RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化镓(GaN)基Ⅲ族氮化物宽禁带半导体材料是制备蓝光到紫外光波段的半导体发光二极管(LED)、半导体激光二极管(LD)等光电器件的首选材料。同时由于GaN基材料具有电子漂移饱和速度高、介电常数小、导热性能好、化学和热稳定性好等特点,也非常适合于制作高温、高频及大功率电子器件。在常规的以氨气为氮源生长GaN的金属有机物化学气相沉积(MOCVD)方法中,为了使氨气有效热解,不得不采用1000℃以上的高温生长。由于在GaN基薄膜材料的生长过程中,氮的分解压很高,所以高温生长更容易加剧氮的挥发,使薄膜中留下大量的氮空位,从而使GaN薄膜有很高的背景电子浓度,造成p型掺杂困难。而且高温不利于亚稳态立方相GaN的生长。
     为了降低生长温度,必须首先解决活性氮源问题。本论文采用电子回旋共振微波等离子体增强MOCVD(ECR-PEMOCVD)方法,以氮等离子体为氮源,在GaAs(001)、Si(001)以及蓝宝石(α—Al_2O_3)等衬底上实现了GaN基Ⅲ族氮化物薄膜的低温异质外延生长。并对GaN基Ⅲ族氮化物薄膜的初始层生长、生长工艺、材料生长机理以及反射高能电子衍射(RHEED)原位监测结果进行了研究,主要工作和结论如下:
     1.在综合分析了第一代ECR-PEMOCVD装置(ESPD)优缺点的基础上,作为主要参与者研制成功配有RHEED原位监测设备的第二代ECR—PEMOCVD装置(ESPD—U),并已成功申请到国家发明专利《电子回旋共振微波等离子体增强金属有机化学气相沉积外延系统与方法》。ESPD—U可以制备各种单质和多元素化合物半导体薄膜,特别是能对复杂层状结构,超薄层微结构半导体材料实现原子尺度控制生长的原位监测;由于能对外延膜表面原位监测,提供生长表面微结构信息,对薄膜生长工艺的优化,尤其对在大晶格失配对底上薄膜生长至关重要的初始生长工艺的优化十分有利,将大大缩短用MOCVD生长新型半导体薄膜材料的研发周期。此外,还能满足等离子体与生长表面相互作用等相关基础研究的要求。
     2.实验结果表明,腔祸合—磁多极ECR等离子体源(MEP源)能以很高的微波—等离子体耦合效率(>94%)产生高密度、高电离度、低离子温度(<2eV)、低空间电位(<30V)、大面积均匀、稳定的ECR放电。由于离子温度和空间电位都比较低,有利于控制和减少基片损伤,这使得MEP源更适合于半导体薄膜生长及无损伤刻蚀等。而且等离子体发射光谱的研究表明该ECR源具有很强的活化功能。
     3.由不同入射方向的RHEED条纹间距,可以测出蓝宝石衬底在经过清洗、氮化、生长GaN和氮化铝(AlN)外延层的不同工艺过程中,其外延表面晶格常数的大小,并由此分析其表面的应变状态。实验中以α—Al_2O_3(0001)衬底表面晶格常数a_S的公认标准值4.758来标定RHEED条纹间距与a_S的比例系数,间接测出氮化、缓冲层、AlN外延层等情况下的外延表面的点阵排列间距。
    
     摘要
    数据分析表明,氮化所形成的AIN层明显处于压应变状态;GaN缓冲层的情
    况也与此类似。在误差范围内,可以认为AIN外延层的应力得到充分的释放。
    根据由RHEED分析推断出的外延薄膜表面的晶格匹配方式,对外延膜中产生
    的压应变状态进行了合理解释。
     4.本文讨论了ESPD装置中的氢等离子体清洗、氮化及缓冲层生长等预处
    理条件对立方GaN/GaAs(001)外延层质量的影响。发现决定氮化过程的主要
    因素是活性氮粒子的化学活性和氮化时间,适当时间的氮化可以提高外延立方
    GaN薄膜的结晶质量和相纯度,氮化过程中适量氢等离子体的加入可以有效消
    除As聚集和AsNx化合物形成,促进氮化过程的进行,获得在衬底上的高密
    度均匀成核:对缓冲层在GaAs(001)衬底上外延生长立方GaN过程中的作
    用进行了分析,发现其主要作用与在Q一Ab03(0001)衬底上外延生长六方
    GaN过程中缓冲层的作用是相一致的。
     5.在GaA,;(001)衬底上成功地生长出高质量的外延立方GaN单晶薄膜,
    并用X射线衍射(XRD)、透射电镜(TEM)和光致发光(PL)测量进行了表
    征。结合霍尔(Hall)测量结果,表明我们的外延薄膜达到了较高的光电特性。
     6.51(001)衬底表面的原位氢等离子体清洗对于GaN/Si(001)薄膜的生长
    是非常必要的;具有平坦表面和高晶体质量的缓冲层对于高质量GaN薄膜的
    外延生长是非常有必要的:HRTEM图像显示出外延生长,但没有立方相出现,
    而是外延出高度c轴取向的六方GaN薄膜,并且观察到在GaN/Si(001)界面处
    自然形成了一层非晶层,其两个表面平坦而陡峭,厚度均匀(约Znm)。分析认
    为,在初始成核阶段N与si之间反应所产生的这层SixNy非晶层使立方相GaN
    没有形成:,
     7.在ESPD一U装置上,对蓝宝石衬底的清洗与氮化进行了RHEED研究。
    结果表明,氢氮混合等离子体清洗效果明显优于纯氢等离子体清洗,可以获得
    非常光滑平整的蓝宝石衬底表面;而采用氮等离子体可实现衬底的氮化,从而
    获得平整的AIN成核层;通过比较氮化与不氮化所生长的GaN缓冲层的
    RHEED图像,证明在蓝宝石衬底上还必须通过氮化才能生长出取向好的GaN
    晶体薄膜。
     8.在ESPD一U装置上,采用ECR一PEMOCVD技术,在550’C的低温下
    生长出表面粗糙度在两个原子层左右的GaN缓冲
GaN-based III group nitrides are the best candidates for manufacturing LED and LD in the range from blue to ultraviolet and other opto-electronic devices, they also suit for manufacturing high-temperature?high-frequency and high power electronic or microwave devices, because of their excellent properties such as wide band gap, high electron saturation drift velocity, low dielectric constant, high thermal conductivity, good chemical and thermal stability, and so on. In usual MOCVD for growing GaN with ammonia as nitrogen source, people have to grow GaN