NbN、WN_x单层膜以及NbN基多层膜的微观结构和力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡族金属氮化物具有优异的物理性能,如高硬度、高熔点、高电导率及高化学稳定性等,使其广泛应用于微电子器件、微电子机械系统和切削刀具的硬质保护涂层。过渡族金属氮化物薄膜的各种性能强烈依赖于薄膜的择优取向和相结构,因此为了获得理想的薄膜性能,控制薄膜的择优取向和相结构十分必要。尤其随着工业的发展,从对单一性能薄膜到对力、热、光或电复合性能薄膜的需求日益扩大,要求薄膜的微观结构具有较高的可控性和可重复性,同时也对过渡族金属氮化物薄膜的生长机制的研究提出了更高的要求。此外,过渡族金属氮化物构成的纳米多层膜通常表现出超硬效应,其优异的力学性能和广泛的工业应用,引起了人们的普遍关注。然而目前对多层膜中硬度增强机制的理解仍然有限,对新多层膜体系的开发和研究有重大需求。
     本论文立足于前人的研究成果,系统地研究了沉积条件对NbN和WNx单层膜的结构和力学性能的影响,重点探讨了NbN和WNx单层膜中织构行为、相变机制及其与力学性能之间的关系;通过对单层膜的优化,设计并制备了NbN/WNx、NbN/SiNx和NbN/AlN三种体系的纳米多层膜,对比研究了三种多层膜的界面特点和硬度增强效应。本论文的研究对单层膜的结构控制和多层膜中材料的选择、界面结构和硬度增强机制的理解提供了很好的借鉴作用。
A considerable number of industrial applications are based on the use of thin films. To deposit these films, magnetron sputter deposition is a widely accepted and trusted technique. The magnetron sputtered transition metal nitrides thin films have attracted numerous attentions due to their exotic properties such as excellent hardness, the chemical inertness, high melting point, good chemical stability and high conductivity, and these properties are favorable for applications in microelectronic devices, microelectromechanical systems, and hard protective coatings for cutting tools. Despite the success of sputter deposited transition metal nitrides thin films, the understanding of the deposition method itself and the fundamental aspects of the growth of these films are still living and challenging topics in research. The properties depemicrtings based on transition metal nd strongly on the deposition conditions used because the deposition conditions influence the microstructure, the crystallographic orientation and also phase configuration of the transition metal nitrides films. This means that control of the functional properties of the deposited films calls for an understanding of the relationship between the deposition conditions and the resulting orientation, phase and ostructure. Therefore, the effects of deposition parameters on the preferred orientation, phase transition, and mechanical properties for the NbN and WN thin films have been explored.
     In addition, significant improvements in terms of the strength, hardness and toughness of coatings as well as wear, oxidation and corrosion resistance have been extensively reported in nanostructured multilayer coa nitrides as compared to those of monolithic coating tts for understanding the mechanisms of hardness enhancement for multilayer are needed. In is dissertation, NbN/WNx, NbN/SiNx, and NbN/AlN nanostructured multilayer oatings are deposited, and the dependence of mechanical properties on modulation eriodicity (Λ) is explored.
     The main results of this thesis are summarized as following:
     1.δ- andδ′-NbN thin films can be deposited via DC reactive magnetron sputtering in discharging a mixture of N2 and Ar gas. The deposition rate, intrinsic stress, preferred orientation, phase structure, and hardness for the obtained films are influenced significantly by nitrogen flow rate (FN2), substrate bias (Vb), and deposition pressure. A phase transition fromδ- NbN toδ′-NbN occurs when increasing nitrogen flow or substrate bias, or when decreasing deposition pressure, whose driving force is provided by strain energy minimization. The preferred orientation inδ- orδ′-NbN phase is dependent on the competition between the strain and surface energy. The higher intrinsic hardness forδ′-NbN, compared toδ-NbN, is attributed to its larger shear modulus and higher ideal strength, which was calculated using density functional theory. For ?-NbN film, as the deposition time (thinckness) increases, the alternating texture occurs. In addition, theδ-NbN andδ′-NbN films deposited at Vb= -40 and -200 V, respectively, have been subjected to annealing treatment at 900°C for 2 hr, in which no phase transition takes place.
     2. The influence of FN2 and Vb on the composition, phase structure, intrinsic stress and hardness for the obtained WNx films has been studied. It is difficult to obtain the WNx with a high nitrogen concentration duo to its low heat of formation. As proper Vb is applied on the substrate, the implantation of N2+ species and backscattered N species at subsurface sites plays an important role in increasing the nitrogen concentration in WNx films. Keeping Vb at -40 V, as FN2 increases, the N/W atomic ratio gradually increases, accompanying by a phase transition fromβ-W to s of the consti uent materials. However, because the crystalline structure and he interface of multilayered film are very complicated, the investigation of the hardening mechanism is still at a stage for data accumulation. Hence, further investigations on other new systemthcp hexagonal WN through fcc-W2N. On the other hand, the N/W atomic ratio gradually decreases with increasing the absolute value of Vb, resulting in an evolution from centration and a high density of defects, created by ion esponsible for the stress evolution with FN2. For the tween the defects creation and defect ssive stress with increasing the bsolute value of Vb from 80 to 200 V. Furthermore, the maximum hardness of 38.9 GPaardness enhancement can be observed in multilayer films, comofδ-NbN is coherent with (0002) of AlN, i.e., fcc-W2N structure toβ-W(N) through a mixture of fcc-W2N+β-W(N). As FN2 varies, an increase in the nitrogen conbombarding, are rwell-crystallized film, the competition berelaxation determines the evolution of the comprea is obtained for the film deposited at Vb=-120 V, which is attributed to the formation of mixed structure of fcc-W2N+β-W(N).
     3. The investigations on the NbN/WN multilayers indicate that NbN layer grow coherently with WN layer when modulation periodicity is less than 11 nm, accompanied by a remarkable increase in hardess and a decrease in stress. With further increasing modulation periodicity, W phase is observed at WN layer, resulting in a quick decline in hardness. Forδ′-NbN/W(N) multilayers, the W(N) (210)/δ′-NbN(101) strong texture is present, indicating that the lattice plane (210) of W(N) is coherent with (101) ofδ′-NbN. The maximum hardness of 42 GPa is obtained for theδ′-NbN/W(N) multilayers with modulation periodicity ?= 15.5nm.
     4. Forδ-NbN/SiNx multilayers, as SiNx layer thickness is smaller than or equal to 0.4 nm, the SiNx layers epitaxially grow on the crystalline NbN layers. Correspondingly, the multilayer films exhibit a significant hardness enhancement with a maximum hardness of 31.4 GPa. As SiNx layer thickness is larger than or equal to 0.6 nm, SiNx layers become amorphous, accompanied by the presence of (111) preferred orientation and decrease in hardness for the multilayer films. Forδ′-NbN/SiNx multilayer films, both the stress and hardness decrease with increasing SiNx layer thickness. No hpared toδ′-NbN single layer film.
     5. Forδ-NbN/AlN multilayers, the crystal structures ofδ-NbN layer and AlN layer are face-centered cubic and hexagonal, respectively, and the lattice plane (111) . The superhardness effects ofδ-NbN/AlN multilayers exist in a wide range of modulation periods due to the structural barriers (fcc/hexagonal) to dislocation motion betweenδ-NbN and AlN layers.
引文
[1] P. H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Progress in Materials Science, 2006, 51:1032–1114.
    [2] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, 1995, 268: 64-71.
    [3] A.C. Fischer-Cripps, P. Karvankova, S. Veprek, On the measurement of hardness of super-hard coatings, Surface and Coatings Technology, 2006, 200: 5645– 5654.
    [4]郑伟涛等编著,薄膜材料与薄膜技术[M],化学工业出版社,2004。
    [5] M. Ohring, Materials Science of Thin Films: Deposition and Structure [M], Academic Press, San Francisco, 2002.
    [6] D.L. Smith, Thin-Film Deposition: Principles and Practice [M], McGraw Hill, San Francisco, 1995.
    [7] Glow Discharge Processes, edited by B. Chapman (Wiley New York, (1980).
    [8] J. A. Thornton, Preface, Thin Solid Films, 1983, 107: 2.
    [9] J. E. Greene, "Low energy ion/surface interactions during film growth from the vapor phase: Effects on nucleation and growth kinetics, defect structure and elemental incorporation probabilities," in NATO ASI Series, Proceedings of the NATO Advanced Studies Institute on PlasmaSurface Interactions and Processing of Materials, Alicante, Spain, 1988
    [10] J. A. Thornton, The microstructure of sputter‐deposited coatings, J. Vae. Sci. Techno. A., 1986: 4, 3059-3065.
    [11] R. Meissier, A. P. Giri, and R A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Tech. A., 1984: 2,500-503.
    [12] S. M. Rossnagel and J. J. Cuomo, Optical emission in magnetrons: Nonlinear aspects, J. Vac. Sci. Tech. A., 1989: 7, 968-971.
