柴油脱氮方法的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油是我国目前消费量最大的发动机燃料之一,但其中含氮有机化合物的存在对生产和环境造成许危害,其影响油品的色度,降低油品的抗氧化安定性,进而影响其储存和使用性能,并在柴油的催化加工过程中造成催化剂中毒。含氮化合物具有致癌、致突变性,燃烧会产生NOX,形成酸雨,造成空气污染。传统的加氢脱氮工艺操作复杂,成本高,因此非加氢脱氮日益受到重视。本文以咔唑作为微生物脱氮的模式化合物进行微生物脱氮研究,同时探讨直流电场对脱氮菌株的生长速率和脱氮活性的影响。并在超声辅助的条件下用Ce4+氧化法对柴油进行同时脱硫脱氮的研究。
     本论文的主要研究内容概括如下:
     以咔唑为模型化合物,从燃油污染的土壤、污水中筛选出一株能够将咔唑降解为邻氨基苯甲酸的假单胞杆菌YSSH。以咔唑的脱除率为指标,用正交实验考察初始pH、速效碳源(葡萄糖)的浓度及速效氮源(氯化铵)的浓度等因素对该菌株生长和脱氮率的影响,确定该菌株最优的生长和脱氮条件为:氯化铵1.0 g/L,初始pH=7.0,葡萄糖3.0 g/L。将其应用于柴油体系,在油水比为1:9的条件下可使含氮量为100 ppm的柴油脱氮率达到63.9%。
     对所筛选的脱氮菌株施加不同强度的直流电场刺激,以细胞浓度和脱氮率为指标,研究外加电场对菌株生长速率和脱氮活性的影响。实验证明电流强度为10.0 mA时菌株的脱氮活性最高;电流强度升高至20.0 mA和40.0 mA时菌株的脱氮活性受到明显抑制。并将其应用于实际柴油体系,采用1:9的油水比,发现柴油脱氮率并未比不加电场时有所提高。
     在超声波辅助的条件下,使用Ce4 +同时氧化柴油中的硫氮化合物,并选用合适的溶剂DMF萃取除去氧化产物,可以将柴油中的硫含量从11000 ppm降低到6500 ppm,脱硫率达到40.9%;将柴油中的氮含量从100 ppm降低到44.6 ppm,脱氮率达到55.4%。由实验得到超声条件下的最佳脱氮条件为:反应温度为70℃,溶液的pH值为0.7,反应时间为50 min,油水比为1:9。
Diesel oil is one of the engine fuels having largest consumption in China at present, but the nitrogen-containing organic compounds in diesel oil are harmful to production and environment. They have a big effect on the chroma of oil, reduce the anti-oxidation stability of oil. Therefore the storage and using performance are also influenced. Furthermore they inactivate refining catalyst in diesel oil catalyzed processing. And some nitrogen-containing organic compounds have mutagenic and toxic activities, their combustion leads to the formation of nitrogen oxides (NOX), which is one of the important air pollutants forming acid rain. The classical hydrodenitrogenation is costly and complicated. Therefore, non-hydrodenitrogenation technics are utilized. Carbazole was selected in this text as a model compound on biodenitrogenation study of diesel oil. The influence of direct current field on the strain growth rate and denitrogenation activities was discussed at the same time. Ultrasonically auxiliary oxidation by Ce4+ was used to desulfurize and denitrogenize the diesel oil simultaneously.
     The main contents of the thesis are as follows:
     A new strain able to convert carbazole into anthranilic acid was isolated from the sullage and soil samples polluted by fuel oil and was identified as pseudomonas aeruginos YSSH. Taking the denitrogenation rate of carbazole as an evaluating indicator, the orthogonal experiment was used to exam the effects of initial pH, rapidly available sources of carbon (glucose) and nitrogen (ammonium chloride) on growth and biodenitrogenation rate. The optimum conditions for the growth and biodenitrogenation were 1.0 g/L of ammonium chloride, the initial pH 7.0, and 3.0 g/L of glucose. When applied in the diesel oil system, it removed 63.9% of 100 ppm total nitrogen content in the diesel oil under the oil-water ratio of 1:9.
