锗酸盐纳米结构的制备及其CO_2光催化还原的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用光催化还原将温室气体CO2转换成有用的碳氢燃料是解决能源危机和环境污染最有前途的方法之一。锗酸盐光催化剂导带弥散,电子迁移速率高,具有良好的光催化分解H2O和有机污染物降解性能。而光催化剂的尺寸、维度、暴露晶面、表面结构等对其光催化性能有着直接影响。本文采用溶剂热法,以乙二胺和水为混合溶剂合成了一批锗酸盐纳米结构,并将此体系扩展到镓酸盐纳米结构的制备,探讨了产物的形成机理,并研究了其光催化CO2还原性能。主要研究内容如下:
     (1)调节乙二胺和水的比例,合成了“稻草”束状Zn2GeO4低维纳米结构。通过控制各反应条件研究了其生长机理,发现这种由1D纳米单元组成的束状结构的生成主要基于晶体的劈裂生长机制,类似于自然界中的一些矿石。通过负载不同的助催化剂,Zn2GeO4在氙灯全幅光照射下具有较好的光催化CO2还原成CH4活性。而且,将这种束状Zn2GeO4超结构在氮气气氛下氮化处理能够得到黄色的Zn1.7GeN1.8O固溶体,基本保留了前驱物的束状结构,该固溶体在可见光下具有较好的光催化CO2还原活性。
     (2)在此溶剂体系中,合成了长度达数百微米,厚度约为7nm(相当于5个晶胞的厚度)和长径比高达10000的单晶Zn2GeO4纳米带。纳米带长度为[001]方向,宽度为[100]方向,纳米带上下两大暴露面为{0l0}面。纳米带的生成基于配位溶剂分子模板机制(SCMT),乙二胺吸附在固体表面,并选择性地吸附到到某些特定的面上从而控制晶体的生长方向和速度。Zn2GeO4(?)内米带超长和超薄的几何形状大大提高了其光催化还原CO2为甲烷的活性。
     (3)在乙二胺(En)和水的体系中,以醋酸制为源,合成了直径约为2-3nm,长度达数百个纳米的In2Ge2O7(En)有机无机杂化超细纳米线。与纯无机In2Ge2O7纳米线和纳米管相比,这种杂化超细纳米线的发光光谱蓝移了近100nm。使用该超细纳米线光催化还原C02,以水蒸汽作为还原剂,结果表明光催化生成的产物为CO,不同于Zn2GeO4光催化剂。这些研究结果表明,温室气体CO2可以通过不同的锗酸盐催化剂选择性地还原成所需要的可再生燃料。
     (4)将此溶剂体系扩展到镓酸盐纳米结构的制备中,以硝酸镓为镓源,合成了形貌规整大小均,具有3D分级结构的ZnGa2O4微米花,这些微米花是由{110}面暴露比例高达99.6%的超薄纳米片自组装而成。光催化CO2还原实验结果表明,{1110}面暴露的ZnGa2O4纳米片的光催化转换效率是{100}面暴露的立方体纳米晶和{111}面暴露的八面体纳米晶的4倍之多。对这三个表面进行DFT理计计算,发现ZnGa2O4{110}面阳离子密度高有利于CO2吸附,功函低CO2容易活化,从而增强了其CO2还原光催化性能。除此之外,ZnGa2O4微米花独特的3D分级结构也增强了其光催化性能,3D结构使得催化剂具有较大的比表面积,而纳米片的超薄结构也有利于载流子快速从内部迁移到表门面参与光催化反应。
Reduction of CO2to valuable hydrocarbons using solar energy is one of the best solutions to both the global warming and the energy shortage problems. The unique multi-dimensional channel structures of Metal germinates photocatalysts facilitates the separation of photogenerated charge carriers with good photocatalytic performance. The photocatalytic activity of photocatalysts is highly dictated by their sizes, shapes and crystal facets. In this dissertation, some germanate compounds nanomaterials were synthesized in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The formation mechanism and photocatalytic activity of CO2reduction of these nanomaterials were studied. The details are summarized as follows:
     (1) Sheaf-like, hyperbranched Zn2GeO4nanoarchitectures were successfully synthesized in this mixed-solvent system. These structures may be assigned to the splitting crystal growth mechanism, resembling some minerals observed in nature. Addition of increasing amounts of En was found to enhance the degree of crystal splitting. Nitridation of the resulting Zn2GeO4superstructures under NH3flow produced yellow Zn1.7GeN1.8O solid solution, which allows photocatalytically converse CO2into CH4in the presence of H2O at ambient conditions under visible light irradiation.
     (2) Single-crystalline Zn2GeO4nanobelts with thickness as thin as~7nm (corresponding to five repeating cell units) and aspect ratio up to10,000has been synthesized using this solvothermal route. En can adsorb on solid surfaces and selectively bind to some specific panels to control the velocity and direction of crystal growth, which was termed as the solvent-coordination molecular-template mechanism. The ultralong and ultra-thin geometry of the Zn2GeO4nanoribbon proves to improve the photocatalytic activity toward reduction of CO2in the presence of water vapor into CH4.
     (3)A novel, highly crystalline indium germinate hybrid subnanowire, which we denote as In2Ge2O7(En), with general diameters of2-3nm and lengths up to hundreds of nanometres was synthesized in this En/water solvent system. The hybrid ultrathin nanowire exhibits an ultraviolet photoluminescence emission, a dramatic blue shift by more than100nm relative to pure inorganic In2Ge2O7nanowire andmicrotubes. The In2Ge2O7(En) ultrathin nanowire performs selectively the photocatalytic reduction of CO2into CO in the presence of water vapor. With reference to our Zn2GeO4nanoribbon photocatalyst, which was recently used to produce CH4under the same photocatalytic conditions, this work is a significant sign that the greenhouse gas, CO2, can be ameliorated into desirable kinds of renewable fuels using different germinate catalysts.
     (4) Well-defined,3D hierarchical microcrystals united with ultrathin ZnGa2O4nanosheets with over99.6%exposed{110} facets with highly active surfaces were deposited in this (En)/water solvent system. The{110}-dominant ZnGa2O4nanosheets proves4-time conversion efficiency of CO2reduction higher than cubic nanocrystals with{100} and octahedral nanocrystals with{111} surfaces. The enhancement of the photocatalytic efficiency is strongly associated with inherent catalytic behavior of {110} surface with high density of cations for CO2absorption and low work function for enhanced CO2activation. In addition, the unique3D hierarchical architecture also promotes the photocatalytic performance through high surface area, ultrathin thickness which allows charge carriers to move rapidly from the interior to the surface to participate in the photoreduction reaction, and improvement of light scattering to be in favor of enhancing the light absorption.
引文
[1]A. B. Rao and E. S. Rubin, Environmental Science & Technology,2002,36,4467.