under high temperature (over 1000@) in order to effectively pyrolyse ammonia. However, during the high temperature growth of GaN-based film materials, a mass of nitrogen hollow space will be resulted in the films due to the high decomposition pressure of nitrogen and quick volatilization of nitrogen, then the GaN film has very high background electron concentration, and the p-type doping is very difficult to achieve. So, the high temperature is a main impedimen
    t to grow good quality of metastable cubic GaN.
    Fristly. an active nitrogen source at low temperature must be obtained in order to reduce growth temperature. Nitrogen plasma as nitrogen source for heteroepitaxy growth of GaN-based III group nitride films at low temperature on GaAs(OOl), Si(OOl) and a -A12O3(0001) substrates by ECR-PEMOCVD is presented in this thesis. Additionally, the initial nucleation, the processing and mechanism of material growth, and the results detected in situ by RHEED during the growth of GaN-based III group nitride films are investigated. The major work and conclusions are as follows:
    1. Based on synthetical analysis of the advantages and defects of ESPD equipment. as a major participator , we successfully developed a super-high vacuum equipment ESPD-U with RHEED in situ monitoring equipment, and our national invention patent -#Electron cyclotron resonance microwave plasma enhance MOCVD epitaxy system and method$ has been publicized. The growth of various mono-element and multi-element compound semiconductor films can be realized on ESPD-U, especially the control growth for complex sandwich and super-thin film microstructure semiconductor materials with in situ detection of mono-atom layer level can be realized. The surface appearance of epitaxy layer and microstructure information of growth surface can be detected in situ by RHEED. It benefits to optimize the growth processing of thin film, especially to optimize the initial growth processing which is very important for heteroepitaxy on substrates with big misfit of crystal lattice. So the investigation and developing periods for growing
     new type semiconductor thin film materials by MOCVD can be greatly shortened. Furthermore, the correlative basic research, such as the interaction between plasma and growing surface, can be carried out on ESPD-U also.
    
    
    
    2. Experiment results demonstrated that the cavity coupling-magnetic multipole ECR plasma source (MEP source) can produce large area uniform and steady ECR plasma with higher microwave-plasma coupling efficiency (94%), high density, high ionization, low ion energy (<2eV) and low space potential (30V). It has an advantage to control and reduce werfer damage, owing to the ion energy and space voltage are very low, so MEP source is very adequate for growing semiconductor thin film and etching without damage, etc. And the investigation of plasma emission spectra indicated that ECR source has very strong activation function.