     Taking cell thickness and denitrogenation rate of carbazole as evaluating indicators, applied direct current field stimulation of different intensity to the isolated strain, and studied the influence of adscititious electric field on the strain growth rate and denitrogenation activities. The experiment proved that the strain denitrogenation activities was highest when the current intensity was 10.0 mA, but when the current intensity increased up to 20.0 mA and 40.0 mA, the strain denitrogenation activities was restrained obviously. Applied the results to the diesel oil system (the oil-water ratio is 1:9), the denitrogenation rate in diesel oil did not improve compared with the results of that without the electric field stimulation.
     Used the Ce4+ to oxidize the sulfur and nitrogen compounds in diesel oil simultaneously under ultrasonic auxiliary conditions, and removed the oxidation products by choosing a proper solvent DMF to extract them, it reduced the total sulfur content in diesel oil from 11000 ppm to 6500 ppm, achieving a desulfurization rate of 40.9%, and reduced the total nitrogen content in diesel oil from 100 ppm to 44.6 ppm, achieving a denitrogenation rate of 55.4% simultaneously. The best denitrogenation conditions obtained from the experiment was that the reaction temperature was 70℃, the solution pH value was 0.7, the reaction time was 50 min, and the oil-water ratio was 1:9.
引文
[1]侯祥麟.中国炼油技术, [M] .北京:中国石化出版社,1991.
    [2] Benedik M J, Gibbs P R, Riddle R R, et al. Microbial denitrogenation of fossil fuels. Trends Biotechnol, 1998, 16 (9) :390~395.
    [3] Laredo S GC, Reyes H JADL, Cano D JL, et al. Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene. Appl. Catal. A: Gen. 2001, 207:103~112.
    [4] Jha A M, Bharti M K. Mutagenic profiles carbazole in the male germ cells of Swiss albino mice. Mutation. Res. , 2002, 500(1):97~101.
    [5] Hunter JM著,胡伯良译,1986.石油地球化学和地质学.石油工业出版社,北京.
    [6]李珊珊,马挺,李国强等.燃料油的微生物脱氮. [J].微生物学报,2006, 46(6):1023~1027.
    [7] Zeuthen P, Knudsen K G, Whitehurst D D. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatment. Catal.Today. 2001, 65:307~314.
    [8]齐江,张瑾,戴猷元.石油产品溶剂脱氮研究进展. [J].现代化工, 1999, 19(11):9~11.
    [9]林世雄.石油炼制工程[M] .北京:中国石化出版社, 1988.
    [10]李力,于波,许平.化石燃料生物脱有机氮研究展望.中国生物工程杂志[J].2004, 24(6):64~67.
    [11] Kirimura K, Nakagawa H, Tsuji K, et al. Selective and Continuous Degradation of Carbazole Contained in Petroleum Oil by Resting Cells of Sphingomonas sp. CDH-7 [J]. Biosci. Biotechnol. Biochem., 1999, 63(9):1563~1568.
    [12]周亚松.含氮化合物与润滑油基础油的氧化安定性. [J] .润滑油, 1996 , (4): 9~20.
    [13]张建芳,山红红.炼油工艺基础知识. [M] .中国石化出版社, 1997. 103.
    [14]侯祥麟.中国炼油技术. [M].北京:中国石油出版社,2001.
    [15]于道永,徐海,阙国和.石油非加氢脱氮技术进展. [J].化工进展, 2001, 10:32~35.
    [16]丛野,赵崇峰,廖克俭.提高催化裂化柴油稳定性的研究进展. [J].抚顺石油学院学报, 2003, 23(3):13~17.
    [17]张浩.催化裂化柴油中碱性氮化物的脱除研究: [硕士学位论文].武汉科技大学, 2006.
    [18]刘济瀛.大庆喷气燃料中的非烃化合物对其热氧化安定性的影响. [J].石油学报(石油加工), 1986, 2(2):91~96.
    [19] Prinkman D W et al. ASTM Special Technical Publication. [S].1981, No.751:84.
    [20] Nixon A C, Thorpe R E. Composition of the gas oil portions of some California jet fuels[J]. Journal of Chemical and Engineering Data, 1962, 7(3):429~433.