    [13] H. R. Kaufman, Technology of Ion Beam Sources Used in Sputtering, J. Vac. Sci. Tech. 1978, 15: 272-276.
    [14] W. W. Y. Lee and D. Oblas, Argon entrapment in metal films by dc triode sputtering. J. App. Phys., 1975, 46: 1728.
    [15] J. Melugailis, Focused ion beam technology and applications, J. Vac. Sci. Tech. B., 1987, 5: 469-496.
    [16] D.M. Mattox, Particle bombardment effects on thin‐ film deposition: A review, J. Vac. Sci. Tech. A., 1989, 7: 1105-1114.
    [17] L. I. Maisscl and P. M. Schaible, Thin Films Deposited by Bias Sputtering. J. App. Phys. 1965, 36: 237.
    [18] J. A. Thornton and D. W, Hoffman, The influence of discharge current on the intrinsic stress in Mo films deposited using cylindrical and planar magnetron sputtering sources, J. Vac. Sci. Techn. A., 1985, 3: 576-579.
    [19] R. E. Cuthrell. D. M. Mattox, C. R. Peeples, P. L. Dreike, and K. P. Lamppa, Residual stress anisotropy, stress control, and resistivity in post cathode magnetron sputter deposited molybdenum films, J. Vac. Sci. Tech. A., 1988, 6: 2914-2920.
    [20] G. Betz, Alloy sputtering, Surf. Sci. 1980, 92: 283-309.
    [21] J. B. Malherbe, S. Hofmann, and J. M. Sanz., Preferential sputtering of oxides: A comparison of model predictions with experimental data, App. Surf. Sci. 1986, 27: 355-365.
    [22] L. J. Brillson, Interface chemical reaction and diffusion of thin metal films on semiconductors. Thin Solid Films 1982, 89: 461-470.
    [23] J. L. Vossen, J, H. Thomas HI, J.-S. Maa, and J. J. O'Neil, Preparation of surfaces for high quality interface formation, J. Vac. Sci. Tech. A,. 1984, 2: 212-215.
    [24] L.C.Feldman,and J. W. Mayer, Fundamentals of surface and thin film analysis (Elsevier, New York, 1986), Chap. 6.
    [25] R. Banerjee, K. Singh, P. Ayyub, M. Totlani and A. Suri, Influence of the Ar/N2 ratio on the preferred orientation and optical reflectance of reactively sputter deposited titanium nitride thin films, J. Vac. Sci. Technol. A, 2003, 21: 310-317.
    [26] S. Adachi and M. Takahashi, Optical properties of TiN films deposited by direct current reactive sputtering. J. Appl. Phys., 2000, 87: 1264
    [27] G. S. Chen, J. J. Guo, C. K. Lin, G. S. Hsu, L. C. Yang and J. S. Fang, Influence of the Ar/N2 ratio on the preferred orientation and optical reflectance of reactively sputter deposited titanium nitride thin films, J. Vac. Sci. Technol. A., 2002, 20:479-486.
    [28] L. A. Cyster, D. M. Grant, K. G. Parker and T. L. Parker, The effect of surface chemistry and structure of titanium nitride (TiN) films on primary hippocampal cells, Biomol. Eng., 2002, 19: 171-175.
    [29] H. Ljungcrantz, M. Oden, L. Hultman, J. E. Greene and J. E. Sundgren, Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO., J. Appl. Phys., 1996, 80: 6725.
    [30] J. Pelleg, L. Z. Zevin and S. Lungo, Reactive-sputter-deposited TiN films on glass substrates., Thin Solid Films, 1991, 197: 117-128.
    [31] J. H. Je, D. Y. Noh, H. K. Kim and K. S. Liang, Preferred orientation of TiN films studied by a real time synchrotron x-ray scattering., J. Appl. Phys., 1997, 81: 6126.
    [32] U. C. Oh and J. H. Je, Effects of strain energy on the preferred orientation of TiN thin films., J. Appl. Phys., 1993, 74: 1692.
    [33] J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi and X. H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D: Appl. Phys., 1997, 30: 5-12.
    [34] W. Ensinger, M. Kiuchi, and M. Satou, Effect of ion and atom masses on the crystallographic orientation of nitride films prepared by ion-beam-assisted deposition, Surf. Coat. Technol., 1994, 66: 313-317.
    [35] M. Kiuchi, A. Chayahara, Y. Horino, K. Fujii, M. Satou, H. J. Kang, Y. W. Beag, Y. Kimura, and R. Shimizu, Preferentially Oriented Crystal Growth in Dynamic Mixing Process–An Approach by Monte Carlo Simulation–, Jpn. J. Appl. Phys., 1990, 29: 2059-2065.
    [36] H. J. Shin, Y. J. Cho, J. Y. Won, H. J. Kang, C. H. Baeg, J. W. Hong, and M. Y. Wey, Change of preferred orientation in TiN thin films grown by ultrahigh vacuum reactive ion beam assisted deposition, Nucl. Instrum. Methods Phys. Res. B 2002, 190: 807-812.
    [37] B.-H. Hwang, C.-S. Chen, H.-Y. Lu, and T.-C. Hsu, Growth mechanism of reactively sputtered aluminum nitride thin films, Mater. Sci. Eng. A., 2002, 325:380-388.
    [38] H. Takikawa, K. Kimura, R. Miyano, T. Sakakibara, A. Bendavid, P. J. Martin, A. Matsumoto, and K. Tatsumi, Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition. Thin Solid Films, 2001, 386: 276-280.
    [39] G. Abadias, Y. Y. Tse, and Ph. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, Journal of applied physics, 2006, 99: 113519.
    [40] C. V. Thomson, Structure evolution during processing of polycrystalline films, Annu. Rev. Mater. Sci., 2000, 30: 159.
    [41] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A, 2003, 21: S117.
    [42] R. Banerjee, R. Chandra, and P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films, Thin Solid Films, 2002, 405: 64.
    [43] J. E. Greene, J. E. Sundgren, L. Hultman, I. Petrov, and D. B. Bergstrom, Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering, Appl. Phys. Lett., 1995, 67: 2928.
    [44] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, and I. Petrov, High-flux low-energy (~20eV) N ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys., 1995, 78: 5395.
    [45] F. H. Baumann, D. L. Chopp, T. D?′az de la Rubia, G. H. Gilmer, J. E. Greene, H.Huang, S. Kodambaka, P. O’Sullivan, and I. Petrov, Multiscale Modeling of Thin-Film Deposition: Applications to Si Device Processing, MRS Bull., 2001, 26: 182.
    [46] G. H. Gilmer, H. Huang, T. D. de la Rubia, J. D. Torre, and F. Baumann, Lattice Monte Carlo models of thin film deposition, Thin Solid Films, 2000, 365: 189.
    [47] H. Huang, G. H. Gilmer, and T. D. de la Rubia, An atomistic simulator for thin film deposition in three dimensions, J. Appl. Phys., 1998, 84: 3636.
    [48] J. Zhang and J. B. Adams, a novel model of simulation and visualization ofpolycrystalline thin film growth, Modelling Simul. Mater. Sci. Eng., 2002, 10: 381.
    [49] J. B. Adams, Z. Wang, and Y. Li, Modeling Cu thin film growth, Thin Solid Films, 2000, 365: 201.
    [50] Z. Wang, Y. Li, and J. B. Adams, Kinetic lattice Monte Carlo simulation of facet growth rate, Surf. Sci., 2000, 450: 51.
    [51] N. Schell, W. Matz, J. B?ttiger, J. Chevallier, and P. Kringh?j, Development of texture in TiN films by use of in situ synchrotron x-ray scattering. J. Appl. Phys. 2002, 91: 2037.
    [52] W. Ensinger, Low energy ion assist during deposition—an effective tool for controlling thin film microstructure, Nucl. Instrum. Methods Phys. Res. B 1997, 127-128: 796-808.
    [53] R. Banerjee, R. Chandra, and P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films. Thin Solid Films 405, 64-72 2002.
    [54] P. J. Fallon et al., Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy, Phys. Rev. B., 1993, 48: 4777-4782.
    [55] D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon, Phys. Rev. Lett. 1991, 67: 773-776.
    [56] J. Schwan et al., Stress-induced formation of high-density amorphous carbon thin films. J. Appl. Phys. 1997, 82: 6024.
    [57] A. C. Ferrari et al., Is stress necessary to stabilise sp3 bonding in diamond-like carbon? Diam. Relat. Mater., 2002, 11: 994-999.
    [58] Y. Lifshitz, S. R. Kasi, and J.W. Rabalais, Subplantation model for film growth from hyperthermal species: Application to diamond, Phys. Rev. Lett. 1989, 62: 1290-1293.
    [59] D.W. M. Lau, D. G. McCulloch, M. B. Taylor, and J. G. Partridge, Abrupt Stress Induced Transformation in Amorphous Carbon Films with a Highly Conductive Transition Phase, Phys. Rev. Lett. 2008, 100: 176101.
