ZrTiN涂层刀具的制备及切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元涂层引入了两种过渡金属,结合固溶强化的机制使得涂层在硬度、结合力、耐磨性和高温抗氧化性等方面具有比二元涂层更优越的性能。本文成功开发出三元ZrTiN系列涂层刀具,并对其制备工艺、物理机械性能、切削性能和磨损机理进行了系统研究。
     采用脉冲偏压辅助沉积多弧离子镀并结合离子轰击工艺在YT15刀具基体上制备出ZTG(ZrTiN/ZrTi/Ti+YT15)、ZTF(ZrN/TiN/Ti+YT15)和ZT(ZrTiN+YT15)三种涂层刀具,系统分析了不同工艺参数对涂层性能的影响,并确定了各涂层刀具的最佳制备工艺参数。对于ZTG涂层刀具为:Zr靶电流110 A、Ti靶电流70 A、氮气流量140 sccm、基体负偏压250 v、沉积温度200℃、沉积时间75 min,过渡层的基体负偏压150 V,沉积时间5min;对于ZT涂层刀具为:Zr靶电流110 A,Ti靶电流70 A,氮气流量100 sccm,沉积时间75 min,沉积温度200℃,基体负偏压250 v;对于ZTF涂层刀具为:Zr靶电流为90 A,Ti靶电流为80 A,氮气流量140 sccm,沉积时间75 min,沉积温度200℃,基体负偏压250 v。
     对ZrTiN系列涂层刀具的切削性能进行车削试验研究,并与TiN涂层刀具和未涂层YT15刀具对比,结果发现:各向力随着各工艺参数的增加逐渐增大,在同样切削条件下,按照切削力从小到大的顺序,五种刀具可以排序为:ZTGTN>ZT>ZTG>ZTF;加工表面粗糙度受切削速度和进给量的影响要明显于背吃刀量,相同切削参数条件下,五种刀具的加工表面粗糙度按从大到小的顺序可以排列为:YT15>ZTF>ZT>TN>ZTG。
     对ZrTiN系列涂层刀具的磨损性能和磨损机理进行试验研究,并与TiN涂层刀具和未涂层YT15刀具进行对比。结果表明:五种刀具后刀面的磨损量从大到小可以排序为:YT15>ZT>ZTF>TN>ZTG; ZrTiN系列涂层刀具的后刀面以粘着磨损和边界磨损为主,前刀面以粘着磨损和磨粒磨损为主,并伴有涂层剥落和微崩刃;而YT15刀具以粘着磨损为主。结合有限元模拟的方法研究了刀具的应力和温度,发现ZrTiN涂层能够明显降低刀具的切削温度和应力,且各刀具磨损的区域正是刀具应力和温度最大值所集中的位置。
The introduction of two transition metal in ternary coatings, combined with the mechanism of solid solution strengthening which makes the coatings have better properties than the binary coatings in hardness, adhesion, wear resistance and elevated temperature oxidation resistance. A series of new ZrTiN coated tools were successfully developed on the basis of this theory, and its preparation process, physical and mechanical properties, cutting performance, wear behaviors and mechanisms were studied systematically.
     The ZTG(ZrTiN/ZrTi/Ti+YT15), ZTF(ZrN/TiN/Ti+YT15) and ZT(ZrTiN+YT15) three coatined tools were prepared on YT15 substrates with pulsed bias assisted with arc ion plating technique combined and ion bomdardment. The coated tools'hardness, adhesion strength and thickness influenced by the titanium and zirconium targets' current, substrate bias, deposition temperature, deposition time and nitrogen flow were systematically studied. The optimal preparation processes were optimized. For ZTG coated tools:Zr target current is 110 A, Ti target current:70 A, nitrogen flow:140 sccm, substrate bias:250 V, deposition temperature:200℃, deposition time:75 minutes, the substrate bias for transition layer:150 V and deposition time of the layer:5 minutes; for ZT coated tools:Zr target current:110 A, Ti target current:70 A, nitrogen flow:100 sccm, deposition time:75 minutes, deposition temperature:200℃, the substrate bias: 250 V; for ZTF coated tools:Zr target current:90 A, Ti target current:80 A, nitrogen flow rate:140 sccm, deposition time:75 minutes, deposition temperature:200℃, the substrate bias:250 V.
