中频磁控溅射制备氮化镓薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在宽禁带半导体中,Ⅲ族氮化物InN、GaN以及AlN为直接带隙半导体,禁带宽度分别为0.7eV、3.4eV和6.2eV,它们的三元系合金材料也具有直接带隙的特点,可以制备成从0.7eV-6.2eV的各种禁带宽度的半导体材料,其波长覆盖了从红外到紫外的全可见光的范围,可实现红、黄、蓝三原色具备的全光固体显示。生长GaN与AlN薄膜的方法主要有有机金属化学气相沉积(MOCVD)、分子束外外延(MBE)、氢化物气相外延(HVPE)、脉冲激光沉积(PLD)以及各种蒸发和溅射的制备方法。蓝宝石(α-Al2O3)或碳化硅((SiC)是制备GaN与AlN薄膜常用的衬底材料,在这些衬底材料上可制备出高质量的GaN与AlN异质外延薄膜。
     然而,受这些衬底的价格与尺寸等因素的限制,增加了GaN与AlN材料及其器件的在制造成本,在硅(Si)衬底上生长GaN薄膜并制备光电子和微电子器件,可大幅度降低成本,Si是十分重要的生长氮化物的衬底材料。玻璃是重要的太阳电池衬底材料,不但成本低还可大面积获得,如果能在玻璃衬底上生长出高质量的GaN薄膜将具有重大意义,GaN的广泛使用将不再是梦想。光伏行业中普遍应用的普通玻璃的熔化温度仅有500-600℃,而采用传统方法的生长温度一般在600-1000℃,因此,要在玻璃衬底上生长GaN薄膜需要找到一种低温生长技术。
     本文采用自行设计的中频孪生靶磁控溅射系统在Si(111)和石英玻璃衬底上制备了GaN薄膜。并在原有系统上加了阳极层离子源用来辅助沉积AlN薄膜。采用X射线衍射仪(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)、俄歇电子能谱仪(AES)、X射线光电子能谱仪(XPS)、透射电子显微镜(TEM)、325nm He-Cd激光器和拉曼显微分光计等一系列测试手段来对薄膜进行检测,研究了不同沉积气压、衬底偏压、Ar/N2比例、靶-衬底距离以及沉积时间等制备条件对薄膜的结构性质、电学性质以及光学性质等的影响,并初步探讨了薄膜的生长机制和发光机制。所取得的成果如下:
     1.用自行设计的中频孪生靶磁控溅射系统在各种工艺条件下生长了GaN与AlN薄膜。此系统中有一对孪生溅射靶,与中频电源的两个输出电极相连。溅射过程中,两个溅射靶交替作为阴极,可明显减少甚至避免氮化物在靶材表面的生成,同时增强了溅射原子在衬底上与反应气体的充分反应,沉积速率有明显提高,GaN薄膜的沉积速率最高达到了5.3μm/h。
     2.分别在Si(111)衬底和石英玻璃衬底上生长了GaN薄膜,并在Si(111)衬底上生长了AlN薄膜。系统地研究了各种工艺参数(气压、偏压、N2/Ar比、溅射距离以及溅射时间)对GaN与AlN薄膜性质的影响。生长的GaN与AlN薄膜都为多晶体,呈六角纤维锌矿结构,并带有C轴的择优取向。通过对GaN薄膜的截面分析可知,GaN呈柱状结构生长。质量最好的GaN薄膜的半高宽仅有-721弧秒,而质量最好的AlN薄膜的半高宽则更是仅有-612弧秒。
     3.在中频孪生靶磁控溅射系统中加入了一个阳极层离子源,用于沉积择优取向性好,表面平滑并且结构致密的AlN薄膜。采用阳极层离子源辅助沉积的AlN薄膜较没有采用阳极层离子源辅助沉积的AlN薄膜在结构质量、致密度、平滑度以及沉积速率等都要有明显的优势,采用阳极层离子源辅助沉积的表面最平滑AlN薄膜的粗糙度仅有0.13nm。
     4.获得了光吸收和光致发光光谱,并对不同工艺参数下生长的GaN与AlN薄膜的生长机理以及发光性质进行了初步研究。
InN, GaN and AlN are the most important semiconductor materials inⅢ-nitrides, their direct band gap is 0.7 eV,3.4 eV and 6.2 eV, respectively. Their ternary alloys are also direct band gap, which can be prepared to continued band gap (0.7eV-6.2eV) semiconductor materials. Their wavelength ranged from infrared to the ultraviolet, and covered the whole range of the visible light. The white light solid state display with the three primary colors of red, yellow and blue can be realized by the their ternary alloys. GaN and AlN can be prepared by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), pulsed laser deposition (PLD) and various evaporate and sputtering.α-Al2O3 and 6H-SiC are usually as the substrates for the growth of GaN and AlN films.