    [60] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjinés and F. Lévy, Structural andmechanical properties of sputtered cubic and hexagonal NbNx thin films, Surf. Coat. Technol. 2004, 180-181: 178-183.
    [61] V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S. Goldsmith, A. Raihel, I. Lapsker and B. Z. Weiss Structure and mechanical properties of vacuum arc-deposited NbN coatings. Thin Solid Films, 1998, 326: 134-142.
    [62] W. Lengauer, M. Bohn, B. Wollein and K. Lisak, Phase reactions in the Nb–N system below 1400°C, Acta Mater. 2000, 48: 2633-2638.
    [63] C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines and F. Levy, Morphological, structural and mechanical properties of NbN thin films deposited by reactive magnetron sputtering, Surf. Coat. Technol. 2006, 200: 6544-6548.
    [64] M. S. Wong, W. D. Sproul, X. Chu and S. A. Barnett, Reactive magnetron sputter deposition of niobium nitride films, J. Vac. Sci. Technol. A, 1993, 11: 1528-1533.
    [65] X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, S. A. Barnett, Deposition and properties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A, 1992, 10: 1604-1609.
    [66] X. Chu, S. A. Barnett, M. S. Wong and W. D. Sproul, Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings, Surf. Coat. Technol. 1993, 57: 13-18.
    [67] M. Fenker, M. Balzer, R. V. Büchi, H. A. Jehn, H. Kappl and J. J. Lee, Deposition of NbN thin films onto high-speed steel using reactive magnetron sputtering for corrosion protective applications. Surf. Coat. Technol. 2003, 163-164: 169-175.
    [68] K. S. Havey, J. S. Zabinski, S. D. Walck, The chemistry, structure, and resulting wear properties of magnetron-sputtered NbN thin films. Thin Solid Films, 1997, 303: 238-245.
    [69] M. Larsson, M. Bromark, P. Hedenqvist and S. Hogmark, Mechanical and tribological properties of multilayered PVD TiN/NbN coatings. Surf. Coat. Technol., 1997, 91: 43-49.
    [70] Z. H. Han, X. P. Hu, J. W. Tian, G. Y. Li and M. Y. Gu, Magnetron sputtered NbN thin films and mechanical properties, Surf. Coat. Technol., 2004, 179: 188-192.
    [71] X. T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalancedmagnetron sputtering. Surf. Coat. Technol., 1999, 113: 75-79.
    [72] S. E. Rodil, J. J. Olaya, S. Muhl, B. Bhushan and G. Wei, The influence of the magnetic field configuration on plasma parameters and microstructure of niobium nitride films. Surf. Coat. Technol., 2007, 201: 6117-6121.
    [73] G. A. Fontalvo, V. Terziyska, C. Mitterer, High-temperature tribological behaviour of sputtered NbNx thin films. Surf. Coat. Technol., 2007, 202: 1017-1022.
    [74] R. Sreenivasan, T. Sugawara, K. C. Saraswat and P. C. Mcintyre, High temperature phase transformation of tantalum nitride films deposited by plasma enhanced atomic layer deposition for gate electrode applications, Appl. Phys. Lett., 2007, 90: 102101
    [75] Krishna Valleti, A Subrahmanyam, Srikant V Joshi, A R Phani, M Passacantando and S Santucci, Studies on phase dependent mechanical properties of dc magnetron sputtered TaN thin films: evaluation of super hardness in orthorhombic Ta4N phase, J. Phys. D: Appl. Phys., 2008, 41: 045409 (6pp).
    [76] R. Abermann and R. Koch, The internal stress in thin silver, copper and gold films. Thin Solid Films, 1985, 129: 71-78.
    [77] A. L. Shull and F. Spaepen, Measurements of stress during vapor deposition of copper and silver thin films and multilayers. J. Appl. Phys. 1996, 80: 6243.
    [78] J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films. J. Appl. Phys. 2001, 89: 4886.
    [79] C. W. Mays, J. S. Vermaak, and D. Kuhlmann-Wilsdorf, On surface stress and surface tension: II. Determination of the surface stress of gold, Surf. Sci., 1968, 12: 134-140.
    [80] F. Spaepen, Substrate curvature resulting from the capillary forces of a liquid drop, J. Mech. Phys. Solids, 1996, 44: 675-681.
    [81] F. Spaepen,Interfaces and stresses in thin films, Acta mater., 2000, 48: 31-42.
    [82] R. W. Hoffman, The mechanical properties of thin condensed films, Phys. Thin Films, 1966, 3: 211– 273.
    [83] F. A. Doljack and R. W. Hoffman, The origins of stress in thin nickel films. Thin Solid Films1972, 12:71-74.
    [84] S. Nijhawan, J. Rankin, B. L. Walden, and B. W. Sheldon, in MRS Symposia Proceedings Vol. 505, edited by R. Cammarata et al. Materials Research Society, Pittsburgh, PA, 1998, p. 415.
    [85] W. D. Nix and B. M. Clemens, Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films, J. Mater. Res., 1999, 14: 3467-3473.
    [86] L. B. Freund and E. Chason, Model for stress generated upon contact of neighboring islands on the surface of a substrate. J. Appl. Phys. 2001 89:4866
    [87] E. Chason, B. W. Sheldon, L. B. Freund, Origin of Compressive Residual Stress in Polycrystalline Thin Films, J. A. Floro, and S. J. Hearne, Phys. Rev. Lett. 2002, 88: 156103.
    [88] B. W. Sheldon, A. Ditkowski, R. Beresford, E. Chason, and J. Rankin, Intrinsic compressive stress in polycrystalline films with negligible grain boundary diffusion. J.Appl. Phys. 2003, 94: 948.
    [89] C. Friesen and C. V. Thompson, Reversible Stress Relaxation during Precoalescence Interruptions of Volmer-Weber Thin Film Growth, Phys. Rev. Lett. 2002, 89: 126103.
    [90] C. Friesen, S. C. Seel, and C. V. Thompson, Reversible stress changes at all stages of Volmer–Weber film growth. J. Appl. Phys. 2004, 95: 1011.
    [91] R Sigmund, in Sputtering by Particle Bombardment, edited by R. Berisch (Springer, Berlin, 1981), Chap. 2.
    [92] H. Windischmann, An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering, J. Appl. Phys., 1987, 62: 1800-1807.
    [93] C. A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 1993, 226: 30-34.
    [94] F. Seitz and J. S. Koehler, Solid State Phys. 1956, 3:305.
    [95] H. Ljungcrantz, L. H&man, and J.-E. Sundgren, Ion induced stress generation in arc-evaporated TiN films, J. Appl. Phys. 1995, 78: 832-837
    [96] W. D. Nix, Mechanical Properties of Thin Films, Metall. Trans., 1989, 20A:2217-2245.
    [97] Townsend, P. H., Barnett, D. M. and Brunner, T. A., Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. J. Appl. Phys., 1987, 62: 4438.
    [98] Ruud, J. A., Witvrouw, A. and Spaepen, F., Bulk and interface stresses in silver-nickel multilayered thin films. J. Appl. Phys., 1993, 74: 2517.
    [99] Schweitz, K. O., Geisler, H., Chevallier, J., Bùttiger, J. and Feidenhans'l, R., Mater. Res. Soc. Symp. Proc., 1998, 505: 559
    [100] Berger, S. and Spaepen, F., The Ag/Cu interface stress, Nanostruct. Mater., 1995, 6: 201-204.
    [101] Shull, A.L. and Spaepen, F., Measurements of stress during vapor deposition of copper and silver thin films and multilayers. J. Appl. Phys., 1996, 80: 6243.
    [102] B. M. Clemens, W. D. Nix, and V. Ramaswamy, Surface-energy-driven intermixing and its effect on the measurement of interface stress. J. Appl. Phys. 2000, 87: 2816.
    [103] S. A. Barnett, A. Madan, Superhard superlattices, Phys. World, p. 45. (January 1998)
    [104] V. V. Brazhkin, A. G. Lyapin, Harder than diamond: dreams and reality, R. J. Hemley, Philos. Mag. A, 2002 82: 231-253.
    [105] J. Haines, J. M. Léger, G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 2001, 31: 1.
    [106] T. Sasaki et al., Persistent, membrane-associated protein kinase C: From model membranes to synaptic long-term potentiation, Chem. Mater. 1993, 5: 695.
    [107] J. Haines, J. M. Léger, Phase transitions in ruthenium dioxide up to 40 GPa: Mechanism for the rutile-to-fluorite phase transformation and a model for the high-pressure behavior of stishovite SiO2, Phys. Rev. B 1993, 48: 13344.
    [108] N. A. Dubrovinskaia et al., Thermal expansion and compressibility of Co6W6C, J. Alloys Compd. 1999, 285: 242-245.
    [109] M. Shinn, L. Hultman, S.A. Barnett, Growth, structure, and microhardness of epitaxial TiN/NbN superlattices, J. Mater. Res. 1992, 7: 901-911.