     A series of ZrTiN coated tools' cutting performance were studied by testing, and compared with TiN coated tools and uncoated YT15 tools. The results showed that three components of cutting force increased as the cutting speed increased, according to the size of the cutting force, they can be arranged in the order of ZTG ZTF>ZT>TN>ZTG under same cutting parameters.
     The ZrTiN series of coated tools' wear performance and mechanism were studied by testing, and compared with TiN coated tools and YT15 tools. It is indicated that the rate of flank wear in descending order is:ZTG
引文
[1]K.D.Bouzakis, et al. The effect of coating thickness, mechanical strength and hardness properties on the milling performance of PVD coated cemented carbides inserts[J]. Surface and Coatings Technology.2004,177-178:657-664.
    [2]邓建新,赵军.数控刀具材料选用手册[M].第一版.北京:机械工业出版社,2004.
    [3]赵金龙.MoS2/Zr“软”涂层自润滑刀具的研究[D].山东大学博士论文,2008.
    [4]M. A. B. R. Gilmore, P. N. Gibson, et al. Low-friction TiN-MoS2 coatings produced by dc magnetron co-deposition [J]. Surface and Coatings Technology.1998,108-109:345-351,.
    [5]Y. X. J. H. Wang, E. Wieers, et al. Influence of deposition conditions on the crystal structure of MoS2 coating[J]. Journal of Materials Science and Technology.2006,22(3):324-328.
    [6]马玉平,陈明等.DLC涂层硬质合金微钻的制备及其切削性能(英文)[J].Transactions of Nanjing University of Aeronautics & Astronautics.2007,24(2):89-93.
    [7]贾轶.涂层刀具干式钻削铝硅合金的切削性能研究[D].西安理工大学硕士论文,2006.
    [8]张同俊,王辉.超硬涂层研究进展[J].材料导报.2000,14(1):32-34.
    [9]孙荣幸,张同俊等.TiB2和Ti-B-N涂层的性能对比研究[J].材料工程.2006,(4):41-43.
    [10]刘建平,旷亚非.微弧氧化技术及其发展[J].材料导报.1998,12(5):27-29.
    [11]陈元春等.溶胶-凝胶法陶瓷涂层的界面结合机制和性能[J].科学通报.2000,45(5):497-502.
    [12]叶伟昌,严卫平等.涂层硬质合金刀具的发展与应用[J].硬质合金.1998,15(1):54-57.
    [13]廖先富译.最新涂层材料及其涂覆技术[J].工具技术.1996,30(7):36-38,.
    [14]韦奇,王大伟等.溶胶-凝胶法制备Al2O3-SiO2复合膜的微观结构分析[J].硅酸盐学报.2001,29(4):392-396.
    [15]J.A. Ghani, I.A. Choudhury, et al. Wear mechanisms of TiN coated carbide and uncoated cermets tools at high cutting speed applications [J]. Journal of Materials Processing Technology,153-154:1067-1073.
    [16]E. O. Ezugwu, C. I. Okeke. Tool life and wear mechanisms of TiN coated tools in an intermittent cutting operation[J]. Journal of Materials Processing Technology.2001,116(1): 10-15.
    [17]A. Aramacharoen, P. T. Mativenga, et al. Evaluation and selection of hard coatings for micromilling of hardened tool steel [J]. International Journal of Machine Tools and Manufacture.2008,48(14):1578-1584.
    [18]张少锋,黄拿灿等.PVD氮化钛涂层刀具切削性能的试验研究[J].金属热处理.2006,31(7):50-52.
    [19]黄松涛,姜增辉湿式高速车铣时TiN涂层刀具的磨损机理研究[J].制造技术与机床.2003,(3):49-50.
    [20]Deng Jianxin, Liu Jianhua, Zhao Jinlong. Wear patterns and mechanisms of ZrN coated tools in machining of hardened steel[J]. International Journal of Machining and Machinability of Materials.2006,1(3):324-332.