    [2]D. Singh, E. Croiset, P. L. Douglas and M. A. Douglas, Energy Conversion and Management,2003,44,3073.
    [3]S. M. N. Hassan, P. L. Douglas and E. Croiset, International Journal of Green Energy, 2007,4,197.
    [4]E. Morris, Geoscience Canada,2004,31,136.
    [5]M. Aresta and A. Dibenedetto, Dalton Transactions,2007,28,2975.
    [6]A. Behr, Chemie Ingenieur Technik,1985,57,893.
    [7]J. Lee, Y. Kwon, R. L. Machunda and H. J. Lee, Chemistry-An Asian Journal,2009,4, 1516.
    [8]H. Nagao, T. Mizukawa and K. Tanaka, Inorganic Chemistry,1994,33,3415.
    [9]H. Z. Yang, Y. L. Gu, Y. Q. Deng and F. Shi, Chemical Communications,2002,274.
    [10]Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai and K. Oguma, Electrochimica Acta,2005,50,5354.
    [11]A. Fujishima and K. Honda, Nature,1972,238,37.
    [12]Z. G. Zou, J. H. Ye, K. Sayama and H. Arakawa, Nature,2001,414,625.
    [13]G. C. Dismukes, Science,2001,292,447.
    [14]A. Kudo and Y. Miseki, Chemical Society Reviews,2009,38,253.
    [15]M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renewable & Sustainable Energy Reviews,2007,11,401.
    [16]J. H. Park, S. Kim and A. J. Bard, Nano Letters,2006,6,24.
    [17]K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, Journal of the American Chemical Society,2005,127,8286.
    [18]H. Kato, K. Asakura and A. Kudo, Journal of the American Chemical Society,2003,125, 3082.
    [19]W. Zhao, W. H. Ma, C. C. Chen, J. C. Zhao and Z. G. Shuai, Journal of the American Chemical Society,2004,126,4782.
    [20]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Applied Catalysis a-General,2004,265,115.
    [21]I. K. Konstantinou and T. A. Albanis, Applied Catalysis B-Environmental,2004,49,1.
    [22]C. Burda, Y. B. Lou, X. B. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Letters, 2003,3,1049.
    [23]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science,2001,293,269.
    [24]J. M. Herrmann, Catalysis Today,1999,53,115.
    [25]C. S. Turchi and D. F. Ollis, Journal of Catalysis,1990,122,178.
    [26]Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L.Withers, Nature Materials,2010,9,559.
    [27]T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature,1979,277,637.
    [28]S. Matsuoka, K. Yamamoto, T. Ogata, M. Kusaba, N. Nakashima, E. Fujita and S. Yanagida, Journal of the American Chemical Society,1993,115,601.
    [29]H. Yamashita, N. Kamada, H. He, K.I. Tanaka, S. Ehara and M. Anpo, Chemistry Letters, 1994,855.
    [30]O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, Nano Letters,2009,9, 731.
    [31]J. H. Carey, J. Lawrence and H. M. Tosine, Bulletin of Environmental Contamination and Toxicology,1976,16,697.
    [32]M. Fujihira, Y. Satoh and T. Osa, Nature,1981,293,206.
    [33]M. Halmann, Nature,1978,275,115.
    [34]M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chemical Reviews, 1995,95,69.
    [35]A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chemical Reviews,1995,95,735.
    [36]M. Anpo, H. Yamashita, Y. Ichihashi and S. Ehara, Journal of Electroanalytical Chemistry,1995,396,21.
    [37]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii and M. Honda, Journal of Physical Chemistry B,1997,101,2632.
    [38]M. Anpo, H. Yamashita, K. Ikeue, Y. Fujii, Y. Ichihashi, S. G. Zhang, D. R. Park, S. Ehara, S. E. Park, J. S. Chang and J. W. Yoo, Advances in Chemical Conversions for Mitigating Carbon Dioxide,1998,144,177.
    [39]H. Yamashita, K. Ikeue, T. Takewaki and M. Anpo, Topics in Catalysis,2002,18,95.
    [40]O. Ishitani, C. Inoue, Y. Suzuki and T. Ibusuki, Journal of Photochemistry and Photobiology a-Chemistry,1993,72,269.
    [41]I. H. Tseng, J. C. S. Wu and H. Y. Chou, Journal of Catalysis,2004,221,432.
    [42]Slamet, H. W. Nasution, E. Purnama, S. Kosela and J. Gunlazuardi, Catalysis Communications,2005,6,313.
    [43]J. Rasko and F. Solymosi, Journal of Physical Chemistry,1994,98,7147.
    [44]C. J. Wang, R. L. Thompson, J. Baltrus and C. Matranga, Journal of Physical Chemistry Letters,2010,1,48.
    [45]K. M. Vijayakumar and N. N. Lichtin, Journal of Catalysis,1984,90,173.
    [46]M. Halmann, M. Ulman and B. Aurianblajeni, Solar Energy,1983,31,429.
    [47]P. W. Pan and Y. W. Chen, Catalysis Communications,2007,8,1546.
    [48]S. Iijima, Nature,1991,354,56.
    [49]J. T. Hu, T. W. Odom and C. M. Lieber, Accounts of Chemical Research,1999,32,435.
    [50]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Advanced Materials, 2012,24,229
    [51]A. Hu, X. Zhang, K. D. Oakes, P. Peng, Y. N. Zhou and M. R. Servos, Journal of Hazardous Materials,2011,189,278.
    [52]X. Zhang, J. H. Pan, A. J. Du, W. Fu, D. D. Sun and J. O. Leckie, Water Research,2009, 43,1179.
    [53]Y. Lin, Materials Letters,2008,62,1246.
    [54]H. Tokudome and M. Miyauchi, Chemistry Letters,2004,33,1108.
    [55]Z. Zhang, Y. Yuan, G. Shi, Y. Fang, L. Liang, H. Ding and L. Jin, Environmental Science & Technology,2007,41,6259.
    [56]P. Roy, S. Berger and P. Schmuki, Angewandte Chemie-International Edition,2011,50, 2904.
    [57]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Letters, 2005,5,191.
    [58]J. C. Liu, H. W. Bai, Y. J. Wang, Z. Y. Liu, X. W. Zhang and D. D. Sun, Advanced Functional Materials,2010,20,4175.
    [59]H. Zhaug, P. Liu, X. Liu, S. Zhang, X. Yao, T. An, R. Amal and H. Zhao, Langmuir, 2010,26,11226.
    [60]R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, F. Gozzo, M. Garcia-Hemandez, M. Angel Garcia, R. Cingolani and P. D. Cozzoli, Journal of the American Chemical Society, 2010,132,2437.
    [61]Y. Wang, L. Zhang, K. Deng, X. Chen and Z. Zou, Journal of Physical Chemistry C, 2007,111,2709.