    [110] S. Veprek, S. Reiprich, Li Shizhi, Superhard nanocrystalline composite materials: the TiN/Si3N4 system, Appl. Phys. Lett., 1995, 66: 2640-2642.
    [111] S. Sambasivan and W.T. Petuskey, Phase chemistry in the Ti-Si-N system: thermochemical review with phase stability diagrams, J. Mater. Res, 1994, 9: 2362-2369.
    [112] A. Niederhofer, P. Nesladek, H.D. Mannling, K. Moto, S. Veprek, M. Jilek, Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-xAlySix)N superhard nanocomposite coatings reaching the hardness of diamond, Surf. Coat. Technol. 1999, 120-121: 173-178.
    [113] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves, Characterisation of Ti1-xSixNy nanocomposite films, Surf. Coat. Technol. 2000, 133-134: 307-313.
    [114] F. Vaz, L. Rebonta, S. Ramos, M.F. Dasilva, J.C. Soares, Physical, structural and mechanical characterization of Ti1-xSixNy films, Surf. Coat. Technol. 1998, 108-109: 236-240.
    [115] T. P. Mollart, J. Haupt, R. Gilmore, and W. Gissler, Tribological behaviour of homogeneous Ti---B---N, Ti---B---N---C and TiN/h---BN/TiB2 multilayer coatings. Surf. Coat. Technol. 1996, 86-87: 231-236.
    [116] J. Musil, P. Zeman, H. Hruby′, P. Mayrhofer, ZrN/Cu nanocom-posite film—novel superhard material, Proc. ICMCTF’99, April 12–18, San Diego, CA (1999), paper no. B1-2-9.
    [117] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 1987, 62: 481.
    [118] P. B. Mirakami, L. Hultman, S. A. Barnett, Enhanced hardness in lattice matched single crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys. Lett. 1990, 57: 2654.
    [119] X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, S.A. Barnett, Deposition and properties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A, 1992, 10: 1604-1609.
    [120] X. Chu, S. A. Barnett, M. S. Wong, W. D. Sproul, Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings.Surf. Coat. Tech. 1993, 57: 13-18.
    [121] D. Li, X. W. Lin, S. C. Chen, V. P. Dravid, Y. W. Chung, M. S. Wong, W. D. Sproul, Structure and hardness studies of CNx/TiN nanocomposite coatings, Appl. Phys. Lett. 1996, 68: 1211.
    [122] H. Hruby′, I. Leipner, H. Pola′kova′, F. Regent, Z. Gmu¨nd, Germany (1998) 6–11.
    [123] B. G. Wendler, M. Molinaro, Proc. 10th Int. Summer School on May 10–14, Mielno, Poland (1998) 423–436.
    [124] K. K. Shih, D. B. Dove, Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness, Appl. Phys. Lett. 1992, 61: 654.
    [125] X. Chu, M. S. Wong, W. D. Sproul, A. S. Barnett, Mechanical properties and microstructures of polycrystalline metal/ceramic superlattices, TiN/Ni and TiN/Ni0.9Cr0.1, paper presented at ICMCTF-20, San Diego, CA, 1993.
    [126] Lun Wei, Fanghua Mei, Nan Shao, Ming Kong, Geyang Li, and Jianguo Li, Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Appl. Phys. Lett. 2005, 86: 021919.
    [127] Lun Wei, Ming Kong, Yunshan Dong, and Geyang Li,Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers, J. Appl. Phys. 2005, 98: 074302.
    [128] J. S. Koehler, Attempt to design a strong solid. Phys. Rev. B 1970, 2:547-551.
    [129]S. L. Lehoczky, Strength enhancement in thin-layered Al-Cu laminates. J. Appl. Phys. 1978, 49: 1978.
    [130]S. L. Lehoczky, Retardation of Dislocation Generation and Motion in Thin-Layered Metal Laminates, Phys. Rev. Lett. 1978, 41: 1814-1818.
    [131]R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. ~Wiley, New York, 1989.
    [132]S. A. Barnett, in Physics of Thin Films, Vol. 17 Mechanics and Dielectric Properties, edited by M. H. Francombe and J. L. Vossen ~Academic, Boston, 1993, p.2.
    [133] P. M. Anderson and C. Li, Hall-Petch relations for multilayered materials, Nanostruct. Mater. 1995, 5: 349-362.
    [134] X. Chu and S. A. Barnett, Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 1995, 77: 4403.
    [135] A. Misra , J. P. Hirth, R. G. Hoagland Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites, Acta Materialia 2005, 53: 4817–4824.
    [136] J. W. Cahn, Hardening by spinodal decomposition, Acta Metall. 1963, 11: 1275-1282.
    [137] M. Kato, T. Mori, and L. H. Schwartz, Hardening by spinodal modulated structure, Acta Metall. 1980, 28: 285-290.
    [138] Hagg G. Z Phys Chem 1931;12:33 [in German].
    [139] Jeitschko W, Pottgen R, Hoffmann R-D. Structural chemistry of hard materials. In: Riedel R, editor. Handbook of ceramic hard materials. Weinheim: Wiley-VCH; 2000. p. 3.
    [140] Hull D. Introduction to dislocations. 2nd ed. Oxford: Pergamon Press; 1975.
    [141] G.Ashermann, E.Friedrich et al, Z.Phys., 1941, 42: 349.
    [142] Gin-ichiro Oya and Yutaka Onodera, Transition temperatures and crystal structures of single-crystal and polycrystalline NbNx films, Journal of Applied Physics, 1974, 45: 1389-1397.
    [143] G. Horn and E. Saur, Z.Phys. 1968, 210: 70.
    [144] K. S. Keskar, T. Yamashita, Y. Onodera, Superconducting Transition Temperatures of R. F. Sputtered NbN Films, Jap. J. Appl. Phys., 1971, 10: 370-374.
    [145] E. C. Ethridge, S. C. Erwin, and W. E. Pickett, Nb4N3: Polymorphism in crystalline niobium nitrides, PHYSICAL REVIEW B, 1996, 53: 12563.
    [146] Z. Wang, H. Terai, A. Kawakami and Y. Uzawa, Interface and tunneling barrier heights of NbN/AlN/NbN tunnel junctions, Appl. Phys. Lett , 1999, 75: 701 (3 pages).
    [147] H. Yamamori, M. Ishizaki, A. Shoji, P. D. Dresselhaus and S. P. Benz, 10double-junction stacks, Appl. Phys. Lett. ,2006, 88: 042503.
    [148] B. Delaet, J. C. Villegier, W. Escoffier, J. L. Thomassin, P. Feautrier, I. Wang, P. Renaud-Goud and J. P. Poizat, Fabrication and characterization of ultra-thin NbN hot electron bolometer for near infrared single photon detection, Nucl. Instrum. Methods Phys. Res. Sect. A 2004, 520: 541-543.
    [149] W. S?ysz, M. W?grzecki, J. Bar, P. Grabiec, M. Górska, V. Zwiller, C. Latta, P. Bohi, I. Milostnaya, O. Minaeva, A. Antipov, O. Okunev, A. Korneev, K. Smirnov, A. Verevkin and Sobolewski Roman, Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies, Appl. Phys. Lett., 2006, 88: 261113
    [150] X. J. Chen, V. V. Struzhkin, Z. G. Wu, M. Somayazulu, J. Qian, S. Kung, A. N. Christensen, Y. S. Zhao, R. E. Cohen, H. K. Mao, and R. J. Hemley, Hard superconducting nitrides, PNAS, 2005, 102: 3198-3201.
    [151] L. Hultman, J. E. Sundgren, in: R. F. Bunshah (Ed.), Handbook of Hard Coatings, Noyes Publications, Park Ridge, NJ, 2001, p. 111.
    [152] I. L. Singer, R. N. Bolster, S. A. Wolf, et al. A brasion resistance, microhardness and microstructures of single-phase niobium nitride films. Thin Solid Films, 1983, 107: 207- 215.
    [153] R. A. Andrievsky, I. A. Anisimova, V. P. Anisimov, Structure and microhardness of TiN compositional and alloyed films, Thin Solid Films 1991, 205: 171-175.
    [154] P. J. Martin, A. Bendavid, The filtered arc process and materials deposition. Surf. Coat. Technol. 2001, 142–144: 7-10.
    [155] A. Bendavid, P. J. Martin, T. J. Kinder, E. W. Preston, The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition. Surf. Coat. Technol.2003, 163–164: 347-352.
    [156] K. L. Rutherford, P. W. Hatto, C. Davies, I. M. Hutchings, Abrasive wear resistance of TiN/NbN multi-layers: measurement and neural network modelling. Surf. Coat.Technol. 1996, 86–87: 472-479.
    [157] T. I. Selinder, M. E. Sj?strand, M. Nordin, M. Larsson, A. ?stlund, S. Hogmark, Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbidetools in stainless steel machining. Surf. Coat. Technol. 1998, 105: 51-55.