    [21]战风涛,李林,徐永强等.溶剂精制提高催化柴油的安定性. [J].炼油设计, 1998, 28(3):35~37.
    [22]战风涛,吕志凤,李林,等.催化裂化柴油非加氢精制方法的研究进展, [J].石油大学学报(自然科学版), 2000, 24(3):116~120.
    [23]舒运贵,沈喜州.掺炼重油催化裂化柴油化学精制的研究. [J].石油炼制, 1991, 7:21~25.
    [24]吕洪民.柴油的精制方法. [P].中国专利:CN1108292, 1995.
    [25]刘英.固相配位萃取法脱除油品中碱性氮的研究: [硕士学位论文].南京工业大学, 2005.
    [26]龙小柱,朱巧军.盐精制提高催化裂化柴油的安定性. [J].化工科技, 2001, 9(3):27~29.
    [27]张广久,刘长林.石油及其产品中的非烃化合物. [M].北京:中国石化出版社, 1991.
    [28]尚亚卓,白文玉,曹祖宾等.轻质油品脱氮工艺技术进展. [J].抚顺石油学院学报, 2001, 21(4):20~24.
    [29]王金真.石脑油脱除碱性氮化物. [J].石油炼制, 1989, (11):65~66.
    [30]文菊生,苏光华,王清华等.液相脱氮-白土补充精制提高润滑油基础油质量. [J].润滑油, 2001, 16(2):19~24.
    [31]尚亚卓,白文玉,曹祖宾等.轻质油品脱氮工艺技术进展. [J].抚顺石油学院学报, 2001, 21(4):20~24.
    [32] X L Song, L C Gao, Z Jiang. Progress in technologies for diesel fuel non-hydrodenitrogenation. [J].Advances in fine Petrochemicals, 2002, 3(8): 29~33.
    [33]朴香兰,朱慎林.溶解度参数法筛选油品脱氮萃取剂的研究. [J].清华大学学报, 2000, 40(2):43~45.
    [34]宋兴良,高连存,蒋政.柴油非加氢脱氮技术研究进展. [J].精细是有化工进展, 2002, 3(8):29~33.
    [35] Ralph Bernheimer. Denitrogenation of petroleum products [P].US 3666660 ,1972.
    [36] Yoichi K., Koj I. U., Yutaka M., et al. Solvent extraction of nitrogen compounds from coal liquids. [J] . Fuel , 1991, 70(6):765~769.
    [37] Stephen J Miller. Hydrocracking process including upgrading of bottoms fraction of the product [P]. US 4170544, 1979.
    [38]王军民,孙国庆等.焦化蜡油复合溶剂萃取脱氮的工艺研究. [J].石油炼制与化工, 1997, 28(11):4~6.
    [39]张科良,何力.催化裂化柴油复合溶剂萃取精制工艺研究. [J].西安石油学院学报, 2000, 15(1):30~33.
    [40] Masao Kajikawa. Purification hydrocarbon oils-containing organic nitrogen compounds by sulphonic acid cation exchange resin. [ P ] .公开特许公报J P 7206218 A , 1972.
    [41] Kotova A V. Removal of nitrogenous bases from petroleum products [P]. USSR 652202, 1979.
    [42]高连存,宋兴良,崔兆杰.大孔酸性阳离子交换树脂脱除柴油中碱性含氮化合物方法的研究. [J].山东大学学报(理学版), 2003, 38 (3) :99~103.
    [43] Yan T Y, Shu P. Ind Eng Chem Res, 1987, 26(4):753.
    [44]庄淑梅,郭立艳,梁景程等.石油产品非加氢脱氮技术进展. [J].炼油与化工, 2006, 17(2):13~16.
    [45] King C J. Handbook of Separation, Chap. 15, New York: John Wiley, 1987.
    [46] John J. Eisch, Lawrence, et al. Desulphurization and denitrogenation of SRC Liquids by transition metals on solid supports. [J]. Fuel,1985, 64(4):440~442.
    [47] Ralph Bernheimer, M.C. Maduka, et al. Denitrogenation of nitrogenous bases from petroleum products. [J]. Fuel, 1993, 72(8):1147~1158.