    [62]J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, Journal of the American Chemical Society,2009,131,12290.
    [63]N. Q. Wu, J. Wang, D. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. G. Liu, S. S. Leonard and A. Manivannan, Journal of the American Chemical Society,2010,132, 6679.
    [64]J. L. Li, N. Fu and G. X. Lu, Chinese Journal of Inorganic Chemistry,2010,26,2175.
    [65]N. Wu, J. Wang, N. Tafen de, H. Wang, J. G. Zheng, J. P. Lewis, X. Liu, S. S. Leonard and A. Manivannan, Journal of the American Chemical Society,2010,132,6679.
    [66]S. G. Chen, M. Paulose, C. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis and C. A. Grimes, Journal of Photochemistry and Photohiology a-Chemistry,2006,177,177.
    [67]J. Ryu, S. H. Lee, D. H. Nam and C. B. Park, Advanced Materials,2011,23,1883.
    [68]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, Journal of the American Chemical Society,2008,130,1124.
    [69]T. J. Kuo, C. N. Lin, C. L. Kuo and M. H. Huang, Chemistry of Materials,2007,19, 5143.
    [70]Z. L. Wang, Journal of Physics-Condensed Matter,2004,16, R829.
    [71]X. D. Wang, C. J. Summers and Z, L. Wang, Nano Letters,2004,4,423.
    [72]H. S. Jung, Y. J. Hong, Y. Li, J. Cho, Y. J. Kim and G. C. Yi, Acs Nano,2008,2,637.
    [73]J. S. Jang, U. A. Joshi and J. S. Lee, Journal of Physical Chemistry C,2007,111,13280.
    [74]H. G. Choi, Y. H. Jung and D. K. Kim, Journal of the American Ceramic Society,2005, 88,1684.
    [75]Z. W. Liu, Y. Bando and C. C. Tang, Chemical Physics Letters,2003,372,179.
    [76]K. K. Zhu, H. Y. He, S. H. Xie, X. Zhang, W. Z. Zhou, S. L. Jin and B. Yue, Chemical Physics Letters,2003,377,317.
    [77]M. Shahid, I. Shakir, S. J. Yang and D. J. Kang, Materials Chemistry and Physics,2010, 124,619.
    [78]L. Wan, X. Li, Z, Qu, Y. Shi, H. Li, Q. Zhao and G. Chen, Journal of Hazardous Materials,2010,184,864.
    [79]Y. Bi and J. Ye, Chemical Communications,2010,46,1532.
    [80]Y. Bi and J. Ye, Chemical Communications,2009,43,6551.
    [81]B. Cheng, Y. Le and J. Yu, Journal of Hazardous Materials,2010,177,971.
    [82]N. Zhang, S. X. Ouyang, P. Li, Y. J. Zhang, G. C. Xi, T. Kako and J. H. Ye, Chemical Communications,2011,47.2041.
    [83]S. C. Yan, L. j. Wan, Z. Li and Z. Zou, Chemical Communications,2011,47,5632.
    [84]V. B. R. Boppana, N. D. Hould and R. F. Lobo, Journal of Solid State Chemistry,2011, 184,1054.
    [85]B. J. Ma, F. Y. Wen, H. F. Jiang, J. H. Yang, P. L. Ying and C. Li, Catalysis Letters, 2010,134,78.
    [86]X. Li, S. Ouyang, N. Kikugawa and J. Ye, Applied Catalysis a-General,2008,334,51.
    [87]S. Ouyang, N. Kikugawa, Z. Zou and J. Ye, Applied Catalysis a-General,2009,366,309.
    [88]C. Y. Yan,N. Singh and P. S. Lee, Applied Physics Letters,2010,96,053108.
    [89]C. C. Hung, M. P. Chang, C. Y. Ho, C. K. Yu and W. T. Lin, Journal of the Electrochemical Society,2010,157, K80.
    [90]C. Y. Yan and P. S. Lee, Journal of Physical Chemistry C,2009,113,14135.
    [91]J. H. Huang, X. C. Wang, Y. D. Hou, X. F. Chen, L. Wu and X. Z. Fu, Environmental Science & Technology,2008,42,7387.
    [92]R. Chen, J. Bi, L. Wu, Z. Li and X. Fu, Crystal Growth & Design,2009,9,1775.
    [93]L. Zhang, X. F. Cao, X. T. Chen and Z. L. Xue, Crystengcomm,2011,13,2464.
    [94]L. Z. Pei, Y. Yang, Y. Q. Pei, C. Z. Yuan, T. K. Duan and Q. F. Zhang, Crystal Research and Technology,2011,46,480.
    [95]N. Wang, J. Ding, G. Li and H. Peng, Crystal Research and Technology,2010,45,316.
    [96]R. Q. Song, A. W. Xu and S. H. Yu, Journal of the American Chemical Society,2007, 129,4152.
    [97]C. Y. Li L Pooi See Lee, Tianyou Zhai, Xiaosheng Fang, and Y. K. Meiyong Liao, Yoshio Bando, and Dmitri Golberg, Advanced Materials,2010,22,5145.
    [98]T. Yu, D. Y. Kim, H. Zhang and Y. N. Xia, Angewandte Chemie-International Edition, 2011,50,2773.
    [99]X. Q. Huang, Z. P. Zhao, J. M. Fan, Y. M. Tan and N. F. Zheng, Journal of the American Chemical Society,2011,133,4718.
    [100]N. Tian, Z. Y. Zhou, N. F. Yu, L. Y. Wang and S. G. Sun, Journal of the American Chemical Society,2010,132,7580.
    [101]H. Yamashita, N. Kamada, H. He, K. Tanaka, S. Ehara and M. Anpo, Chemistry Letters, 1994,855.
    [102]A. Vittadini, A. Selloni, F. P. Rotzinger and M. Gratzel, Physical Review Letters,1998, 81,2954.
    [103]M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B,2001,63,155409.
    [104]U. Diebold, Surface Science Reports,2003,48,53.
    [105]F. Labat, P. Baranek and C. Adamo, Journal of Chemical Theory and Computation,2008, 4,341.
    [106]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature,2008,453,638.
    [107]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng and G. Q. Lu, Journal of the American Chemical Society,2009,131,4078.
    [108]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie and L. S. Zheng, Journal of the American Chemical Society,2009,131,3152.
    [109]W. G. Yang, J. M. Li, Y. L. Wang, F. Zhu, W. M. Shi, F. R. Wan and D. S. Xu, Chemical Communications,2011,47,1809.
    [110]J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu and H.-M. Cheng, Chemical Communications, 2011,47,8361.
    [111]B. Wu, C. Guo, N. Zheng, Z. Xie and G. D. Stucky, Journal of the American Chemical Society,2008,130,17563.
    [112]M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou and W. Wang, Chemical Communications,2010,46,1664.