    [158] J. R. Ross, J. P. Celis, E. Vancoille, H. Veltrop, S. Boelens, F. Jungblut, J. Ebberink, H. Homberg, Interrelationship between processing, coatingproperties and functional properties of steered arc physically vapour deposited (Ti,AI)N and (Ti,Nb)N coatings. Thin Solid Films 1990, 193–194: 547-556.
    [159] X. T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 1999, 113: 75-79.
    [160] D. C. Cameron, et al. Structural variation in CrN/NbN superlattice. Surf. Coat. Technol, 2001, 142- 144: 567- 572.
    [161] J. J. Jeong, S. K. Hwang, C. M. Lee,Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings, Materials Chemistry and Physics 2002, 77: 27–33.
    [1] Z. Wang, H. Terai, A. Kawakami and Y. Uzawa, Interface and tunneling barrierheights of NbN/AlN/NbN tunnel junctions, Appl. Phys. Lett. 1999, 75:701-703.
    [2] H. Yamamori, M. Ishizaki, A. Shoji, P. D. Dresselhaus and S. P. Benz, 10CVprogrammable Josephson voltage standard circuits using NbN/TiNx/NbN/TiNx/NbNdouble-junction stacks, Appl. Phys. Lett. 2006, 88:042503.
    [3] G. Goltsman, A. Korneev, V. Izbenko, K. Smirnov, P. Kouminov, B. Voronov, N.Kaurova, A. Verevkin, J. Zhang, A. Pearlman, W. Slysz and R. Sobolewski,Nano-structured superconducting single-photon detectors, Nucl. Instrum. MethodsPhys. Res. Sect. A 2004, 520:527-529.
    [4] B. Delaet, J. C. Villegier, W. Escoffier, J. L. Thomassin, P. Feautrier, I. Wang,Renaud-Goud P and Poizat J P, Fabrication and characterization of ultra-thin NbN hotelectron bolometer for near infrared single photon detection, Nucl. Instrum. MethodsPhys. Res. Sect. A.2004, 520: 541-543.
    [5] W. Slysz, M. Wegrzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P.Bohi, I. Milostnaya, O. Minaeva, A. Antipov, O. Okunev, A. Korneev, K. Smirnov, B.Voronov, N. Kaurova, G Gol'tsman, A. Pearlman, A. Cross, I. Komissarov, A.Verevkin and R. Sobolewski, Fiber-coupled single-photon detectors based on NbNsuperconducting nano structures for practical quantum cryptography andphoton-correlation studies, Appl. Phys. Lett. 2006, 88:261113.
    [6] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines and F. Levy, Structural andmechanical properties of sputtered cubic and hexagonal NbNx thin films. Surf. Coat.Technol. 2004, 180-181: 178-183.
    [7] Y Gotoh, M. Nagao, T. Ura, H. Tsuji and J. Ishikawa, Ion beam assisteddeposition of niobium nitride thin films for vacuum microelectronics devices, Nucl.Instr. and Meth. in Phys. Res. B 1999, 148:925-929.
    [8] P. Alen, M. Ritala, K. Arstila, J. Keinonen and M. Leskela, The growth anddiffusion barrier properties of atomic layer deposited NbNx thin films, Thin SolidFilms. 2005. 491:235-241.
    [9] V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S.Goldsmith, A. Raihel, I. Lapsker and B. Z. Weiss, Structure and mechanical propertiesof vacuum arc-deposited NbN coatings, Thin Solid Films, 1998, 326:134-142.
    [10] W. Lengauer, M. Bohn, B. Wollein and K. Lisak, Phase reactions in the Nb-Nsystem below 1400°C, 2000 Acta Mater. 48:2633-2638.
    [11] K. S. Keskar, T. Yamashita, and Y. Onodera, Superconducting TransitionTemperatures of R. F. Sputtered NbN Films, 1971 Jap. J. Appl. Phys. 10:370-374.
    [12] C. S. Sandu, M. Benkahoul, M. Parlinska-Wojtan, R. Sanjines and F. Levy,Morphological, structural and mechanical properties of NbN thin films deposited byreactive magnetron sputtering, Surf. Coat. Technol. 2006, 200:6544-6548.
    [13] M. S. Wong, W. D. Sproul, X. Chu and S. A. Barnett, Reactive magnetron sputterdeposition of niobium nitride films, J. Vac. Sci. Technol. A 1993, 11:1528.
    [14] X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, S. A. Barnett, Deposition andproperties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A1992, 10:1604.
    [15] X. Chu, S. A. Barnett, M. S. Wong and W. D. Sproul, Reactive unbalancedmagnetron sputter deposition of polycry stall ine TiN/NbN superlattice coatings, Surf.Coat. Technol. 1993, 57:13-18.
    [16] M. Fenker, M. Balzer, R. V Buchi, H. A. Jehn, H. Kappl and J. J. Lee, Depositionof NbN thin films onto high-speed steel using reactive magnetron sputtering forcorrosion protective applications, Surf. Coat. Technol. 2003, 163-164: 169-175.
    [17] K. S. Havey, J. S. Zabinski, S. D. Walck, The chemistry, structure, and resultingwear properties of magnetron-sputtered NbN thin films, Thin Solid Films, 1997,303:238-245.
    [18] M. Larsson, M. Bromark, P. Hedenqvist and S. Hogmark, Mechanical andtribological properties of multilayered PVD TiN/NbN coatings, Surf. Coat. Technol.1997,91:43-49.
    [19] Z. H. Han, X. P. Hu, J. W. Tian, G. Y Li and M. Y Gu, Magnetron sputtered NbNthin films and mechanical properties, Surf. Coat. Technol. 2004, 179: 188-192.
    [20] X. T. Zeng, TiN/NbN superlattice hard coatings deposited by unbalancedmagnetron sputtering, Surf. Coat. Technol. 1999, 113: 75-79.
    [21] S. E. Rodil, J. J. Olaya, S. Muhl, B. Bhushan and G. Wei, The influence of themagnetic field configuration on plasma parameters and micro structure of niobiumnitride films, Surf. Coat. Technol. 2007, 201:6117-6121.
    [22] G. A. Fontalvo, V. Terziyska and C. Mitterer, High-temperature tribologicalbehaviour of sputtered NbNx thin films, Surf. Coat. Technol. 2007, 202:1017-1022.
    [23] V. N. Zhitomirsky, Structure and properties of cathodic vacuum arc depositedNbN and NbN-based multi-component and multi-layer coatings, Surf. Coat. Technol.2007,201:6122-6130.
    [24] N. Cansever, M. Danis.man and K. Kazmanl, The effect of nitrogen pressure oncathodic arc deposited NbN thin films, Surf. Coat. Technol. 2008, 202: 5919-5923.
    [25] V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S.Goldsmith and B. Z. Weiss, Vacuum arc deposition of TiN, NbN and TiN/NbNmulti-layer coatings, Surf. Coat. Technol. 1999, 120-121:219-225.
    [26] A. Bendavid, P. J. Martin, T. J. Kinder, E. W. Preston, The deposition of NbN andNbC thin films by filtered vacuum cathodic arc deposition, Surf. Coat. Technol. 2003,163-164:347-352.
    [27] P. J. Martin and A. Bendavid, Review of the filtered vacuum arc process andmaterials deposition, Thin Solid Films, 2001, 394:1-14.
    [28] M. L. Klingenberg and J. D. Demaree, The effect of transport ratio and ionenergy on the mechanical properties of IBAD niobium nitride coatings, Surf. Coat.Technol. 2001, 146-147:243-249.
    [29] K. Baba, R. Hatada, K. Udoh and K. Yasuda, Structure and properties of NbNand TaN films prepared by ion beam assisted deposition, Nucl. Instrum. MethodsPhys. Res. B.1997, 127: 841-845.
    [30] G Cappuccio, U. Gambardella, A. Morone, S. Orlando and G P. Parisi, Pulsedlaser ablation of NbN/MgO/NbN multilayers, Appl. Surf. Sci. 1997, 109:399-402.
    [31] T. C. Li, B. J. Lwo, N. W. Pu, S. P. Yu and C. H. Kao, The effects of nitrogenpartial pressure on the properties of the TaNx films deposited by reactive magnetronsputtering, Surf. Coat. Technol. 2006, 201:1031-1036.
    [32] T. P. Driisedau, K. Koppenhagen, J. Biasing, T. M. John, Ein Patient mitGolfkriegssyndrom? Zur Diskussion eines unklaren Krankheitsbildes Zur Diskussioneines unklaren Krankheitsbildes, Appl. Phys.A: Mater. Sci. Process. 2001,72:541-545.
    [33] T. Serikawa and A. Okamoto, Effect of N2—-Ar mixing on the reactive sputteringcharacteristics of silicon, Thin Solid Films, 1982, 101:1-6.
    [34] J. A. Thornton and A. S. Penfold, Thin Film Processes, edited by J. Vossen and W.Kern (Academic, New York, 1978).
    [35] H. Windischmann, An intrinsic stress scaling law for polycrystalline thin filmsprepared by ion beam sputtering, J. Appl. Phys. 1987, 62:1800-1806.
