field dependencies of critical currents for Ag-sheathed Bi-2223 superconducting tape. Physica C.1996,258:336~340
    76 Bertrand Dutoit, Marten Sjostrom, Svetlomir Stavrev. Bi(2223) Ag sheathed tape Ic and exponent n characterization and modeling under DC applied magnetic field. IEEE Transactions on applied superconductivity, 1999,2(9):809~812
    77 Hideki Tanaka, Mitsuho Furuse, Masaichi Umeda. Heat Generation by Vibration and Coil Rigidity of Bi2223 Pancake Coil. IEEE Transactions on applied superconductivity, 2004,2(14):859~864
    78 Goodrich L F, Ekin J W. Lop joint resistance and intrinsic critical current measurement on a NbTi superconducting wire. IEEE Transactions on Magnets. 1981,17(1):69~72
    79张博,余运佳,王秋良.高温超导磁体指数损耗分析.低温物理学报. 2006,1(28):57~60
    80 Zhang Bo, Yu Yun-jia, Zhang Yuan, et al. Study on Index Loss of HTS magnet.系统仿真学报. 2007,6(19):1227~1230
    81林良真,张金龙,李传义,等.超导电性及其应用.北京工业出版社. 1998: 277~280
    82王银顺,林良真.铋系高温超导带材在工频交变磁场下的交流损耗.低温物理学报.1999, 2(21):149~156
    83 S. Fukui, M. Ikeda, T. Sano, et al. Analysis and Measurement of AC Transport Current Loss in BSCCO Tape in External Magnetic Field. IEEE Transactions on applied superconductivity.2001,1(2): 2212~2214
    84张国民,林良真,肖立业,等.高温超导线圈的交流损耗.低温物理学报. 2003,25: 546~549
    85 J. Ryner. Magnetic Prosperities and AC losses of superconductors with Power law current-voltage characteristics. Physica C. 1993, 212: 292~300
    86 L.Bigoni, E. Cereda, P L. Caseia, et al. Numerical analysis of hysteretic losses on high temperature superconducting coils. IEEE Transactions on applied superconductivity. 2001,11: 2232~2235
    87 Naoyuki Amemiya, Kengo Miyamoto, Nobuya Banno, et al. Numerical Analysis of AC Losses in High Tc Superconductors Based on E-j Characteristics Represented with n-Value. IEEE Transactions on applied superconductivity. 1997, 2(7): 2110~2114
    88 Hiroyuki Tonsho, Momoko Toyoda, et al. Numerical Evaluation of AC Loss in HighTemperature Superconducting Coil. IEEE Transactions on applied superconductivity.2004, 2(14):674 ~678
    89 Hiroyuki Tonsho, Satoshi Fukui, et al. Theoretical and Experimental Study on AC Loss in HTS Tape in AC Magnetic Field Carrying AC Transport Current. IEEE Transactions on applied superconductivity.2003, 2(13):2368 ~2371
    90 Yukikazu Iwasa. Case Studies in Superconducting Magnets: Design and Operational Issues. Springer. 2002: 267~276
    91 J.J. Rabbers, B. ten Haken, O.A. Shevchenko et al. An Engineering Formula to Describe the AC Loss of BSCCO/Ag Tape. IEEE Transactions on applied superconductivity.2001, 2(1):2623 ~2625
    92 J. J. Rabbers, B. ten Haken, H. H. J. ten Kate. Analysis of AC Loss in Superconducting Power Devices Calculated From Short Sample Data. IEEE Transactions on applied superconductivity.2003, 2(13):1731 ~1735
    93 Kiruba Sivasubramaniam, Xianrui Huang, David Ryan, et al. AC Losses in a High Temperature Superconducting Generator. IEEE Transactions on applied superconductivity.2005, 2(15):2162 ~2165
    94 Guo Min Zhang, Liang Zhen Lin, Li Ye Xiao, et al. The angular dependence of AC losses in BSCCO/Ag tapes under AC magnetic ?elds and AC transport currents. Cryogenics. 2003, 43: 25~29
    95 Guo Min Zhang, Liang Zhen Lin. AC Losses of High Temperature Superconducting Tapes and Coils.中国科学院研究生院学报.2006,5 (23):713~720
    96 Mitsuho Furuse, Junji Kondoh, Hideki Tanaka, et al. AC Loss Measurement of HTS Coils With Ferromagnetic Disks. IEEE Transactions on applied superconductivity.2003, 2(13):2356 ~2359
    97 Junji Kondoh, Mitsuho Furuse, Masaichi Umeda. Experimental Study of Solenoid Using Bi2223/Ag Tape With Ferromagnetic Disks. IEEE Transactions on applied superconductivity.2003, 2(13):1832 ~1836
    98 Q Jiang, M Majoros, Z Hong, et al. Design and AC loss analysis of a superconducting synchronous motor. Supercond. Sci. Technol. 2006,19:1164~1168
    99 Myung-Jin Park, Sang-Yeop Kwak, Woo-Seok Kim, et al. Analysis of magnetic field distribution and AC losses of a 600 kJ SMES. Cryogenics. 2007,47:391~396
    100 Chang H-M, Van Sciver SW. Thermodynamic optimization of conduction-cooled HTS current leads. Cryogenics.1998,38: 729-36
    101 Wilson MN. Superconducting magnets. Oxford: Oxford University Press. 1983, 256
    102 Ho-Myung Chang, Yeon SukChoi, Steven W. Van Sciver. Optimization of operating temperature in cryocooled HTS magnets for compactness and e?ciency. Cryogenics. 2002,42: 787~794
    103范宇峰,龚领会,徐向东,等. 75米三相交流高温超导电缆冷却系统.低温物理学报. 2005, 5(27):1068~1071
    104范宇峰,龚领会,徐向东,等. 10米10. 5kV/ 1. 5kA三相交流高温超导电缆低温系统.制冷学报. 2005,1 :49~53
    105丁怀况,施锦,滕健,等. 4M- 2000A高温超导电缆制冷系统.低温与超导. 2003, 3(31):70~75
    106丁怀况,施锦,陈登科,等. 30M-35kV /2000A高温超导电缆制冷系统.低温电子技术. 2005, 4(33) : 60~63
    107李兰凯. MICE超导耦合磁体低温系统及电流引线设计.硕士学位论文.哈尔滨,哈尔滨工业大学, 2007
    108徐向东,龚领会,方志春,等. 10.5kV/1.5kA高温超导限流器再冷凝系统.第八界全国低温工程大会暨中国航天低温专业信息网2007年度学术交流会论文集. 2007: 241~244
    109 Jack Ekin. Experimental Techniques for Low-temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-current Testing. Oxford University Press, 2006: 11-13
    110阎守胜,陆果.低温物理实验的原理与方法.北京,科学出版社. 1985: 268~269
    111化学工业部第四设计院主编.深冷手册(下册).北京:化学工业出版社, 1979,444
    112 Ying Xin, BoHou, Yanfang Bi, et al. China’s 30 m, 35 kV/2 kA ac HTS power cable project. Supercond. Sci. Technol. 2004,17: S332~S335
    113范宇峰,龚领会,徐向东. 10米1015 kV/ 115 kA三相交流高温超导电缆液氮冷却系统的设计.低温工程. 2004, 2: 27~31
    114杨世铭,陶文铨.传热学.北京,高等教育出版社. 2003: 162~168
    115 Randall F. Barron. Cryogenic Heat Transfer. Edwards Brothers, Ann Arbor, M1.1999: 100~102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700