    [48]张瑾,戴猷元.络合萃取技术及其应用. [J].现代化工, 2000 , 20 (2) :19~22.
    [49]齐江,李林,战风涛等.络合萃取与碱洗法提高催化裂化柴油的安定性. [J].石油炼制与化工, 1997, 28 (5):36~39.
    [50]齐江,苏贻勋,延玉臻.催化裂化柴油的络合萃取精制. [J].石油学报(石油加工), 1999, 15 (1):86~89.
    [51]齐江,延玉臻.醋酸对催化裂化柴油的络合萃取精制. [J].石油炼制与化工, 1997, 28 (11):10~12.
    [52]魏毅,刘道胜,杨鹏等.化学法脱除柴油中碱性氮化物. [J].抚顺石油学院学报, 2002,22(2):1~4.
    [53]丛野. FS法精制催化裂化柴油. [J].炼油技术与工程, 2004, 34(1):55~56.
    [54] Compton Leslie E. Process for removing nitrogen from shale oil using pyrrole polymerization. [ P] . US. 4274934 , 1981.
    [55] Jesse K Boggs. Treatment of hydrocarbons with hydrogen chloride gas and oxygen. [P]. US. 3607732, 1971.
    [56]仇万金,张荣庆等.裂解柴油改质的工艺方法. [P].中国专利: CN1093736A , 1993.
    [57]姜守霞,王庭坚.固体超强酸作用下柴油稳定化的研究. [J].吉林化工学院学报, 2000, 17(1):17~19.
    [58]龙小柱,李长久.反应-吸附法改善焦化柴油的安定性. [J].炼油技术与工程, 2004, 34(8):49~51.
    [59]陈月珠.络合-吸附法脱除催化裂化柴油中碱性氮的工艺研究. [J].石油炼制, 2003, 34(3):16~19.
    [60] J Qi, J A Kozinski, R Saade. Effect of biomass burning on the formation of soot particles and heavy hudrocarbons. [J].An experimental study, 1998, 77(4):225~237.
    [61]齐江.催化裂化柴油氮化物的络合萃取. [J].石油化工, 1998, 27(2):106~108.
    [62]黄克明,等.络合反应法脱出润滑油中的碱性氮化物. [J].润滑油, 2002, 14(5):49~51.
    [63] Gedye R Smith f , Westaway K, et al. The use of microwave ovents for rapid organic synthesis. [J]. Tetrahedron Lett, 1986, 27 (3) :279~282.
    [64]马骏,隋新等.微波处理吸附剂脱除碱性氮化物的研究. [J].石油化工高等学校学报, 2004, 17(2):9~12.
    [65] Gieg L M, Oter A , Fedorak P M. Carbazole degradation by Pseudomonas sp. LD2 metabolic characteristics and the Identification of some metabolites.Environ. [J]. Sci. Technol. 1996, 30: 575~585.
    [66] Hisatsuka K, Sato M. Microbial transformation of carbazole to anthranilic acid by Pseudomonass tutzeri. [J].Trends Biotechnol. 1994, 58:213~214.
    [67] Ouchiyama N, Zhang Y, Omori T, et al. Biodegradation of carbazole by Pseudomonas spp. CA 06 and CA10. [J]. Biosci.Biotech.Biochem. 1993, 57:455~460.
    [68] Habe H, Ashikawa Y, Saiki Y, et al. Sphingomonas sp. Strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. [J]. FEMS Microbiol. Lett. 2002, 211:43~49.
    [69] Kilbane II JJ, Daram A, Abbasian J, et al.Isolation and characterization of Sphingomonas sp. GTINI1 capable of carbazole metabolism in petroleum. [J]. Biochem. Biophys.Res.Commun. 2002, 297:242~248 .[70] Nakagawa H, Kirimura K, Nitta T, et al. Recycle use of Sphingomonas sp. CDH-7 cells for continuous degradation of carbazole in the presence of MgCI2. [J]. Curr. Microbiol, 2002, 44:251~256.
    [71] Meade J D, Hellou J, Patel T R. Aerobic co-metabolism of sulfur, nitrogen and oxygen heterocycles by three marine bacterial consortia. [J]. J. Basic. Microbiol. 2002, 42:19~36.