    [113]H. B. Jiang, Q. A. Cuan, C. Z. Wen, J. Xing, D. Wu, X. Q. Gong, C. Z. Li and H. G. Yang, Angewandte Chemie-International Edition,2011,50,3764.
    [114]J. Pan, G. Liu, G. M. Lu and H. M. Cheng, Angewandte Chemie-International Edition, 2011,50,2133.
    [115]E. S. Jang, J. H. Won, S. J. Hwang and J. H. Choy, Advanced Materials,2006,18,3309.
    [116]Z. Y. Jiang, Q. Kuang, Z. X. Xie and L. S. Zheng, Advanced Functional Materials,2010, 20,3634.
    [117]X. G. Han, H. Z. He, Q. Kuang, X. Zhou, X. H. Zhang, T. Xu, Z. X. Xie and L. S. Zheng, Journal of Physical Chemistry C,2009,113,584.
    [118]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta and W. J. Shen, Nature,2009,458,746.
    [119]S. Sun, D. Deng, C. Kong, Y. Gao, S. Yang, X. Song, B. Ding and Z. Yang, Crystengcomm,2011,13,5993.
    [120]Y. Zhang, B. Deng, T. R. Zhang, D. M. Gao and A. W. Xu, Journal of Physical Chemistry C,2010,114,5073.
    [121]M. Leng, M. Z. Liu, Y. B. Zhang, Z. Q. Wang, C. Yu, X. G. Yang, H. J. Zhang and C. Wang, Journal of the American Chemical Society,2010,132,17084.
    [122]X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie and L. Zheng, Angewandte Chemie International Edition,2009,48,9180.
    [123]Z. G. Zhao, Z. F. Liu and M. Miyauchi, Chemical Communications,2010,46,3321.
    [124]J. Z. Yin, Z. N. Yu, F. Gao, J. J. Wang, H. A. Pang and Q. Y. Lu, Angewandte Chemie-International Edition,2010,49,6328.
    [125]Y. Zhao, C. Eley, J. Hu, J. S. Foord, L. Ye, H. He and S. C. E. Tsang, Angewandte Chemie-International Edition,2012,51,1.
    [126]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng and Y. D. Li, Journal of Catalysis,2005,229, 206.
    [127]G. Xi and J. Ye, Chemical Communications,2010,46,1893.
    [128]D. Wang, H. Jiang, X. Zong, Q. Xu, Y. Ma, G. Li and C. Li, Chemistry-a European Journal,2011,17,1275.
    [129]J. Hou, R. Cao, Z. Wang, S. Jiao and H. Zhu, Journal of Materials Chemistry,2011,21, 7296.
    [130]J. Shi, J. Ye, Q. Li, Z. Zhou, H. Tong, G. Xi and L. Guo, Chemistry-A European Journal, 2012,18,3157.
    [131]Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, Journal of the American Chemical Society,2011,133,6490.
    [132]Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan and Z. Zou, Acs Applied Materials & Interfaces,2011,3,3594.
    [133]H. Yamashita, Y. Fujii, Y. Ichihashi, S. G. Zhang, K. Ikeue, D. R. Park, K. Koyano, T. Tatsumi and M. Anpo, Catalysis Today,1998,45,221.
    [134]P. V. Suraja, Z. Yaakob, N. N. Binitha, M. R. Resmi and P. P. Silija, Chemical Engineering Journal,2011,176-77,265.
    [135]M. Anpo and M. Takeuchi, Journal of Catalysis,2003,216,505.
    [136]V. F. Stone and R. J. Davis, Chemistry of Materials,1998,10,1468.
    [137]J. Yu, G. Wang, B. Cheng and M. Zhou, Applied Catalysis B-Environmental,2007,69, 171.
    [138]J. G. Yu, M. H. Zhou, B. Cheng and X. J. Zhao, Journal of Molecular Catalysis a-Chemical,2006,246,176.
    [139]X. T. Hong, Z. P. Wang, W. M. Cai, F. Lu, J. Zhang, Y. Z. Yang, N. Ma and Y. J. Liu, Chemistry of Materials,2005,17,1548.
    [140]M. Zhou, J. Yu and B. Cheng, Journal of Hazardous Materials,2006,137,1838.
    [141]L. X. Xu, L. X. Sang, C. F. Ma, Y. W. Lu, F. Wang, Q. W. Li, H. X. Dai, H. He and J. H. Sun, Chinese Journal of Catalysis,2006,27,100.
    [142]G. Li, D. Zhang and J. C. Yu, Chemistry of Materials,2008,20,3983.
    [143]J. M. Wu, I. Djerdj, T. Von Graberg and B. M. Smarsly, Beilstein Journal of Nanotechnology,2012,3,123.
    [144]S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angewandte Chemie-International Edition,2010,49,6400.
    [145]L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang and D. B. Zhu, Advanced Materials,2002,14,1857.
    [146]F. Lu, W. Cai and Y. Zhang, Advanced Functional Materials,2008,18,1047.
    [147]L. Liu, H. J. Liu, Y. P. Zhao, Y. Q. Wang, Y. Q. Duan, G. D. Gao, M. Ge and W. Chen, Environmental Science & Technology,2008,42,2342.
    [148]J. Ng, X. Wang and D. D. Sun, Applied Catalysis B-Environmental,2011,110,260.
    [149]Q. Zhu, J. Qian, H. Pan, L. Tu and X. Zhou, Nanotechnology,2011,22,395703.
    [150]J. Wu, F. Duan, Y. Zheng and Y. Xie, Journal of Physical Chemistry C,2007,111, 12866.
    [151]Y. Lei, G. Wang, S. Song, W. Fan and H. Zhang, Crystengcomm,2009,11,1857.
    [152]J. M. Song, C. J. Mao, H. L. Niu, Y. H. Shen and S. Y. Zhang, Crystengcomm,2010,12, 3875.
    [153]J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2003,107, 7965.
    [154]J. Sato, H. Kobayashi and Y. Inoue, Journal of Physical Chemistry B,2003,107,7970.
    [155]J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Photochemistry and Photobiology a-Chemistry,2003,158,139.
    [156]J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Chemistry Letters,2001,9,868.
    [157]J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2001,105, 6061.
    [158]J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Journal of Photochemistry and Photobiology a-Chemistry,2002,148,85.
    [159]K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2002,106,9048.
    [160]W. W. Zhang, J. Y. Zhang, X. A. Lan, Z. Y. Chen and T. M. Wang, Catalysis Communications,2010,11,1104.
    [161]N. Kumagai, L. Ni and H. Irie, Chemical Communications,2011,47,1884.
    [162]X. N. Zhang, J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang and X. Z. Fu, Environmental Science & Technology,2009,43,5947.
    [163]H. Xue, Z. H. Li and L. J. Zhu, Chinese Journal of Structural Chemistry,2010,29,1828.