     The extensive application of GaN and AlN are restricted by the prices and the sizes of these substrates, which increasing the manufacturing cost of GaN and AlN materials and devices, however, the cost of grow GaN and the prepared of GaN-based optoelectronics and microelectronics devices can be greatly reduced by the growth of GaN on Si substrates, which are very important substrates for nitreides. Glass is the important substrate of solar cell, which is low cost and can be obtained with large aera. It has very important meaning if people can grow high quality GaN on glass, and the widely use of GaN is no longer a dream. The softening temperature of conventional glass adopted by the PV industry is in the range 500-600℃, however, the growth temperature of the traditional method for GaN growth is in the range 600-1000℃, so, it is need to find a growth technology with low-temperature. In the early 20th century, 90s, the reactive sputtering of metal Ga and the ion beam sputtering has been used to grow GaN film. The deposition temperature of the magnetron sputtering below the temperature of 600℃, and the magnetron sputtering is a method with low temperature, low cost and no pollution.
     In this thesis, GaN films were deposited on Si (111) and quartz glass by the self-designed MF twin targets magnetron sputtering system, and AlN films were deposited on Si (111) with the anode-layer ion source assistance. X-ray diffraction(XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM),325nm He-Cd laser, Raman micro spectroscopy, etc, were used to measure the structure, optical and electrical properties of the films. The properties of the films were affected by the deposition pressure, bias, Ar/N2 ratio, target-substrate distance and the deposition time, and the growth and luminescence mechanism were investigated. The results obtained are as follows:
     1. GaN and AIN films were deposited at various conditions by the self-designed MF twin targets magnetron sputtering. A pair of sputtering targets was placed in the system, which connected to the two output electrode of the MF power. The two sputtering targets become cathodes alternately, which can significantly reduce or even prevent the generation of nitrides on the surface of the targets, at the same time, the reaction of the sputtering atom and the reactive gas increased, which lead to the significantly increasing of the deposition rate of the films, the highest deposition rate for GaN films reached 5.3μm/h.
     2. GaN films were deposited on Si (111) and quartz glass substrates by the self-designed MF twin targets magnetron sputtering, and AlN films were deposited on Si (111) substrates only. The effect of various deposition parameters (the deposition pressure, the bias, the N2/Ar ratio, the distance of target-substrate and the deposition time) on the GaN and AlN films were systematic studied. Both GaN and AlN films were polycrystalline, which were wurtzite structure and with the C-axis preferred orientation. GaN was columnar structure, which can be analyzed by the cross-section of GaN. The full width at half maximum (FWHM) of the best-quality GaN film is only-721 arcsec, and the FWHM of the best-quality AIN film is even only-612 arcsec.
     3. We added an anode-layer ion source to the MF twin targets magnetron sputtering system for the deposition of AIN films with good preferred orientation, smooth surface and dense structure. AIN films have clear advantages in terms of quality, dense, smoothness and deposition rate of AIN films deposited with anode-layer ion source assistance than AlN films deposited without anode-layer ion source assistance, the roughness of the smoothest AlN film deposited with anode-layer ion souce is only 0.13 nm.
     4. The optical absorption and photoluminescence spectrscaopy for GaN films were obtained, and the growth mechanism and the emission properties of GaN and AIN films grown at various deposition parameters were preliminary studies.
引文
[1]A. Missaoui, M. Saadoun, T. Boufaden, B. Bessas, A. Rebey, H. Ezzaouia,B. El Jani, Materials Science and Engineering B 82 (2001) 98.
    [2]A. Missaoui, H. Ezzaouia, B. Bessas, T. Boufaden, A. Matoussi, M. Bouacha, B. El Jani, Materials Science, and Engineering B 93 (2002) 102.