    [72] Shotbolt-Brown J. D , Hunter W F, Aislabie J. Isolation and description of carbazole-degrading bacteria. [J]. Can. J. Microbiol. 1996, 42 :79~82.
    [73] Schneider J, Grosser R J, Jayasimhulu K, et al. Biodegradation of carbazole by Ralstonia sp. RJGII. 123 isolated from a hydrocarbon contaminated soil. [J]. Can. J. Microbiol. 2000, 46(2):69~277.
    [74] Kobayashi T, Kurane R, Kenji N, et al. Isolation of bacteria degrading carbazole under microaerobic conditions, i. e. nitrogen gas substituted conditions. [J]. Biosci.Biotech.Biochem. 1995, 59:932~933.
    [75] Resnick S M, Torok D S, Gibson D T. Oxidaiton of carbazole to 3-hydroxycarbazole by naphthalene 1 ,2-dioxygenase and biphenyl 2, 3-dioxygenase. [J]. FEMS Microbiol. Lett. 1993, 133: 297~302.
    [76] Sato SI, Nam JW, Kasuga K, et al. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. Strain CA10. [J]. J Bacteriol , 1997, 179 (15) :4850~4858.
    [77] Sato SI , Ouchiyama N, Kimura T , et al. Cloning of genes involved in carbazole degradation of Pseudomonas sp. Strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. [J]. J Bacteriol , 1997, 179(15):4841~4849.
    [78] Nojiri H, Sekiguchi Maeda H K, Urata M, et al. Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrager Pseudomonas sp. [J]. J. Bacteirol. 2001, 183:3663~3679.
    [79] Maeda K, Nojiri H, Shintani M, et al. Complete nucleotide sequence of carbazole /dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn 4676. [J]. J Mol Biol, 2003, 326(1): 21~33.
    [80] Shepherd J M, Lloyd-Jones G. Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription and molecular ecology. [J]. Biochem Biophys Res Commun, 1998 , 247(1):129~135.
    [81] Habe H, Chung J S, Lee J H, et al. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. [J]. Appl Environ Microbiol, 2001, 67 (8):3610~3617.
    [82] Nojiri H, Nam J W, Kosaka M, et al. Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp.Strain CA10. [J]. J Bacteriol , 1999, 181(10):3105~3113.
    [83] Nam JW, Nojiri H, Noguchi H, et al. Purification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10. [J]. Appl.Environ.Microbiol. 2002, 68(12):5882~5890.
    [84] Bünz VP, Cook AM. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1 : angular dioxygenation by a three-component enzyme system. [J].J. Bacteriol. , 1993, 175:6467~6475.
    [85] Frenzer. Bacterial degradation of pyridine, indole, quinoline and their derivatives under different redox conditions. Appl. Microbiol. Biotechnol. 1998, 49:237~250.
    [86] Rhee SK, Lee GM, Lee ST. Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. [J].Appl. Microbiol. Biotechnol. 1996, 44(6):816~822.
    [87] Venkata M S, Srinivas S, Kumar G R, et al. Microbial degradation of pyridine usingPseudomonas sp. and isolation of plasmid responsible for degradation. [J]. Waste Manage.2003, 23:167~171.
    [88] Broholm K, Hansen A B, Jorgensen P R, et al. Transport and biodegradation of creosote compounds in a large, intact, clayey till column. [J]. J.Contam.. Hydrol. 1999, 39:331~348.
    [89] Claus G, Kutzner H J. Degradation of indole by Alcaligenes sp. System. [J]. Appl. Microbiol. 1983, 4:169~180.
    [90] Johansen S S, Licht D, Arvin E , et al. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). [J]. Appl. Microbiol.Biotechnol. 1997, 47:292~300.
    [91] Licht D, Johansen S S, Arvin E, et al. Transformation of indole and quinoline by Desulfobacterium indolicum (DSM3383). [J]. Appl. Microbiol. Biotechnol, 1997, 47:167~172
    [92] O’Loughlin E J, Kehrmeyer S R, Sims G K. Isolation, characterization and substrate utilization of a quinoline-degrading bacterium. [J]. Int.Biodeterior.Biodegrad, 1996, 38:107~118.