    [164]S. X. Ouyang, D. Chen, D. F. Wang, Z. S. Li, J. H. Ye and Z. G. Zou, Crystal Growth & Design,2010,10,2921.
    [165]Y. Maruyama, H. Irie and K. Hashimoto, Journal of Physical Chemistry B,2006,110, 23274.
    [166]S. Ouyang and J. Ye, Journal of the American Chemical Society,2011,133,7757.
    [167]J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang and X. Z. Fu, Chemsuschem,2008,1, 1011.
    [168]Z. S. Li, S. C. Yan, L. J. Wan and Z. G. Zou, Chemical Communications,2011,47,5632.
    [169]Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan and Z. G. Zou, Journal of the American Chemical Society,2010,132,14385.
    [170]J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2004,108,4369.
    [171]H. Kadowaki, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Simodaira and Y. Inoue, Journal of Physical Chemistry B,2005,109,22995.
    [172]Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen and M. Yashima, Journal of Physical Chemistry C,2007,111,1042.
    [173]Y. G. Lee, K. Teramura, M. Hara and K. Domen, Chemistry of Materials,2007,19,2120.
    [174]K. Takanabe, T. Uzawa, X. C. Wang, K. Maeda, M. Katayama, J. Kubota, A. Kudo and K. Domen, Dal ton Transactions,2009,45,10055.
    [175]X. C. Wang, K. Maeda, Y. Lee and K. Domen, Chemical Physics Letters,2008,457,134.
    [176]V. B. R. Boppana, D. J. Doren and R. F. Lobo, Journal of Materials Chemistry,2010,20, 9787.
    [177]X. Cailleaux, M. D. M. de Lucas, O. Merdrignac-Conanec, F. Tessier, K. Nagasaka and S. Kikkawa, Journal of Physics D-Applied Physics,2009,42,045408.
    [178]H. Chen, W. Wen, Q. Wang, J. C. Hanson, J. T. Muckerman, E. Fujita, A. I. Frenkel and J. A. Rodriguez, Journal of Physical Chemistry C,2009,113,3650.
    [179]B. Boppana, D. J. Doren and R. F. Lobo, Chemistry-A European Journal 2011,17, 12417
    [180]X. Sun, K. Maeda, M. Le Faucheur, K. Teramura and K. Domen, Applied Catalysis a-General,2007,327,114.
    [181]M. Yashima, K. Maeda, K. Teramura, T. Takata and K. Domen, Materials Transactions, 2006,47,295.
    [1]Z. Niu, Q. Peng, M. Gong, H. Rong and Y. Li, Angewandte Chemie-International Edition, 2011,50,6315.
    [2]V. Mazumder and S. Sun, Journal of the American Chemical Society,2009,131,4588.
    [3]X. Lu, M.S. Yavuz, H. Y. Tuan, B. A. Korgel and Y. Xia, Journal of the American Chemical Society,2008,130,8900.
    [4]M. Chen, Y. G. Feng, X. Wang, T. C. Li, J. Y. Zhang and D. J. Qian, Langmuir,2007,23, 5296.
    [5]Y. Zhu, T. Mei, Y. Wang and Y. Qian, Journal of Materials Chemistry,2011,21,11457.
    [6]L. H. Zhang, H. Q. Yang, L. Li, R. G. Zhang, R. N. Liu, J. H. Ma, X. L. Xie and F. Gao, Inorganic Chemistry,2008,47,11950.
    [7]Q. S. Gao, P. Chen, Y. H. Zhang and Y. Tang, Advanced Materials,2008,20,1837.
    [8]G. Zou, H. Li, Y. Zhang, K. Xiong and Y. Qian, Nanotechnology,2006,17, S313.
    [9]J. Yang, C. Xue, S. H. Yu, J. H. Zeng and Y. T. Qian, AngewandtChemie-International Edition,2002,41,4697.
    [10]W. T. Yao, S. H. Yu, L. Pan, J. Li, Q. S. Wu, L. Zhang and J. Jiang, Small,2005,1,320.
    [1]M. Li, H. Schnablegger and S. Mann, Nature,1999,402,393.
    [2]R. Q. Song, A. W. Xu, B. Deng, Q. Li and G. Y. Chen, Advanced Functional Materials, 2007,17,296.
    [3]D. L. Wang and C. M. Lieber, Nature Materials,2003,2,355.
    [4]O. Harnack, C. Pacholski, H. Weller, A. Yasuda and J. M. Wessels, Nano Letters,2003,3, 1097.
    [5]K. M. Ryan, A. Mastroianni, K. A. Stancil, H. T. Liu and A. P. Alivisatos, Nano Letters, 2006,6,1479.
    [6]Z. H. Hu, M. D. Fischbeiu, C. Querner and M. Drndic, Nano Letters,2006,6,2585.
    [7]L. S. Li and A. P. Alivisatos, Advanced Materials,2003,15,408.
    [8]L. S. Li, J. Walda, L. Manna and A. P. Alivisatos, Nano Letters,2002,2,557.
    [9]D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. Kornowski, S. Forster and H. Weller, Journal of the American Chemical Society,2004,126,12984.
    [10]F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud and P. Zurcher, Angewandte Chemie-International Edition,2003,42,5213.
    [11]F. R. Fan, Y. Ding, D. Y. Liu, Z. Q. Tian and Z. L. Wang, Journal of the American Chemical Society,2009,131,12036.
    [12]L. Li, Y. Su, Y. Q. Chen, M. Gao, Q. Chen and Y. Feng, Advanced Science Letters,2010, 3,1.
    [13]G. Anoop, K. M. Krishna and M. K. Jayaraj, Journal of the Electrochemical Society, 2008,155, J7.
    [14]L. C. Williams, D. Norton, J. Budai and P. H. Holloway, Journal of the Electrochemical Society,2004,151, H188.
    [15]B. J. Ma, F. Y. Wen, H. F. Jiang, J. H. Yang, P. L. Ying and C. Li, Catalysis Letters, 2010,134,78.
    [16]J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2004,108,4369.
    [17]J. H. Huang, X. C. Wang, Y. D. Hou, X. F. Chen, L. Wu and X. Z, Fu, Environmental Science & Technology,2008,42,7387.
    [18]J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang and X. Z. Fu, Chemsuschem,2008,1, 1011.
    [19]M. Y. Tsai, C. Y. Yu, C. C. Wang and T. P. Perng, Crystal Growth & Design,2008,8, 2264.
    [20]C. Y. Yan, N. Singh and P. S. Lee, Applied Physics Letters,2010,96,053108.
    [21]C. Y. Yan and P. S. Lee, Journal of Physical Chemistry C,2010,114,265.
    [22]S. C. Yan, L. j. Wan, Z. Li and Z. Zou, Chemical Communications,2011,47,5632.