    [36] C. A. Davis, A simple model for the formation of compressive stress in thin filmsby ion bombardment, Thin Solid Films 1993, 226:30-34.
    [37] T. Q. Li, S. Noda, H. Komiyama, T. Yamamoto, Y Ikuhara, Initial growth stageof nanoscaled TiN films: Formation of continuous amorphous layers andthickness-dependent crystal nucleation, J. Vac. Sci. Technol. A. 2003, 21:1717-1723.
    [38] I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, Mass and energy resolveddetection of ions and neutral sputtered species incident at the substrate during reactivemagnetron sputtering of Ti in mixed Ar+N2 mixtures, J. Vac. Sci. Technol. A, 1994,12:2846-2854.
    [39] K. Sarakinos, J. Alami, P. M. Karimi, D. Severin and M. Wuttig, The role ofbackscattered energetic atoms in film growth in reactive magnetron sputtering ofchromium nitride, J. Phys. D: Appl. Phys. 2007, 40:778-785.
    [40] K. Sarakinos , J. Alami , D. Severin, P.M. Karimi, M. Wuttig, The effect of thebackscattered energetic atoms on the stress generation and the surface morphology ofreactively sputtered vanadium nitride films. Thin Solid Films 2008, 516:4568^573.
    [41] C. V Thompson, STRUCTURE EVOLUTION DURING PROCESSING OFPOLYCRYSTALLINE FILMS, Annu. Rev. Mater. Sci. 2000, 30:159-190.
    [42] W. Liu, J. C. Li, W. T Zheng, Q. Jiang, NiAl(110>Cr(110) interface: A densityfunctional theory study, Phys. Rev. B.2006, 73:205421-205426.
    [43] D. R. McKenzie, M. M. M. Bilek, Electron diffraction from polycrystallinematerials showing stress induced preferred orientation, J. Appl. Phys. 1999,86:230-236.
    [44] D. R. McKenzie, M. M. M. Bilek, Thermo dynamic theory for preferredorientation in materials prepared by energetic condensation, Thin SolidFilms.2001,382:280-287.
    [45] I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, Micro structural evolution duringfilm growth, J. Vac. Sci. Technol. A.2003, 21:S117-S128.
    [46] X. J. Chen, V. V. Struzhkin, Z. G. Wu, M. Somayazulu, J. Qian, S. Kung, A. N.Christensen, Y. S. Zhao, R. E. Cohen, H. K. Mao, R. J. Hemley, Hard superconductingnitrides, PNAS.2005, 102:3198-3201.
    [47] D. W. M. Lau, D. G McCulloch, M. B. Taylor, J. G Partridge, D. R. McKenzie,N. A. Marks, E. H. T. Teo, Tay B. K., Abrupt Stress Induced Transformation inAmorphous Carbon Films with a Highly Conductive Transition Phase, Phys. Rev. Lett.2008, 100:176101-176104.
    [48] D. R. McKenzie, D. Muller, B. A. Pailthorpe,Compressive-stress-inducedformation of thin-film tetrahedral amorphous carbon,Phys. Rev. Lett. 1991,67:773-776.
    [49] J. Schwan, S. Ulrich, T. Theel, H. Roth, H. Ehrhardt, P. Becker, S. R. P. Silva,Stress-induced formation of high-density amorphous carbon thin films, J. Appl. Phys.1997, 82:6024-6030.
    [50] D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, J. J. Moore, Synthesis andcharacterization of Ti-Si-C-N films, Metall. Mater. Trans. A. 1999,30:2439-2447.
    [51] For 5-NbN tensile strains have been applied to [100], [110] and [111] directions,while the shear strains have been applied to (110)[110] (001)[110] and (111)[112]slip systems. For S'-NbN, the tensile strains have been applied to [0001],[1210]and [1010]directions, while the shear strains have been applied to (0001)[1010] ,(0001)[1210] and (1010)[1210] slip systems.
    [52] C. Wang, M. Wen, Y. D. Su, L. Xu, C. Q. Qu, Y J. Zhang, L. Qiao, S. S. Yu, W.T. Zheng, Q. Jiang, First-principles calculations on the mechanical properties ofniobium nitrides, Solid State Communications 2009,149: 725-728.
    [53] R.F. Zhang, S.H. Sheng, S. Veprek, First principles studies of ideal strength andbonding nature of A1N polymorphs in comparison to TiN, Appl. Phys. Lett. 2007,91:031906.
    [54] S.Q. Hao, B. Delley, S. Veprek, C. Stampf, Superhard nitride-basednanocomposites: role of interfaces and effect of impurities, Phys. Rev. Lett. 2006, 97:086102-086105.
    [55] H. P. He, F. Zhuge, Z. Z. Ye, L. P. Zhu, F. Z. Wang, B. H. Zhao, J. Y. Huang,Strain and its effect on optical properties of Al-N codoped ZnO filmsJ. Appl. Phys.2006, 99: 023503-023507.
    [56] H. Ljungcrantz, L. Hultman, J.-E. Sundgren, L. Karlsson, Ion induced stressgeneration in arc - evaporated TiN films, J. Appl. Phys. 1995, 78: 832-837.
    [57] P. A. Flinn, C. Chiang, X - ray diffraction determination of the effect of variouspassivations on stress in metal films and patterned lines, J. Appl. Phys. 1990, 67:2927-2931.
    [58] R. P. Vinci, E. M. Zielinski, J. C. Bravman, Thermal strain and stress in copperthin films, Thin Solid Films. 1995, 262: 142-153.
    [59] W. D. Nix, Metall. Trans. A 20, 2217 (1989).
    [60] Feng Huang,Mark L. Weaver,Effective biaxial modulus of ideally(hkl)-fiber-textured hexagonal, tetragonal, and orthorhombic films, J. Appl. Phys.2006, 100:093523-093530.
    [61] Jae-Song Kim, Yang-Mo Koo, and Namsoo Shin, The effect of residual strain on(001) texture evolution in FePt thin film during postannealing, J. Appl. Phys. 2006,100 :093909-093914.
    [62] J. Haines, J.M. Leger, G. Bocquillon, SYNTHESIS AND DESIGN OFSUPERHARD MATERIALS, Annu. Rev. Mater. Res. 2001, 31 :l-23.
    [63] Zhi-jian Wu, Er-jun Zhao,Hong-ping Xiang,Xian-feng Hao,Xiao-juan Liu,JianMeng,Crystal structures and elastic properties of superhard IrN2 and IrN3 from firstprinciples, Phys. Rev. B.2007,76 :054115-054129.
    [64] A. Bubenzer, B. Dischler,G. Brandt,P. J. Koidl,rf - plasma deposited amorphoushydrogenated hard carbon thin films: Preparation, properties, and applications,J.Appl.Phys. 1983,54:4590-4595.
    [65] Paul H. Mayrhofer, Christian Mitterer, Lars Hultman,Helmut Clemens,Microstructural design of hard coatings, Progress in Materials Science. 2006,51:1032-1114.
    [1] L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, 1971.
    [2] B. L. Park, J. Electron. Mater. 26 (1997) L1.
    [3] M. Takeyama, A. Noya, Preparation of WNx Films and Their Diffusion BarrierProperties in Cu/Si Contact Systems, Japan. J. Appl. Phys. 1997, 36: 2261-2266.
    [4] M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro, S. Yamaguchi, T. Nakano,T. Ohta, WNx diffusion barriers between Si and Cu, Thin Solid Films 1996, 286:170-175.
    [5] F. C. T. So, E. Kolawa, X. A. Zhao, M. A. Nicolet, WxN1-x alloys as diffusionbarriers between Al and Si, J. Appl. Phys. 1988, 64: 2787-2789.
    [6] M. H. Tsai, H. T. Chiu, S. H.Chuang, Metalorganic chemical vapor deposition oftungsten nitride for advanced metallization, Appl. Phys. Lett. 1996, 68: 1412-1414.
    [7] K. M. Chang, T. H. Yeh, I. C. Deng, Nitridation of fine grain chemical vapordeposited tungsten film as diffusion barrier for aluminum metallization, J. Appl. Phys.1997,81:3670-3676.
    [8] S. Bystrova, A. A. I. Aarnink, J. Holleman, R. A. M. Wolters, Atomic LayerDeposition of W1.5N Barrier Films for Cu Metallization J. Electrochem. Soc. 2005,152: G522.
    [9] C. W. Lee, Y T. Kim, High temperature thermal stability of plasma-depositedtungsten nitride Schottky contacts to GaAs Solid-State Electron. 1995, 38: 679-682.
    [10] A. E. Gisserger, R. A. Sadler, F. A. Leyenaar, and M. L. Balzan, Investigation ofreactively sputtered tungsten nitride as high temperature stable Schottky contacts toGaAs, J. Vac. Sci. Technol. A 1986, 4: 3091-3094.
    [11] M. Moriwaki, T. Yamada, Y Harada, S. Fujii, Improved Metal Gate Process by Simultaneous Gate-Oxide Nitridation during W/WNx Gate Formation, Jpn. J. Appl. Phys. 2000, 39:2177-2180.