    [93] Schwarz G, Franzlingens. Bacterial degradation of N-heterocyclic compounds. In: Biochemistry of Microbial Degradation (Ratledge C, Ed), Kluwer Academic Publishers, London. pp459~486.
    [94]李力.微生物石油脱有机氮研究: [博士学位论文].山东大学, 2004.
    [95] Fedorak P M, Westlake D W S. Microbial degradation of alkyl carbazoles in Norman Wells crude oil. [J].Appl. Environ. Microbiol. 1984, 47: 85 8-862.
    [96] KillbaneⅡJ J, Rangannthan R, Cleveland L, et. al. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas arucida IGTN9m. [J]. Appl. Environ. Microbiol. 2000, 66: 688-693.
    [97]黄杰勋,熊小超,李望良,李信,邢建民,刘会洲. Klebsiella sp.LSSE-H2的咔唑降解. [J].过程工程学报, 2007, 7(1):113~118.
    [98]洪新,杨翔华.喹啉降解菌的分离鉴定及在柴油脱氮中的应用. [J].辽宁石油化工大学学报, 2005, 25(2):32~35.
    [1] Benedik M J, Gibbs P R, Riddle R R, et al. Microbial denitrogenation of fossil fuels. [J]. Trends Biotechnol , 1998, 16 (9) :390~395.
    [2] Bastiaens L, Springael D, Wattiau P, et al. Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. [J]. Applied and Environmental Microbiology, 2000, 66:1834~1843.
    [3] Seo J S, Keum Y S, Hu Y, et al. Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavages of naphthalene-1,2-diol. [J]. Int. Biodeterior. Biodegrad. 2006, 58:36~43.
    [4]张倩倩.柴油生物脱硫菌的筛选及应用研究.[D]: [硕士学位论文],首都师范大学, 2006.
    [5] Ouchiyama N, Zhang Y, Omori T, et al. Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. [J]. Biosci. Biotech. Biochem. 1993, 57(3):455~460.
    [6] Seo JS, Keum Y S , Li QX, et al. Degradation of dibenzothiophene and carbazole by Arthrobacter sp.P1-1. [J]. International Biodeterioration & Biodgradation.2006, 58:36~43.
    [7] Lisa M.Gieg, Albin Otter, Phillip M. Fedorak. Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. [J]. Environmental Science and Technolog. 1996, 30:575~585.
    [8] Kirimura K, Nakagawa H, Tsuji K, et al. Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomaoas sp. [J]. CDH~7. Biosci Biotech Biochem, 1999, 63(9):1563~1568.
    [9] John J. KilbaneⅡ, Amrutha Daram, Javaneh Abbasian, et al. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. [J]. Biochemical and Biophysical Research Communications 2002, 297:242~248.
    [10]李力,于波,许平.化石燃料生物脱有机氮研究展望.中国生物工程杂志. [J].2004, 24(6):64~67.
    [11]胡文静,刘宝瑞,钱晓萍等.正交方法优选党参糖的提取工艺. [J].南京中医药大学学报, 2007, 23(1):51~53.
    [12]张搏,杨江科,苏华武等.脂肪酶产生菌的筛选、鉴定及其产酶条件优化. [J].生物技术, 2007, 17(1):23~26.
    [13]李玉光.燃料油生物脱硫工艺方法与应用的研究[D]: [硕士学位论文],首都师范大学, 2005.
    [14]李玉光,张倩倩,马洁等.生物催化脱除柴油中有机硫的研究. [J].首都师范大学学报(自然科学版), 2005, 26(3):48~52.
    [1] Lopez-Lopez A, Exposito E, Anton J, et al . Use of Thiobacillus ferrooxidans in a coupled microbiological-electrochemical system for wastewater detoxification. [J]. Biotechnol. Bioeng. , 1999, 63(1):79~86.
    [2] Thevanayagam S, Rishindran T. Injection of nutrients and TEAs in clayey soils using electrokinetics. [J] . J . Geotech. Geoenviron. Eng. , 1998 , 124 (4):330~338.
    [3] Matsumoto N., Nakasono S., Ohmura N.,et al. Extension of logarithmic growth of thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (Ⅲ). [J]. Biotechnology and Bioengineering, 1999, 64(6): 716~721.