    [3]N. Chaaben, T. Boufaden, M. Christophersen, B. E. Jani, Microelectronics Journal 35(2004)891.
    [4]A. Matoussi, F.BenNasr, T. Boufaden, R. Salh, Z. Fakhfakh, S. Guermazi, B. ElJani, H.-J. Fitting, Journal of Luminescence 130 (2010) 399.
    [5]V. V. Kidalov, G. A. Sukach, A. O. Petukhov, A.S. Revenko, E.P. Potapenko, Journal of Luminescence 102-103 (2003) 712.
    [6]V. V. Mamutin, V. P. Ulin, V. V. Tret'yakov, S. V. Ivanov, S. G. Konnikov, and P. S. Kop'ev, Tech. Phys. Lett.25,1 (1999).
    [7]M. Mynbaeva, A. Sitnikova, A. Tregubova, K. Mynbaev, Journal of Crystal Growth 303 (2007) 472.
    [8]F. Yun, M. A. Reshchikov, L. He, H. Morko, C. K. Inoki, and T. S. Kuan, Appl. Phys. Lett.81(2002)4142.
    [9]E. Stach, A. Kelsch, M. Nelson E C Structural and chemical characterization of free-standing CaN films separated from sap-phire substrates by laser lift-off 2000(12).
    [10]M. He, I. Minus, P. Zhou, Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH 2000.
    [11]J. Zhang, L. D. Zhang, X. F. Wang, Fabrication and photoluminescence of ordered GaN nanowire arrays 2001.
    [12]W. Q. Han, S. S. Fan, Q. Q. Li, Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction 1997.
    [13]G. S. Cheng, S. H. Chen, X. G. Zhu, Highly ordered nanostructures of single-crystalline GaN nanowires 2000.
    [14]S. H. Yang, S. H. Ahn, M. S. Jeong, Structural and optical properties of GaN films grown by the direct reaction of Ga and NH3 in a CVD reactor 2000(9).
    [15]H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett.48 (5).3 (1986).
    [16]J. Akasaki et al., J. Crystal Growth,98(1989)209.
    [17]L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto, and Y. Kokubun, J. Appl. Phys.15 November 1997.
    [18]M. H. Kim, C. Sone, J. Hyung Yi, and E. Yoon, Appl. Phys. Lett.71 (9),1 September 1997.
    [19]H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, M. Umeno, Journal of Crystal Growth 189/190 (1998) 178.
    [20]P. Chen, R. Zhang, Z. M. Zhao, D.J. Xi, B. Shen, Z. Z. Chen, Y. G. Zhou, S. Y. Xie, W.F. Lu, YD. Zheng, Journal of Crystal Growth 225 (2001) 150.
    [21]J. H. Boo, S. A. Ustin, W. Ho, Journal of Crystal Growth 189/190 (1998) 183.
    [22]S.B. Xue, X. Zhang, R. Huang, H.Z. Zhuang, Applied Surface Science 254 (2008) 6766.
    [23]A. Strittmatter, D. Bimberg, A. Krost, J. Blasing, P. Veit, Journal of Crystal Growth 221(2000)293.
    [24]H. Tsuchiya, A. Takeuchi, A. Matsuo, and F. Hasegawa, Solid-State Electronics Vol.41, No.2, pp.333-338,1997
    [25]J. H. Boo, C. Rohr, W. Ho, Journal of Crystal Growth 189/190 (1998) 439.
    [26]S. Nishimura, H. Hanamoto, K. Terashima, S. Matsumoto, Materials Science and Engineering B93 (2002) 135.
    [27]J.Y Huang, Z. Z. Ye, L. Wang, J. Yuan, B. H. Zhao, H. M. Lu, Solid-State Electronics 46 (2002) 1231.
    [28]R. Kimura, Y. Gotoh, T. Matsuzawa, K. Takahashi, Journal of Crystal Growth 209(2000)382.
    [29]C. F. Lin, H. C. Cheng, M. S. Feng, G. C. Chi, Materials Science and Engineering B50(1997)25.
    [30]N. H. Zhang, X. L. Wang, Y. P. Zeng, H. L. Xiao, J. X. Wang, H. X. Liu, J. M. Li, Journal of Crystal Growth 280 (2005) 346.