    [23]H. J. Fan, Y. Yang and M. Zacharias, Journal of Materials Chemistry,2009,19,885.
    [24]T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature,1979,277,637.
    [25]S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, Acs Nano,2010,4,1259.
    [26]M. M. Baum, M. R. Hoffmann and J. A. Moss, Dalton Transactions,2011,40,5151.
    [27]O. K. Varghese, M. Paulose, T. J. LaTempa and C. A. Grimes, Nano Letters,2009,9, 731.
    [28]X. Feng, J. D. Sloppy, T. J. LaTempa, M. Paulose, S. Komarneni, N. Baob and C. A. Grimes, Journal of Materials Chemistry,2011,21,13429.
    [29]V. P. Indrakanti, J. D. Kubicki and H. H. Schobert, Energy & Environmental Science, 2009,2,745.
    [30]J. Tang and A. P. Alivisatos, Nano Letters,2006,6,2701.
    [31]X. P. Yan and X. F. Shen, Angewandte Chemie-International Edition,2007,46,7659.
    [32]A. T. Kelly, I. Rusakova, T. Ould-Ely, C. Hofmann, A. Luttge and K. H. Whitmire, Nano Letters,2007,7,2920.
    [33]M. Y. Han, E. Y. Ye, S. Y. Zhang, S. H. Lim, M. Bosnian, Z. H. Zhang and K. Y. Win, Chemistry-a European Journal,2011,17,5982.
    [34]H. P. You, K. Liu, G. Jia, Y. H. Zheng, Y. J. Huang, Y. H. Song, M. Yang, L. H. Zhang and H. J. Zhang, Crystal Growth & Design,2010,10,790.
    [35]C. A. Self and C. A. Hill, Journal of Cave and Karst Studies,2003,65,22.
    [36]Y. O. Punin, Zap. Vses. Mineral. OVa.,1981,110,666.
    [37]W. T. Yao and S. H. Yu, Advanced Functional Materials,2008,18,3357.
    [38]H. B. Yao, M. R. Gao and S. H. Yu, Nanoscale,2010,2,323.
    [39]P. J. Hagrman, D. Hagrman and J. Zubieta, Angewandte Chemie-International Edition, 1999,38,2639.
    [40]Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, L. Yang and G. E. Zhou, Chemistry of Materials,1998,10,2301.
    [41]J. Yang, C. Xue, S. H. Yu, J. H. Zeng and Y. T. Qian, Angewandte Chemie-International Edition,2002,41,4697.
    [42]Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan and Z. G. Zou, Journal of the American Chemical Society,2010,132,14385.
    [43]Y. G. Lee, K. Teramura, M. Hara and K. Domen, Chemistry of Materials,2007,19,2120.
    [44]K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, T. Teranishi and K. Domen, Angewandte Chemie-International Edition,2010,49,4096.
    [45]K. Maeda and K. Domen, Journal of Physical Chemistry C,2007,111,7851.
    [46]J. Yin, Z. G. Zou and J. H. Ye, Journal of Physical Chemistry B,2003,107,4936.
    [47]D. E. Partin, D. J. Milliams and M. Okeeffe, Journal of Solid State Chemistry,1997,132, 56.
    [48]Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen and M. Yashima, Journal of Physical Chemistry C,2007,111,1042.
    [49]N. Zhang, S. X. Ouyang, P. Li, Y. J. Zhang, G. C. Xi, T. Kako and J. H. Ye, Chemical Communications,2011,47,2041.
    [1]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and Y. Q. Yan, Advanced Materials,2003,15,353.
    [2]Y. Zhou, M. Kogiso and T. Shimizu, Journal of the American Chemical Society,2009, 131,2456.
    [3]Y. Zhou, Current Nanoscience,2006,2,123.
    [4]Y. Sun, J. Hu, Z. Chen, Y. Bando and D. Golberg, Journal of Materials Chemistry,2009, 19,7592.
    [5]R. Stevens, B. F. Woodfield, J. Boerio-Goates and M. K. Crawford, Journal of Chemical Thermodynamics,2004,36,349.
    [6]C. Y. Yan, N. Singh and P. S. Lee, Applied Physics Letters,2010,96,053108.
    [7]C. Y. Yan and P. S. Lee, Journal of Physical Chemistry C,2010,114,265.
    [8]Z. S. Liu, X. P. Jing and L. X. Wang, Journal of the Electrochemical Society,2007,154, H500.
    [9]B. J. Ma, F. Y. Wen, H. F. Jiang, J. H. Yang, P. L. Ying and C. Li, Catalysis Letters, 2010,134,78.
    [10]J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Physical Chemistry B,2004,108,4369.
    [11]J. H. Huang, X. C. Wang, Y. D. Hou, X. F. Chen, L. Wu and X. Z. Fu, Environmental Science & Technology,2008,42,7387.
    [12]J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang and X. Z. Fu, Chemsuschem,2008,1, 1011.
    [13]M. Y. Tsai, C. Y. Yu, C. C. Wang and T. P. Pemg, Crystal Growth & Design,2008,8, 2264.
    [14]W. T. Yao and S. H. Yu,Advanced Functional Materials,2008,18,3357.
    [15]H. B. Yao, M. R. Gao and S. H. Yu, Nanoscale,2010,2,323.
    [16]J. Li, Z. Chen, R. J. Wang and D. M. Proserpio, Coordination Chemistry Reviews,1999, 192,707.
    [17]P. J. Hagrman, D. Hagrman and J. Zubieta, Angewandte Chemie-International Edition, 1999,38,2639.
    [18]Q. S. Gao, P. Chen, Y. H. Zhang and Y. Tang, Advanced Materials,2008,20,1837.
    [19]Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang and Y. T. Qian, Inorganic Chemistry, 1999,38,1382.
    [20]Q. Y. Lu, F. Gao and D. Y. Zhao, Nano Letters,2002,2,725.
    [21]J. Yang, C. Xue, S. H. Yu, J. H. Zeng and Y. T. Qian, Angewandte Chemie-International Edition,2002,41,4697.
    [22]S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, Acs Nano,2010,4,1259.
    [1]O. Gulseren, F. Ercolessi and E. Tosatti, Physical Review Letters,1998,80,3775.
    [2]L. Cademartiri and G. A. Ozin, Advanced Materials,2009,21,1013.
    [3]Z. Deng, H. Yan and Y. Liu, Angewandte Chemie-International Edition,2010,49,8695.
    [4]X. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel and Y. Xia, Journal of the American Chemical Society,2008,130,8900.
    [5]Z. Li, J. Tao, X. Lu, Y. Zhu and Y. Xia, Nano Letters,2008,8,3052.
    [6]Z. Huo, C. K. Tsung, W. Huang, X. Zhang and P. Yang, Nano Letters,2008,8,2041.