    [4] She P, Song B, Xing XH, et al. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. [J]. Biochemical Engineering Journal, 2006, 28:23~29.
    [5]王福远,苗长春,韩慧龙等.电场对黄孢原毛平革菌生长、细胞通透性及其胞外酶反应的影响. [J].过程工程学报, 2007, 7(2):385~388.
    [6]李松海,刘建华,武海燕等.一种控制腐蚀微生物的新方法——电化学杀菌. [J].腐蚀与保护, 2004, 25(6):256~262.
    [7]孙静,孔繁东,祖国仁等.高压脉冲电场对酵母菌和大肠杆菌存活率的影响. [J].食品科学, 2004, 25(2):87~90.
    [8]曹宏斌,李鑫钢,孙津生等.直流电对硝化细菌活性的影响. [J].环境科学学报, 2001, 21(4):420~425.
    [9]康博,黄卫民,张应玖等.生物膜电极反应器降解对氨基二甲基苯胺的研究. [J].高等学校化学学报, 2007, 28(3):556~558.
    [10] Nakanishi K, Tokuda H, Soga T, et al. Effect of electric current on growth and alcohol production by yeast cells [J]. J. Ferment.Bioeng., 1998, 85(2):250~253.
    [11] Hayes A.M., Flora J.R.V., Khan J. Electrolytic stimulation of denitrification in sand columns. [J]. Water Res., 1998, 32(9):2830~2834.
    [12] Beschkov V, Velizarov S, Agathos S N, et al. Bacterial Denitrification of Waste Water Stimulated by Constant Electric Field. [J]. Biochem.Eng. J., 2004, 17(2):141~145.
    [13] Fox R T V, Sanson S. Lethal effects of an electrical field on Armillaria mellea in culture [J]. Mycological Research, 1996, 100 (3):318~320.
    [14]左恒,吴爱详,王贻明.电场作用对提高微生物浸矿性能的影响. [J].中国有色金属报,2007,17(7): 1177~1181.
    [15] Tong T Y. Electric activation of membrane enzyane enzymes[C]//First East Asian Symposium on Biophysics. Japan: The Biophysical Society of Japan, 1994: 39~42.
    [16] Costerton J. W., Irvin R. T., Cheng K J. The bacterial glycocalyx in nature and disease. [J]. Annu Rev Micmbiol, 1981, 35: 299~324.
    [1]崔盈.直馏柴油选择催化氧化脱硫研究. [D].西南石油大学, 2006
    [2]胡瑞省,张宏坤,顾登平.间接电氧化合成对溴苯甲醛. [J].精细化工, 2003, 20(3):169~171.
    [3]李延盛,尹其光.超声化学. [M].北京:科学出版社, 1995:31~33.
    [4]韩雪松,赵德智,戴咏川等.超声波作用下柴油深度氧化脱硫的研究. [J].石油炼制与化工, 2006, 37(2):30~33.
    [5]李春喜,王京刚,王子镐等.超声波技术在污水处理中的应用与研究进展. [J].环境污染治理与设备, 2001, 2(2): 64~69.
    [6]陈兰菊,郭绍辉,赵地顺.车用燃料油氧化脱硫技术进展. [J].燃料化学学报,2005, 33(2): 247~252.
    [7] Dolbear G E, Skov E R. Selective oxidation as a route to petroleum desulfurization. [J]. Preprints, 2000, 45(2):26~28.
    [8] Bonde S E, Gore w, Dolbear G E. DMSO extraction of sulfones from selectively oxidized fuels. [J]. Preprints, 1999, 44(2):199~201.
    [9]董丽旭,赵德智.超声作用下柴油氧化脱硫工艺研究. [J].化学与粘合,2007, 29 (3):216~219.
    [10]刘颖.柴油的氧化脱硫的研究. [J].中国高新技术企业, 2007 (05):102~103.
    [11]王长水.柴油深度脱硫方法的研究. [D].首都师范大学, 2007 .
    [12]马洁,王长水,张秀兰等.超声与微波条件下Ce4+对柴油氧化脱硫的比较研究. [J].化学通报, 2007, (08):604~608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700