    [31]C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, C. C. Lin, Solid-State Electronics 47 (2003) 2019.
    [32]N. Ohshima, H. Yonezu, S. Yamahira, K. Pak, Journal of Crystal Growth 189/190 (1998)275.
    [33]N. Ohshima, H. Yonezu, S. Yamahira, K. Pak, Journal of Crystal Growth 189/190 (1998)275.
    [34]C. C. Yang, M. C. Wu, C. A. Chang, G. C. Chi, Materials Science and Engineering B68 (1999) 22.
    [35]Y. J. Liu, T. Y. Tsai, K. H. Yu, D. F. Guo, L. Y. Chen, T. H. Tsai, and W. C. Liu, Displays 31 (2010) 111.
    [36]A. Matoussi, T. Boufaden, A. Missaoui, S. Guermazi, B. Bessais, Y. Mlik, B. Eljani, Microelectronics Journal 32 (2001) 995.
    [37]B. K. Ghosha, T. Tanikawa, A. Hashimoto, A. Yamamoto, Y. Ito, Journal of Crystal Growth 249 (2003) 422.
    [38]U. Ozgur, Y. Fu, Y. T. Moon, F. Yun, and H. Morko, H. O. Everitt, S. S. Park and K. Y. Lee, APPLIED PHYSICS LETTERS 86,232106 (2005).
    [39]J. Napierala, H.-J. Buhlmann, and M. Ilegems, J. Electrochem. Soc.153, G125 (2006).
    [40]A. Sagar, C. D. Lee, R. M. Feenstra, C. K. Inoki, and T. S. Kuan, J. Vac. Sci. Technol.B 21,1812(2003).
    [41]V. V. Kidalov, G. A. Sukach, A. S. Revenko, and E. P. Potapenko, Semiconductors 37 (2003) 1264.
    [42]E. F. Schubert, W. Grieshaber, et al., Enhancement of deep acceptor activation in semiconductor by superlattice doping. Appl. Phys. Lett.1996,11,24.3737.
    [43]N. Theodoropoulou, A. F. Hebard, M. E. Overberg, et al., Magnetic and structural properties of Mn-implanted GaN Appl. [J] Phys. Lett.2001,78:3475.
    [44]M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, et al., Room temperature ferromagnetic properties of (Ga, Mn)N, Appl. [J]. Phys. Lett. (2001) 79:3473.
    [45]J. T. Torvik, C. H. Qiu, R.J. Feuerstein, J. I. Pankove, and F. Namavar, J.Appl.Phys.81(9),1 May 1997.
    [46]G. Franzo,F. Priolo, S. Coffa, A. Polman, and A. Camera, Appl. Phys. Lett.64 (1994) 2235.
    [47]J. Stimmer, A. Reittinger, J. F. Nutzel, G Abstreiter, H. Holzbrecher, and Ch. Buchal, Appl. Phys. Lett.68 (1996) 3290.
    [48]K. Takahei, P. S. Whitney, H. Nakagome, and K. Uwai, J. Appl. Phys.65 (1989) 1257.
    [49]X.Z. Wang and B.W.Wessels, Appl. Phys. Lett.65 (1994) 584.
    [50]W. J. Choyke, R. P. Devaty, L. L. Clemen, M. Yoganathan, G. Pensl, and Ch. Hassler, Appl. Phys. Lett.65(1994) 1668.
    [51]R. G Wilson, R. N. Schwartz, C. R. Abemathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, Appl. Phys. Lett.65 (1994) 992.
    [52]C. H. Qiu, M. W. Leksono, J. I. Pankove, J. T. Torvik, R. J. Feuerstein, and F. Namavar, Appl. Phys. Lett.66 (1995) 562.
    [53]P. N. Favennec, H. L.Halidon, M. Salvi, et al. [J]. Electron Letters,1989, 25(11):718.
    [54]D. S. Lee, J. Heikenfeld, R. Birkhahn, M. Garter, B. K. Lee, and A. J. Steckl, Appl. Phys. Lett., Vol.76, No.12,20 March 2000.
    [55]M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett., Vol.74, No.2,11 January 1999.