    [7]Z. Huo, C. K. Tsung, W. Huang, M. Fardy, R. Yan, X. Zhang, Y. Li and P. Yang, Nano Letters,2009,9,1260.
    [8]C. Wang, Y. Hu, C. M. Lieber and S. Sun, Journal of the American Chemical Society, 2008,130,8902.
    [9]Y. H. Luo, J. G. Huang and I. Ichinose, Journal of the American Chemical Society,2005, 127,8296.
    [10]S. Palchoudhury, W. An, Y. Xu, Y. Qin, Z. Zhang, N. Chopra, R. A. Holler, C. H. Turner and Y. Bao, Nano Letters,2011,11,1141.
    [11]C. Liu and S. Yang, Acs Nano,2009,3,1025.
    [12]Y. P. Du, Y. W. Zhang, Z, G. Yan, L. D. Sun and C. H. Yan, Journal of the American Chemical Society,2009,131,16364.
    [13]T. E. Gier, X. H. Bu, P. Y. Feng and G. D. Stucky, Nature,1998,395,154.
    [14]Z. E. Lin and G. Y. Yang, European Journal of Inorganic Chemistry,2010,2895.
    [15]D. Pitzschke and W. Bensch, Angewandte Chemie-International Edition,2003,42,4389.
    [16]C.M. Wang, C. W. Yang, C. H. Lin and K. H. Lii, Inorganic Chemistry,2010,49,10229.
    [17]G. Z. Liu, S. T. Zheng and G. Y. Yang, Angewandte Chemie-International Edition,2007, 46,2827.
    [18]J. H. Zhan, Y. Bando, J. Q. Hu, L. W. Yin, X. L. Yuan, T. Sekigitchi and D. Golberg, Angewandte Chemie-International Edition,2006,45,228.
    [19]C. Y. Yan, T. Zhang and P. S. Lee, Crystal Growth & Design,2008,8,3144.
    [20]L. Li, P. S. Lee, C. Yan, T. Zhai, X. Fang, M. Liao, Y. Koide, Y. Bando and D. Golberg, Advanced Materials,2010,22,5145.
    [21]Y. Su, S. Li, L. Xu, Y. Q. Chen, Q. T. Zhou, B. Peng, S. Yin, X. Meng, X. M. Liang and Y. Feng, Nanotechnology,2006,17,6007.
    [22]C. Y. Yan, N. Singh and P. S. Lee, Crystal Growth & Design,2009,9,3697.
    [23]S. S. Kim, J. Y. Park, H. S. Kim, H. G. Na, J. C. Yang, S. H. Shim, C. Lee, D. Park, D. Nam, H. Cheong and H. W. Kim, Journal of Physics D-Applied Physics,2011,44. [24] G. Sun, Y. J. Ding, G. Liu, G. S. Huang, H. Zhao, N. Tansu and J. B. Khurgin, Applied Physics Letters,2010,97.
    [25]G. Shen, J. Xu, X. Wang, H. Huang and D. Chen, Advanced Materials,2011,23,771.
    [26]X. C. Jiang, S. X. Xiong, Z. A. Tian, C. Y. Chen, W. M. Chen and A. B. Yu, Journal of Physical Chemistry C, 2011,115,1800.
    [27]K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan and E. Braun, Science,2002, 297,72.
    [28]Q. S. Gao, P. Chen, Y. H. Zhang and Y. Tang, Advanced Materials,2008,20,1837.
    [29]I. J. Lee, J. Y. Kim, H. J. Shin and H. K. Kim, Journal of Applied Physics,2004,95, 5540.
    [30]K. R. Reyes-Gil, Y. Sun, E. Reyes-Garcia and D. Raftery, Journal of Physical Chemistry C,2009,113,12558.
    [31]T. Ogoshi and Y. Chujo, Polymer,2006,47,4036.
    [32]I. Tanaka, M. Mizuno and H. Adachi, Physical Review B,1997,56,3536.
    [33]W. T. Yao and S. H. Yu, Advanced Functional Materials,2008,18,3357.
    [34]H. B. Yao, M. R. Gao and S. H. Yu, Nanoscale,2010,2,323.
    [35]J. Li, Z. Chen, R. J. Wang and D. M. Proserpio, Coordination Chemistry Reviews,1999, 192,707.
    [36]P. J. Hagrman, D. Hagrman and J. Zubieta, Angewandte Chemie-International Edition, 1999,38,2639.
    [37]Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang and Y. T. Qian, Inorganic Chemistry, 1999,38,1382.
    [38]V. P. Indrakanti, J. D. Kubicki and H. H. Schobert, Energy & Environmental Science, 2009,2,745.
    [39]S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, Acs Nano,2010,4,1259.
    [40]U. P. Apfel and W. Weigand, Angewandte Chemie-International Edition,2011,50,4262.
    [41]T. W. Woolerton, S. Sheard, E. Reisner, E. Pierce, S. W. Ragsdale and F. A. Armstrong, Journal of the American Chemical Society,2010,132,2132.
    [42]O. Lazarus, T. W. Woolerton, A. Parkin, M. J. Lukey, E. Reisner, J. Seravalli, E. Pierce, S. W. Ragsdale, F. Sargent and F. A. Armstrong, Journal of the American Chemical Society,2009,131,14154.
    [43]M. Anpo and M. Takeuchi, Journal of Catalysis,2003,216,505.
    [44]W. Y. Lin and H. Frei, Journal of the American Chemical Society,2005,127,1610.
    [1]N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding and Z. L. Wang, Science,2007,316,732.
    [2]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature,2008,453,638.
    [3]X. W. Xie, Y. Li, Z. Q. Liu, M. Haruta and W. J. Shen, Nature,2009,458,746.
    [4]J. Z. Yin, Z. N. Yu, F. Gao, J. J. Wang, H. A. Pang and Q. Y. Lu, Angewandte Chernie-International Edition,2010,49,6328.
    [5]M. Leng, M. Z. Liu, Y. B. Zhang, Z. Q. Wang, C. Yu, X. G. Yang, H. J. Zhang and C. Wang, Journal of the American Chemical Society,2010,132,17084.
    [6]M. Li, H. Schnablegger and S. Mann, Nature,1999,402,393.
    [7]R. Q. Song, A. W. Xu, B. Deng, Q. Li and G. Y. Chen, Advanced Functional Materials, 2007,17,296.
    [8]T. Yu, D. Y. Kim, H. Zhang and Y. N. Xia, Angewandte Chemie-International Edition, 2011,50,2773.
    [9]J. A. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Y. Li and C. A. Mirkin, Journal of the American Chemical Society,2010,132,14012.
    [10]T. Ming, W. Feng, Q. Tang, F. Wang, L. D. Sun, J. F. Wang and C. H. Yan, Journal of the American Chemical Society,2009,131,16350.