    [21]D. Jianxin, et al. Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes[J]. Wear.2008,264(3-4):298-307.
    [22]Y. L. Su, S. H. Yao. On the performance and application of CrN coating[J]. Wear.1997, 205(1-2):112-119.
    [23]S. K. Praphan, C. Nouveau. Deposition of CrN coatings by PVD methods for mechanical application[J]. Surface and Coatings Technology.2005,200(1-4):141-145.
    [24]A. Kondo, T. Oogami, et al. Structure and properties of cathodic arc ion plated CrN coatings for copper machining cutting tools[J]. Surface and Coatings Technology.2004,177-188: 238-244.
    [25]杨娟,陈志谦,聂朝胤.电弧离子镀CrN涂层的制备及性能研究[J].金属热处理.2009,34(7):75-79.
    [26]D. B. Lee, M. H. Kim, et al. High temperature oxidation of TiCrN coatings deposited on a steel substrate by ion plating[J]. Surface and coatings Technology.2001,141(2-3):23-239.
    [27]D. B. Lee. TEM study on oxidized TiCrN coatings ion-plated on a steel substrate[J]. Surface and coatings Technology.2003,173(1):81-86.
    [28]E. Uhlmann, K. Klein. Stress design in hard coatings[J]. Surface and Coatings Technology. 2000,131(1-3):448-451.
    [29]F.-R. Weber, F. Fontaine, et al. Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings-correlation between lifetime of coated cutting tools, structural and mechanical film properties [J]. Surface and Coatings Technology.2004, 177-178:(227-232).
    [30]B. F. Coll, P. Sathrum, et al. Optimization of arc evaporated (Ti,Al)N film composition for cutting tool applications[J]. Surface and Coatings Technology.1992,52(1):57-64.
    [31]S. Danisman, S. Savas, et al. Comparison of Wear Behaviors of Cathodic Arc TiN, TiAlN Coated and Uncoated Twist Drills Under Aggressive Machining Conditions[J]. Tribology in industry.2008,30(1-2):17-22.
    [32]蔡志海,胡桂帅,杜月和,张平.TiN基复合涂层硬质合金刀具的力学性能与切削性能研究[J].装甲兵工程学院学报.2007,21(2):87-90.
    [33]Xing-Zhao Ding, X. T. Zeng. Structural, mechanical and tribological properties of CrAIN coatings deposited by reactive unbalanced magnetron sputtering [J]. Surface and Coatings Technology.2005,200(5-6):1372-1376.
    [34]X. Z. Ding, X. T. Zeng, Y. C. Liu, et al. Cr1-xAlxN coatings deposited by lateral rotating cathode arc for high speed machining applications[J]. Thin Solid Films.2008,516(8): 1710-1715.
    [35]J. L. Endrino, G. S. Fox-Rabinovich, et al. Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel[J]. Surface and Coatings Technology.2006,200(24):6840-6845.
    [36]A. E. Reiter, B. Brunner, et al. Investigation of several PVD coatings for blind hole tapping in austenitic stainless steel[J]. Surface and Coatings Technology.2006,200(18-19):5532-5541.
    [37]余春燕,王社斌,等.CrAIN薄膜高温抗氧化性的研究[J].稀有金属材料与工程.2009,38(6):1015-1018.
    [38]徐均琪,杭凌侠,蔡长龙.磁控溅射离子束流密度的研究[J].真空科学与技术学报.2004,24(1):74-76.
    [39]D. P. Monaghan, D. G. Teer, et al. Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering[J]. Surface and Coatings Technology.1993,59(1-3): 21-25.
    [40]E. W. Niu, L. Li, G. H. Lv, H. Chen, X. Z. Li, X. Z. Yang, S. Z. Yang. Characterization of Ti-Zr-N films deposited by cathodic vacuum arc with different substrate bias[J]. Applied Surface Science.2007,254(13):3909-3914.
    [41]高玉周,史雅琴等.(Ti,Zr)N复合薄膜的微观结构及性能[J].大连海事大学学报.2002,28(2):81-84.
    [42]Y.-W. Lin, et al. Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering[J]. Thin Solid Films.2010,518(24): 7308-7311.