    [56]A. J. Steckl, M. Garter, D. S. Lee, J. Heikenfeld, and R. Birkhahn, Appl. Phys. Lett., Vol.75, No.15,11 October 1999.
    [57]R. Birkhahn, M. Garter, and A. J. Steckl, Appl. Phys. Lett., Vol.74, No.15,12 April 1999.
    [58]A. A. Andreev, Phys. Solid State 45,419 (2003).
    [59]V. Kumar and J. M. Zavada, Proc. of SPIE Vol.7602 76020E-1.
    [60]Y. Hori, T. Andreev, D. Jalabert, and E. Monroy, L. S. Dang, B. Daudin, M. Tanaka and O. Oda, Appl. Phys. Lett.88,053102 (2006).
    [61]H. J. Lozykowski, W. M. Jadwisienczak, and I. Brown, Appl. Phys. Lett.74, 1129(1999).
    [62]H. J. Lozykowskia, W. M. Jadwisienczak, and I. Brown, Solid State Communications, Volume 110, Issue 5,8 April 1999, Pages 253-258.
    [63]W. M. Jadwisienczak, H. J. Lozykowski, Optical Materials, Volume 23, Issues 1-2, July-August 2003, Pages 175-181.
    [64]R. Birkhahn, M. Garter, and A. J. Steckl, Appl. Phys. Lett., Vol.74, No.15,12 April 1999.
    [65]J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett., Vol.75, No.9,30 August 1999.
    [66]J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett., Vol.75, No.9,30 August 1999.
    [67]M. Garter, J. Scofield, R. Birkhahn, and A. J. Steckl, Appl. Phys. Lett., Vol.74, No.2,11 January 1999.
    [68]A. J. Steckl, M. Garter, D. S. Lee, J. Heikenfeld, and R. Birkhahn, Appl. Phys. Lett., Vol.75, No.15,11 October 1999.
    [69]C. H. Seager, A. F. Wright, J. Yu, and W. Gotz, J. Appl. Phys., Vol.92, No.11,1 December 2002.
    [70]T. Kimura and T. Hashizume, J. Appl. Phys.105,014503 (2009).
    [71]C. Poblenz, P. Waltereit, S. Rajan, S. Heikman, U. K. Mishra, and J. S. Speck, J. Vac. Sci. Technol. B 22,1145 (2004).
    [72]R. Zhang and T. F. Kuech, Appl. Phys. Lett.72,1611 (1998).
    [73]J. T. Torvika, C. H. Qiu, R. J. Feuerstein, J. I. Pankove, and F. Namavar, J. Appl. Phys.81 (9),1 May 1997.
    [74]J. T. Torvik, R. J. Feuerstein, J. I. Pankove, C. H. Qiu, and F. Namavar, Appl. Phys. Lett.69 (14),30 September 1996.
    [75]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, Appl. Phys. Lett.78,222 (2001).
    [76]K. Gurumurugan, H. Chen, G. R. Harp, W. M. Jadwisienczak, H. J. Lozykowski, Appl.Phys.Lett.1999 (74) 3008.
    [77]P. Boguslawski, E. L. Briggs, J. Bernholc, Phys.Rev.B,1995 51(23):17255.
    [78]E. R. Glaser, T. A. Kennedy, K. Doverspike, Phys. Rev. B,1995 51(19):13326.
    [79]J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50,8067 (1994).
    [80]B.-C. Chung and M. Gershenzon, J. Appl. Phys.72,651 (1992).
    [81]J. C. Zolper, R. G Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett.68 (1996) 1945.
    [82]S. Nakamura, T. Mukai,and M. Senoh, J. Appl. Phys,71 (1992) 5543.
    [83]T. L. Chu, D. W. Lng, A. G. Noreika, Solid State Electron.,10 (1967) 1023.
    [84]R.F. Rutz, "Ultraviolet electroluminescence in AlN", Appl. Phys. Lett.,1976 (28) (7) 379.
    [85]E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, M. A. Kahn, D. T. Olson, and J. N. Kuznia, D. K. Wickenden, Phys. Rev. B 51,13326(1995).
    [86]T. A. Kennedy, E. R. Glaser, J. A. Freitas, W. E. Carlos, M. A. Khan, and D. K. Wickenden, J. Electron. Mater.24 (1995) 219.