    [11]Y. Y. Ma, Q. Kuang, Z. Y. Jiang, Z. X. Xie, R. B. Huang and L. S. Zheng, Angewandte Chemie-International Edition,2008,47,8901.
    [12]X. Q. Huang, Z. P. Zhao, J. M. Fan, Y. M. Tan and N. F. Zheng, Journal of the American Chemical Society,2011,133,4718.
    [13]Y. Yu, Q. B. Zhang, B. Liu and J. Y. Lee, Journal of the American Chemical Society, 2010,132,18258.
    [14]A. Vittadini, A. Selloni,F. P. Rotzinger and M. Gratzel, Physical Review Letters,1998, 81,2954.
    [15]B. H. Wu, C. Y. Guo, N. F. Zheng, Z. X. Xie and G. D. Stucky, Journal of the American Chemical Society,2008,130,17563.
    [16]H. B. Jiang, Q. A. Cuan, C. Z. Wen, J. Xing, D. Wu, X. Q. Gong, C. Z. Li and H. G. Yang, Angewandte Chemie-International Edition,2011,50,3764.
    [17]D. Q. Zhang, G. S. Li, X. F. Yang and J. C. Yu, Chemical Communications,2009,43,81.
    [18]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng and G. Q. Lu, Journal of the American Chemical Society,2009,131,4078.
    [19]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q. Lu and H. M. Cheng, Journal of the American Chemical Society,2009,131,12868.
    [20]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie and L. S. Zheng, Journal of the American Chemical Society,2009,131,3152.
    [21]H. Yamashita, N. Kamada, H. He, K. I. Tanaka, S. Ehara and M. Anpo, Chemistry Letters, 1994,5,855.
    [22]A. Mclaren, T. Valdes-Solis, G. Q. Li and S. C. Tsang, Journal of the American Chemical Society,2009,131,12540.
    [23]E. S. Jang, J. H. Won, S. J. Hwang and J. H. Choy, Advanced Materials,2006,18,3309.
    [24]A. McLaren, T. Valdes-Solis, G. Li and S. C. Tsang, Journal of the American Chemical Society,2009,131,12540.
    [25]Z. G. Zhao, Z. F. Liu and M. Miyauchi, Chemical Communications,2010,46,3321.
    [26]Y. Zhao, C. Eley, J. Hu, J. S. Foord, L. Ye, H. He and S. C. E. Tsang, Angewandte Chemie-International Edition,2012,51,1.
    [27]G. Xi and J. Ye, Chemical Communications,2010,46,1893.
    [28]Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan and Z. Zou, Acs Applied Materials & Interfaces,2011,3,3594.
    [29]Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan and Z. G. Zou, Journal of the American Chemical Society,2010,132,14385.
    [30]J. Shi, J. Ye, Q. Li, Z. Zhou, H. Tong, G. Xi and L. Guo, Chemistry-A European Journal, 2012,18,3157.
    [31]W. W. Zhang, J. Y. Zhang, Z. Y. Chen, T. M. Wang and S. K. Zheng, Journal of Luminescence,2010,130,1738.
    [32]M. Vasile, P. Vlazan and N. M. Avram, Journal of Alloys and Compounds,2010,500, 185.
    [33]M. Lei, Q. R. Hu, X. Wang, S. L. Wang and W. H. Tang, Journal of Alloys and Compounds,2010,489,663.
    [34]L. L. Wu, X. T. Zhang, Y. Liang and H. Y. Xu, Journal of Alloys and Compounds,2009, 468,452.
    [35]M. Takesada, T. Isobe, H. Takahashi and S. Itoh, Journal of the Electrochemical Society, 2007,154, J136.
    [36]W. W. Zhang, J. Y. Zhang, X. A. Lan, Z. Y. Chen and T. M. Wang, Catal. Commun., 2010,11,1104.
    [37]X. N. Zhang, J. H. Huang, K. N. Ding, Y. D. Hou, X. C. Wang and X. Z. Fu, Environmental Science & Technology,2009,43,5947.
    [38]W. W. Zhang, J. Y. Zhang, Z. Y. Chen and T. M. Wang, Catal. Commun.,2009,10, 1781.
    [39]N. Kumagai, L. Ni and H. Irie, Chemical Communications,2011,47,1884.
    [40]S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angewandte Chemie-International Edition,2010,49,6400.
    [41]N. Q. Wu, J. Wang, D. Tafen, H. Wang, J. G. Zheng, J. P. Lewis, X. G. Liu, S. S. Leonard and A. Manivannan, Journal of the American Chemical Society,2010,132, 6679.
    [42]W. G. Yang, J. M. Li, Y. L. Wang, F. Zhu, W. M. Shi, F. R. Wan and D. S. Xu, Chemical Communications,2011,47,1809.
    [43]J. Pan, G. Liu, G. M. Lu and H. M. Cheng, Angewandte Chemie-International Edition, 2011,50,2133.
    [44]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer and X. W. Lou, Journal of the American Chemical Society,2010,132,6124.
    [45]S. S. Liu, D. P. Yang, D. K. Ma, S. Wang, T. D. Tang and S. M. Huang, Chemical Communications,2011,47,8013.
    [46]J. P. Perdew, K. Burke and M. Emzerhof, Physical Review Letters,1996,77,3865.
    [47]G. Kresse and J. Furthmuller, Physical Review B,1996,54,11169.
    [48]G. Kresse and D. Joubert, Physical Review B,1999,59,1758.
    [49]P. E. Blochl, Physical Review B,1994,50,17953.
    [50]Y. Ma, Q. Kuang, Z. Jiang, Z. Xie, R. Huang and L. Zheug, Angewandte Chemie-International Edition,2008,47,8901.
    [51]Z. L. Wang, Journal of Physical Chemistry B,2000,104,1153.
    [52]Y. D. Li, H. W. Liao, Y. Ding, Y. Fan, Y. Zhang and Y. T. Qian, Inorganic Chemistry, 1999,38,1382.
    [53]W. T. Yao and S. H. Yu, Advanced Functional Materials,2008,18,3357.
    [54]A. Vittadini, A. Selloni, F. P. Rotzinger and M. Gratzel, Physical Review Letters,1998, 81,2954.
    [55]A. Selloni, Nature Materials,2008,7,613.
    [56]G. Liu, J. C. Yu, G. Q. Lu and H.M. Cheng, Chemical Communications,2011,47,6763.
    [57]L. Pisani, T. Maitra and R. Valenti, Physical Review B,2006,73,205204.
    [58]S. Lopez, A. H. Romero, P. Rodriguez-Hernandez and A. Munoz, Physical Review B, 2009,79,214103.
    [59]G. Centi, S. Perathoner, G. Win and M. Gangeri, Green Chemistry,2007,9,671.
    [60]S. F. Li and Z. X. Guo, Journal of Physical Chemistry C,2010,114,11456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700