    [12] B. Claflin, M. Binger, G Lucovsky, Interface studies of tungsten nitride and titanium nitride composite metal gate electrodes with thin dielectric layers, J. Vac. Sci. Technol. A 1998. 16: 1757-1759.
    [13] J. W. Lee, C. H. Han, J. S. Park, J.W. Park, Electrical Characteristics and ThermalStability of W, WNx, and TiN Barriers in Metal/Ta205/Si Gate Devices, J.Electrochem. Soc. 2001, 148: G95.
    [14] P. C. Jiang, Y. S. Lai, J. S. Chen, Dependence of crystal structure and workfunction of WNx films on the nitrogen content, Appl. Phys. Lett. 2006, 89: 122107.
    [15] T. Yamamoto, M. Kawate, H. Hasegawa, T. Suzuki, Effects of nitrogenconcentration on micro structures of WNX films synthesized by cathodic arc methodSurf. Coat. Technol. 2005, 193: 372-374.
    [16] T. Polcar, N. M. G. Parreira, A. Cavaleiro, Tribological characterization oftungsten nitride coatings deposited by reactive magnetron sputtering Wear 2007, 262:655-665.
    [17] T. Polcar, N. M. G Parreira, A. Cavaleiro, Structural and tribologicalcharacterization of tungsten nitride coatings at elevated temperature Wear 2008, 265:319-326.
    [18] L. Boukhris, J. M. Poitevin, Electrical resistivity, structure and composition ofd.c. sputtered WNx films Thin Solid Films 1997, 310: 222-227.
    [19] P. Hones, N. Martin, M. Regula, F. Levy, Structural and mechanical properties ofchromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D:Appl. Phys. 2003, 36: 1023-1029.
    [20] C. C. Baker, S. I. Shaha, Reactive sputter deposition of tungsten nitride thin filmsJ. Vac. Sci. Technol. A2002, 20: 1699-1703.
    [21] P. C. Jiang, J. S. Chen, Y K. Lin, Structural and electrical characteristics of W-Nthin films prepared by reactive rf sputtering J. Vac. Sci. Technol. A 2003, 21: 616-622.
    [22] Y G Shen , Y W. Mai, Field emission enhancement effects of nano-diamondfilms, Surf. Coat. Technol. 2000, 127: 239-246.
    [23] Z. L. Wang, Z. H. Liu, Z. P. Yang, S. Shingubara, Characterization of sputteredtungsten nitride film and its application to Cu electroless plating Micro electron. J.2008, 85: 395-400.
    [24] S. H. Mohamed, Thermal stability of tungsten nitride films deposited by reactivemagnetron sputtering, Surf. Coat. Technol.2008, 202: 2169-2175.
    [25] S. Guruvenket, G. M. Rao, Bias induced structural changes in tungsten nitridefilms deposited by unbalanced magnetron sputtering, Mater. Sci. Eng., B 2004, 106:172-176.
    [26] Y. G Shen, Y. W. Mai, D. R. McKenzie, Q. C. Zhang, W. D. McFall, W. E.McBride, Composition, residual stress, and structural properties of thin tungstennitride films deposited by reactive magnetron sputtering, J. Appl. Phys. 2000, 88:1380-1388.
    [27] B. S. Suh, H. K. Cho, Y J. Lee, W. J. Lee, C. O. Park, Crystallization ofamorphous WNx films, J. Appl. Phys. 2001, 89: 4128-4133.
    [28] T. Migita, R. Kamei, T. Tanaka, K. Kawabata, Effect of dc bias on thecompositional ratio of WNX thin films prepared by rf-dc coupled magnetronsputtering, Appl. Surf. Sci. 2001, 169: 362-365.
    [29] M. Bereznai, Z. Toth, A. P. Caricato, M. Fernandez, A. Luches, G Majni, P.Mengucci, P. M. Nagy, A. Juhasz, L. Nanai, Reactive pulsed laser deposition of thinmolybdenum- and tungsten-nitride films, Thin Solid Films 2005, 473: 16-23.
    [30] M. Eizenberg, F.Meyer, A. Benhocine,D.Bouchier,Reactive-ion-beam-sputtered WNx films on silicon: Growth mode and electricalproperties, J. Appl. Phys. 1994, 75: 3900-3907.
    [31] C. W. Lee, Y T. Kim, S. K. Min, Characteristics of plasma enhanced chemicalvapor deposited tungsten nitride thin films, Appl. Phys. Lett. 1993, 62 3312-3314.
    [32] C. Meunier, C. Monteil, C. Savall, F. Palmino, J. Weber, R. Berjoan, J. Durand,RBS-ERDA, XPS and XRD characterizations of PECVD tungsten nitride films, Appl.Surf. Sci. 1998, 125:313-320.
    [33] K. K. Lai, A. W. Mak, T. P. H. F. Wendling, P. Jian, B. Hathcock,Characterization of a PECVD WxN process using N2, H2, and WF6, Thin Solid Films1998, 332: 329-334.
    [34] J. S. Jeng, S. H. Wang, J. S. Chen, Effects of substrate bias and nitrogen flowratio on the resistivity and crystal structure of reactively sputtered ZrNx films atelevated temperature, J. Vac. Sci. Technol. A 2007, 25: 651-658.
    [35] S. Motojima, N. Ueshima, Vapor phase preparation and properties ofNbN/C(carbon coils)/NbN-NbN micro-coils/micro-tubes, J. Alloys Compd. 2005,393:307-310.
    [36] D. J. Li, M. X. Wang, J. J. Zhang, J. Yang, Working pressure induced structuraland mechanical properties of nanoscale ZrN/W2N multilayered coatings, J. Vac. Sci.Technol. A 2006, 24: 966-969.
    [37] B. K. Gan, M. M. M. Bilek, D. R. McKenzie, M. B. Taylor, D. GMcCulloch,Effect of intrinsic stress on preferred orientation in A1N thin films, J. Appl. Phys. 2004,95:2130-2134.
    [38] A. Lahav, K. A. Grim, I. A. Blech, Measurement of thermal expansioncoefficients of W, WSi, WN, and WSiN thin film metallizations, J. Appl. Phys. 1990,67: 734-738.
    [39] T. P. Drusedau, K. Koppenhagen, J. Biasing, T. M. John, Texturing effects inmolybdenum and aluminum nitride films correlated to energetic bombardment duringsputter deposition, Appl. Phys.A: Mater. Sci. Process. 2001, 72: 541-550.
    [40] T. C. Li, B. J. Lwo, N. W. Pu, S. P. Yu, C. H. Kao, The effects of nitrogen partialpressure on the properties of the TaNx films deposited by reactive magnetronsputtering, Surf. Coat. Technol. 201 (2006) 1031-1036.
    [41] M. Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y D. Su, W. X. Yu, W. T.Zheng, Effects of nitrogen flow rate on the preferred orientation and phase transitionfor niobium nitride films grown by direct current reactive magnetron sputtering, J.Phys. D: Appl. Phys. 2009 42: 035304 (8pp).
    [42] P. K. Huang, J. W. Yeh, Effects of substrate bias on structure and mechanicalproperties of (AlCrNbSiTiV)N coatings, J. Phys. D: Appl. Phys. 2009 42: 115401(7pp).
    [43] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G E. Mulinberg,Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, USA,1979.
    [44] T. Nakajima, K. Watanabe, N. Watanabe, Preparation of Tungsten Nitride Filmby CVD Method Using WF6, J. Electrochem. Soc. 1987, 134: 3175.
    [45] O. H. Gokcea, S. Amina, N. M. Ravindra, D. J. Szostakb, R. J. Paffb, J. GFlemingc, C. J. Galewskid, J. Shallenbergere, R. Eby, Effects of annealing onX-ray-amorphous CVD W-Si-N barrier layer materials, Thin Solid Films 1999, 353:149-156.
    [46] D. H. Kuo, C. H. Shih, Native defects and their effects on properties of sputteredInN films, Appl. Phys. Lett. 2008, 93: 164105.
    [47] K. S. A. Butcher, A. J. Fernandes, P. P. T. Chen, M. Wintrebert-Fouquet, Thenature of nitrogen related point defects in common forms of InN, J. Appl. Phys. 101(2007)123702.
    [48] Y. M. Chiang, D. Birnie, and W. D. Kingery, Physical Ceramics: Principles forCeramic Science and Engineering Wiley, New York Chap. 2, 1997.
    [49] H. Wulff, C. Eggs, Investigation of stored energy in plasma deposited TiNx films,J. Vac. Sci. Technol. A 1997, 15: 2938-2944.
    [50] G. Abadias, Y Y Tse, P. Guerin, Interdependence between stress, preferredorientation, and surface morphology of nanocrystalline TiN thin films deposited bydual ion beam sputtering, J. Appl. Phys. 2006, 99: 113519.