    [87]F. K. Koschnick, K. Michael, J. M. Spaeth, B. Beaumont, and P. Gibart, Phys. Rev. B 54,11042(1996).
    [88]T. Ogino and M. Aoki, Jpn. J. Appl. Phys.19,2395 (1980).
    [89]D. M. Hofmann, D. Kovalev, G. Steude, B. K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprom, A. Amano, and I. Akasaki, Phys. Rev. B 52,16 702 (1995).
    [90]T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski, and T. D. Moustakas, Appl. Phys. Lett.67,2188 (1995).
    [91]E. Calleja, F. J. Sa'nchez, D. Basak, M. A. Sa'nchez-Garci'a, E. Munoz, I. Izpura, F. Calle, J. M. G Tijero, J. L. Sa'nchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gibart, Phys. Rev. B 55 7 4689 (1997).
    [92]J. H. Harris, R. A. Youngman, in Properties of Group Ⅲ Nitrides, Ed. J. H. Edgar, EMIS Data reviews Series, No.11,IEE,London,U.K.,p.22 (1994).
    [93]Y.G.Cao, X. L. Chen, Y. C. Lan, Appl. Phys. A,2001 (71) (3) 351.
    [94]W. M. Jadwisienczak, H. J. Lozykowski, F. Perjeru, Appl. Phys. Lett.,2000 (76) (23) 3376.
    [95]S. Pacesova, L. Jastrobik, Czech. J. Phys. B,1979 (29) (8) 913.
    [96]R. A. Youngman, J. H. Harris, J. Am. Ceram. Soc.,1990 (73) (11) 3238.
    [97]J. H. Harris, R. A. Youngman, R. G Teller, J. Mater. Res.,1990 (5) (8) 1763.
    [98]W. M. Yim, R. J. Paff, J. Appl. Phys.,1974 (45) (3) 1456.
    [99]W. M. Yim, R. J. Paff, J. Appl. Phys.,1974 (45) (3) 1456.
    [100]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空,2004,41(4):74-80.
    [101]K. K. Tominaga, K. Kusaka, M. Chong, T. Hanabusa, Y. Shintani, Jpn. J. Appl. Phys.33 (1994) 5235.
    [102]Q. X. Guo, W. J. Lu, D. Zhang, T. Tanaka, M. Nishio, H. Ogawa, J. Vac. Sci. Technol.A 22(2004)1290.
    [103]K. Kusaka, T. Hanabusa, K. Tominaga, N. Yamauchi, J. Vac. Sci. Technol. A 22 (2004) 1587.
    [104]K. Kusaka, T. Hanabusa, K. Tominaga, N. Yamauchi, J. Vac. Sci. Technol.22 (2004) 1587.
    [105]Q. L. Liu, Y. Bando, F. F. Xu, C. C. Tang, Appl. Phys. Lett.85 (2004) 4890.
    [106]J. S. Pack, K. K. Kim, J. M. Lee, D. J. Kim, M. S. Yi, D. Y. Noh, J. Cryst. Growth 200 (1999) 55.
    [107]T. Maruyama, H. Miyake, J. Vac. Sci. Technol. A 24 (2006) 1096.
    [108]C. W. Zou, M. L. Yin, M. Li, L. P. Guo, D. J. Fu, Appl. Surf. Sci.253 (2007) 9077.
    [109]S. Christiansen, M. Albrecht, H. P. Strunk, S. Veprek, J. Vac. Sci. Technol. B16 (1) (1998) 19.
    [110]E. Lakshmi, B. Mathur, A. B. Bhattacharya, V. P. Bhargava, Thin Solid Films 74 (1980) 77.
    [111]E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Phys. Rev. B 62 (2000) 16826.
    [112]T. Zywietz, J. Neugebauer, M. Scheffler, Appl. Phys. Lett.73 (1998) 487.
    [113]S. H. Lee, K. H. Yoon, D. S. Cheong, J. K. Lee, Thin Solid Films 435 (2003) 193.
    [114]T. Matruyama, H. Miyake, J. Vac. Sci. Technol. A24 (2006) 1096.
    [115]Q. L. Liu, Y. Bando, J. Q. Hu, J. Crystal Growth 306 (2007) 288.