    [43]肖宏清,刘谦.空心阴极离子镀(TiZrN)膜层制备及应用研究[J].表面技术.2004,33(6):57-59.
    [44]唐伟忠著.薄膜材料制备原理、技术及应用[M].第一版.北京:冶金工业出版社,1998
    [45]J. Fessmann, et al. Cathodic arc deposition of TiN and Zr(C,N) at low substrate temperature using a pulsed bias voltage[J]. Materials Science and Engineering:A.1991,140:830-837.
    [46]W. Olbrich, et al. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias[J]. Surface and Coatings Technology.1991,49(1-3):258-262.
    [47]W. Olbrich and G. Kampschulte. Additional ion bombardment in PVD processes generated by a superimposed pulse bias voltage[J]. Surface and Coatings Technology.1993,61(1-3): 262-267.
    [48]W. Olbrich and G. Kampschulte. Superimposed pulse bias voltage used in arc and sputter technology [J]. Surface and Coatings Technology.1993,59(1-3):274-280.
    [49]黄佳木,徐成俊等.室温磁控溅射制备(Ti,Zr)N薄膜及其性能研究[J].材料科学与工程学报.2005,23(5):517-520.
    [50]Da-Yuan Wang, et al. Synthesis of (Ti,Zr)N hard coatings by unbalanced magnetron sputtering. Surface and Coatings Technology.2000,130(1):64-68.
    [51]Satreerat K. Hodak, T. Seppanen, Sukkaneste Tungasmita. Growth of (Zr,Ti)N Thin Films by Ion-Assisted Dual D.C. Reactive Magnetron Sputtering[J]. Solid State Phenomena.2008,136: 133-138.
    [52]H. Hasegawa, et al. Ti1-xAlxN, Ti1-xZrxN and Ti1-xCrxN films synthesized by the AIP method[J]. Surface and Coatings Technology.2000,132(1):76-79.
    [53]H. Hasegawa, T. Suzuki. Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method[J]. Surface and Coatings Technology.2004,188-189:234-240.
    [54]A. K. Hiroyuki Hasegawa, Tetsuya Suzuki. Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and (Ti,V)N films[J]. American Vacuum Society.2000,18(3):797-1047.
    [55]L. A. Donohue, J. Cawley, et al. Deposition and characterisation of arc-bond sputter TixZryN coatings from pure metallic and segmented targets[J]. Surface and Coatings Technology.1995, 72(1-2):128-138.
    [56]Pei Yan, Jianxin Deng, et al. Finite Element Analysis of Thermal Stress in Multi-arc Ion Plated ZrTiN Hard Coatings[J]. Adavanced Materials Research.2010,139-141:369-373.
    [57]V. V. Uglov, V. M. Anishchik, et al. Structural characterization and mechanical properties of Ti-Zr-N coatings, deposited by vacuum arc[J]. Surface and Coatings Technology.2003, 180-181:519-525.
    [58]陈日曜.金属切削原理[M].第2版.北京:机械工业出版社,1994.
    [59]武文革,辛志杰主编.金属切削原理及刀具[M].第一版.北京:国防工业出版社,2009.
    [60]J.-F. Rigal, T. Mabrouki. A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning[J]. Journal of Materials Processing Technology. 2006,176(1-3):214-221.
    [61]H.-W. R. F.Klocke, S.Hoppe,2D-FEM simulation of the orthogonal high speed cutting process[J]. Machining Science and Technology.2001,5(3):323-340.
    [62]T. S. E.Usui. Mechanics of machining from descriptive to predictive theory on the art of cutting metals-75 years later[J].1982, New York. ASME:13-30.
    [63]K. O. K. Iwata, Y. Terasaka. Process modelling of orthogonal cutting by rigid-plastic finite element[J]. Journal of Engineering Materials and Technology.1984,106:132-138.
    [64]N.N.Zorev. Inter-relationship between shear processes occurring along tool face and on shear plane in metal cutting[J]. International Research in Production Engineering.1963, New York, ASME:42-49.
    [65]解丽静,刘志兵等.硬质合金刀具铣削高强度钢的磨损机理研究[J].兵工学报.2005,26(4):519-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700