    [51] I. Petrov, A. Myers, J. E. Greene, J. R. Abelson, Mass and energy resolveddetection of ions and neutral sputtered species incident at the substrate during reactivemagnetron sputtering of Ti in mixed Ar+N2 mixtures, J. Vac. Sci. Technol. A., 1994,12: 2846-2854.
    [52] Z. Wang, S. A. Cohen, D. N. Ruzic, M, Nitrogen atom energy distributions in ahollow-cathode planar sputtering magnetron,. J.Goeckner Phys. Rev. E 2000, 61:1904-1911.
    [53] K. Sarakinos, J. Alami, P. M. Karimi, D. Severin, M. Wuttig, The role ofbackscattered energetic atoms in film growth in reactive magnetron sputtering ofchromium nitride, J. Phys. D: Appl. Phys. 40 (2007) 778-785.
    [54] H. Ljungcrantz, L. Hultman, J. E. Sundgren, L. Karlsson, Ion induced stressgeneration in arc-evaporated TiN films, J. Appl. Phys. 1995, 78: 832-837.
    [55] D. V Suetin, I. R. Shein, A. L. Ivanovskii, Elastic and electronic properties ofhexagonal and cubic polymorphs of tungsten monocarbide WC and mononitride WNfrom first-principles calculations, phys. stat. sol. (b) 2008, 245: 1590-1597.
    [56] A. Bubenzer, B. Dischler, G. Brandt, P. J. Koidl, rf-plasma deposited amorphoushydrogenated hard carbon thin films: Preparation, properties, and applications, Appl.Phys. 1983, 54: 4590-4595.
    [57] P. Patsalas, C. Gravalidis and S. Logothetidis, Surface kinetics and subplantationphenomena affecting the texture, morphology, stress, and growth evolution oftitanium nitride films, J. Appl. Phys. 2004 96: 6234-6246.
    [58] W. Palmer, M. Huttinger, W. Bench, Sputtering effects in Auger depth profiles ofTiN thin films, Thin Solid Films 1989, 174: 143-148.
    [59] H. Windischmann, An intrinsic stress scaling law for polycrystalline thin filmsprepared by ion beam sputtering, J. Appl. Phys., 1987, 62: 1800-1807.
    [60] C. A. Davis, A simple model for the formation of compressive stress in thin filmsby ion bombardment, Thin Solid Films 1993, 226: 30-34.
    [61] R. W. Hoffman, Stresses in thin films: The relevance of grain boundaries andimpurities, Thin Solid Films 1974, 34: 185-190.
    [62] D. V. Shtansky, E. A. Levashov, A. N. Sheveiko, Synthesis and Characterizationof Ti-Si-. C-N Films, J. J. Moore, Metall. Mater. Trans. A 30 (1999) 2439-2447.
    [63] H. Holleck, Material selection for hard coatings, J. Vac. Sci. Technol. A 1986, 4:2661-2669.
    [64] L. U. Chunsheng, Y. W. Mai, Y. G. Shen, Recent advances on understanding theorigin of superhardness in nanocomposite coatings: A critical review, J. Mater. Sci.2006,41:937-950.
    [65] K. K. Shih, D. B. Dove Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with highmechanical hardness, Appl. Phys. Lett. 1992, 61: 654.
    [1] K. K. Shih, D. B. Dove, Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness, Appl. Phys. Lett. 1992, 61: 654.
    [2] S. A. Barnett, A. Madan, Superhard superlattices, Phys. World, p. 45. (January1998)
    [3] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, J.E.Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremelyhigh mechanical hardness. J. Appl. Phys. 1987, 62: 481.
    [4] D. C. Cameron, et al. Structural variation in CrN/NbN superlattice. Surf. Coat.Technol, 2001, 142- 144: 567- 572.
    [5] M. Shinn, L. Hultman, S.A. Barnett, Growth, structure, and microhardness ofepitaxial TiN/NbN superlattices, J. Mater. Res. 1992, 7: 901-911.
    [6] P. B. Mirakami, L. Hultman, S. A. Barnett, Enhanced hardness in lattice matchedsingle crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys. Lett. 1990, 57: 2654.
    [7] X. Chu, S. A. Barnett, Model of superlattice yield stress and hardnessenhancements, J. Appl. Phys. 1995, 77: 4403-4411.
    [8] J. S. Koehler, Attempt to Design a Strong Solid, Phys. Rev. B 1970, 2: 547-551.
    [9] P. B. Mirkarimi, L. Hultman, S. A. Barnett, Enhanced Hardness in Lattice-matchedSingle-Crystal TiN/(V0.6Nb0.4)N superlattices, Appl. Phys. Lett. 1990, 57:2654-2656.
    [10] J. Xu, M. Kamiko, Y. Zhou, R. Yamamoto, G Li, M. Gu, Superhardness effectsof heterostructure NbN/TaN nanostructured multilayers, J. Appl. Phys. 2001, 89:3674.
    [11] C. Kim, S. B. Qadri, M. R. Scanlon, R. C. Cammarata, Low-Dimension Structural-Properties and Micro indentation Studies of Ion-Beam-Sputtered Multilayers of Ag/Al Films, Thin Solid Films 1994, 240: 52-55.
    [12] Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M et al., Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites, Scr. Mater. 1998, 39: 555-560.
    [13] R. C. Cammarata, T. E. Schlesinger, C. Kim, S. B. Qadri, A. S. Edelstein, Nanoindentation study of the mechanical properties of copper - nickel multilayered thin films, Appl. Phys. Lett. 1990, 56: 1862.
    [14] S.P. Wen, R.L. Zong, F. Zeng, Y. Gao, F. Pan, Evaluating modulus and hardnessenhancement in evaporated Cu/W multilayers, Acta Mater. 2007, 55: 345-351.
    [15] R.L. Li, J.P. Tu, C.F. Hong, D.G. Liu, H.L. Sun, Microstructure, mechanical andtribological properties of CrN/W2N multilayer films deposited by DC magnetronsputtering, Surface & Coatings Technology 2009, 204: 470-476
    [16] M.X. Wang, J.J. Zhang, J. Yang, L.Q. Wang, D.J. Li, Synthesis of nanoscalemultilayered ZrN/W2N multilayered coatings by magnetron sputtering, Surface &Coatings Technology 2007, 201: 6800-6803
    [17] S. Sambasivan and W.T Petuskey, Phase chemistry in the Ti-Si-N system:thermochemical review with phase stability diagrams, J. Mater. Res, 1994, 9:2362-2369.
    [18] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro,E. Alves, Characterisation of Til-xSixNy nanocomposite films, Surf. Coat. Technol.2000, 133-134:307-313.
    [19] U. Helmersson, S. Todorova, S. A. Barnet, et al. "Growth of Single-crystalTiN/VN Strained-lay Superlattices with Extremely High Mechanical Hardness."Journal of Applied Physics 1987, 62( 2):481-484.
    [20] B. R. Pujada, F. D. Tichelaar, G C. A. M. Janssen, Stress in tungstencarbide-diamond like carbon multilayer coatings, APPLIED PHYSICS LETTERS2007,90:021913
    [21] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials,3rd ed. -Wiley, New York, 1989.
    [22] N. Wainfan, L. G Paratt, X - Ray Reflection Studies of the Anneal and Oxidationof Some Thin Solid Films, J. Appl. Phys. 1960, 31: 1331-1337.
    [23] Lars Hultman, Javier Bareno, Axel Flink, Hans Soderberg, Karin Larsson, VaniaPetrova, Magnus Oden, J. E. Greene, Ivan Petrov, Interface structure in superhardTiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initiocalculations, Phys. Rev. B, 2007, 75: 155437-155442.
    [24] Hans Soderberg, Magnus Oden, Tommy Larsson, Lars Hultman, Jon M.Molina-Aldareguia, Nanoindentation study of the mechanical properties ofcopper - nickel multilayered thin films, Appl. Phys. Lett. 2006, 88: 191902.
    [25] Xiaoping Hu, Huijuan Zhang, Jiawei Dai, Geyang Li, Mingyuan Gu, Study onthe superhardness mechanism of Ti-Si-N nanocomposite films: Influence of thethickness ofthe Si3N4 interfacial phase, J. Vac. Sci. Technol. A 2005, 23: 114-117.
    [26] Yunshan Dong, Wenji Zhao, Jianling Yue, Geyang Li, Crystallization of Si3N4layers and its influences on the microstructure and mechanical properties ofZrN/Si3N4 nanomultilayers, Appl. Phys. Lett. 2006, 89: 121916.
    [27] Xiao-Jia Chen, Viktor V. Struzhkin, Zhigang Wu, Maddury Somayazulu, JiangQian, Simon Kung, Axel Nerlund Christensen, Yusheng Zhao, Ronald E. Cohen,Ho-kwang Mao, Russell J. Hemley, Hard superconducting nitrides, PNAS, 2005, 102:3198-3201.
    [28] A. Karimi, G. Allidi, R. Sanjines, Relative orientation of the constituents on thedegree of crystallographic coherence in AIN/TiN superlattices, Surface & CoatingsTechnology 2006, 201: 4062-4067.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700