    [116]J. S. Paek, K. K. Kim, J. M. Lee, D. J. Kim, M. S. Yi, D. Y. Noh, H. G. Kim, S. J. Park, J. Crystal Growth 200 (1999) 55.
    [117]C. F. Zhu, W. K. Fong, B. H. Leung, C. Surya, Appl. Phys. A72 (2001) 495.
    [118]I. D. Wolf, H. Norstrom, H. E. Maes, J. Appl. Phys.74 (1993) 4490.
    [119]Y. Daigo, N. Mutsukura, Thin Solid Films 483 (2005) 38.
    [120]W. J. Meng, T. A. Perry, J. Appl. Phys.76 (1994) 7824.
    [121]W. J. Meng, J. A. Sell, T. A. Perry, L. E. Rehn, P. M. Baldo, J. Appl. Phys.75 (1994) 3446.
    [122]C. Wetzel, S. Fischer, J. Kruger, E. E. Haller, R. J. Molnar, T. D. Moustakas, E.N. Mokhov, P. G Baranov, Appl. Phys. Lett.68 (1995) 2556.
    [123]M. Cazzanelli, D. Cole, J. F. Donegan, J. G. Lunney, P. G. Middleton, K. P. O'Donnell, C. Vinegoni, L. Pavesi, Appl. Phys. Lett.73 (1998) 3390.
    [124]E. C. K. Davies, S. R. P. Silva, J. M. Shannon, Diam. Relat. Mater.12 (2003) 1417.
    [125]N. A. Preschilla, S. Major, N. Kumar, I. Samajdar, R.S. Srinivasa, Appl. Phys. Lett.77 (2000) 1861.
    [126]K. Santhakumar, K. G M. Nair, R. Kesavamoorthy, V. Ravichandran, Nucl. Instrum. Methods B 212 (2003) 381.
    [127]E. C. Knox-Davies, J. M. Shannon, S. R. P. Silva, J. Appl. Phys.99 (2006) 073503.
    [128]C. Caliendo and P. Imperatori, J. Appl. Phys.96 (2004) 2610.
    [129]R. H. Wei, E. Langa, C. Rincon and J. H. Arps, Surf. Coat. Technol.201 (2006) 4453.
    [130]B. Abdallah, A. Chala, P. Y. Jouan, M. P. Besland and M. A. Jouadi, Thin Solid Films 515 (2007) 7105.
    [131]B. K. Gan, M. M. M. Bilek, D. R. McKenzie, M. B. Taylor and D. G. McCulloch, J. Appl. Phys.95 (2004) 2130.
    [132]S. L. Yue, C. Y. Shi, J. J. Li and C. Z. Gu, J. Appl. Phys.99 (2006) 094908.
    [133]C. Mirpuri, S. Xu, J. D. Long and K. Ostrikov, J. Appl. Phys.101 (2007) 024312.
    [134]F. Engelmark, G. Fucntes, I. V. Katardjiev, A. Harsta, U. Smith and S. Berg J. Vac. Sci. Technol. A 18 (2000) 1609.
    [135]A. Khanna and D. G. Bhat, J. Vac. Sci. Technol. A 25 (2007) 557.
    [136]C. C. Wang, C. J. Lu, M. H. Shiao and F. S. Shieu, J. Vac. Sci. Technol. A 23 (2005)621.
    [137]R. S. Pessoa, G. Murakami, M. Massi, H. S. Maciel, K. Grigorov, A. S. da Silva Sobrinho, G. Petraconi and J. S. Marcuzzo, Diamond Relat. Mater.16 (2007) 1433.
    [138]X. M. He, N. Baker, B. A. Kehler, K. C. Walter, M. Nastasi and Y. Nakamura, J. Vac. Sci. Technol. A 18 (2000) 30.
    [139]C. C. Wang, C. J. Lu, M. H. Shiao and F. S. Shieu, J. Vac. Sci. Technol. A 23 2005621.
    [140]M. A. Auger, L. V'azquez, O. S'anchez, M. Jergel, R. Cuerno and M. Castro, J. Appl. Phys.97 (2005) 123528.
    [141]T. Easwarakhanthan, M. B. Assouar, P. Pigeat and P. Alnot, J. Appl. Phys.98 (2005)073531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700