    3. The crystal lattice constant of growing surface in different processes, such as cleaning and nitridation of substrate, growth of GaN and A1N epilayer, could be measured through RHEED from different incidence direction. So the strain state of surface could be analyzed. According to the crystal lattice constant of growing surface is inversely proportioned to the space of RHEED stripes and using standard value 4.758 A of lattice constant of a -Al2O3(000l) surface (as) as a scale of demarcation, the lattice spacing of epilayer surface was measured indir
引文
[1.1] S.Strite, H.Morkoq. GaN, AlN, and InN: A review. J. Vac. Sci. Technol., 1992, B10 (4): 1237-1266
    [1.2] 刘洪飞,陈弘,李志强,万里,黄绮,周均铭。GaAs(001)衬底上分子束外延生长立方和六方GaN薄膜。物理学报,2000,49(6):1132-1135
    [1.3] 贺仲卿,丁训民,侯晓远,王迅,沈孝良。GaN异质外延的离子化氮源方法。物理学报,1994,47(7):1123-1128
    [1.4] 梁春广,张冀。Ga N—第三代半导体的曙光。半导体学报,1999,20:89-99
    [1.5] S.Nakamura, N.Senoh, N.Iwasa, SI Nagahama, T.Yamada, T.Mukai, Superbright green InGaN single-quantum-well-structure light-emitting diodes. Jpn. J. Appl, Phys., 1995, 34:L1332-1335
    [1.6] T.Mukai, H.Narimatsu, S.Nakamura, Amber. InGaN based light emitting diodes operable at high-ambient temperatures. Jpn. J. Appl, Phys., 1998, 37:L479-481
    [1.7] T.Mukai, S.Nagahama, N.Iwasa. Proc.China-Japan Workshop on Nitride Semiconductor Materials and Devices. Shanghai, P.R.China. 2001: 96
    [1.8] W.C.Johnson, J.B.Parsons, M.C.Crew. Nitrogen compounds of gallium Ⅲ. gallic nitride. J, Phys. Chem., 1932, 36:2561
    [1.9] H.P.Maruska, J.J.Tietjen. The preparation and properties of vapor-deposited singlecrystal-line GaN. Appl. Phys. Lett., 1969,15(10):327-329
    [1.10] S.Yaosida, S.Misawa, S.Gonda. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates. Appl. Phys. Lett., 1983,42(5): 427-429
    [1.11] H.Amano, I.Akasaki, K.Hiramatsu, N.Koide, N.Sawaki. Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate. Thin Solid Films, 1988,163:415
    [1.12] S.Nakamura. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys., 1991, 30: L1705-1707
    [1.13] H.Amano, M.Kito, K.Hiramatsu, I.Akasaki. p-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation. Jpn. J, Appl. Phys., 1989,28: L2112-2114
    [1.14] S.Nakamura, T.Mukai, M.Senoh, N. Iwasa. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys., 1992, 31:L139-142
    [1.15] H.Amano, N.Sawaki, I.Akasaki. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett., 1986, 48 (5):
    
    353-355
    [1.16] H.Amano, T.Asabi, I.Akasaki. Stimulated emission near ultraviolet at room temperature from a GaN film grown on sapphire by MOVPE using an AlN buffer layer. Jpn. J. Appl. Phys., 1990,29:L205-206
    [1.17] I.Akasaki, S.Sota, H.Sakai, T.Yanaka, M.Koike, H.Amano. Shortest wavelength semiconductor laser diode. Electron. Lett., 1996, 32 (15):1105
    [1.18] G.Fasol. Longer life for the blue laser. Science, 1997, 278 (5345):1902-1903
    [1.19] W.Seifert, A.Tempel. Cubic phase gallium nitride by chemical vapor deposition. Phys. Status Solidi (a), 1974, 23:k39
    [1.20] M.Mizuta, S.Fujieda, Y.Matsumoto, T.Kawamura. Low temperature growth of GaN and AlN on GaAs using metalorganics and hydrazine. Jpn. J. Appl. Phys., 1986,25:L945
    [1.21] Y.Lei, K.F.Ludwig, T.D.Moustakas. Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates. J. Appl. Phys., 1993, 74 (7): 4430-4437
    [1.22] K.Balakrishnan, G.Ferillet, K.Ohta, H.Hamaguchi, H.Okumura, S.Yoshida. Structural analysis of cubic GaN through Ⅹ-ray pole figure generation. Jpn. J. Appl. Phys., 1997,36 (10): 6221
    [1.23] G.Feuillet, F.Widmann, B.Daudin, J.Schuler, M.Arlery, J.L.Rouviere, N.Pelekanos, O.Briot. Comparative study of hexagonal and cubic GaN growth by RF-MBE. Mater. Sci. Eng., 1997, B50 (1-3): 233
    [1.24] K.H.Ploog, O.Brandt, H.Yang, A.Trampert. MBE growth and characteristics of cubic GaN. Thin Solid Films, 1997, 306 (2): 231-236
    [1.25] D.P.Xu, H.Yang, J.B.Li. Initial stages of GaN/GaAs(100) growth by metalorganic chemical vapor deposition. J. Electro. Material, 2000, 29 (2):177-182
    [1.26] A.Georgakilas, K.Amimer, P.Tzanetakis, Z.Hatzopoulos, M.Cengher, B.Pecz, Zs.Czigany, L.Toth, M.V.Baidakova, A.V.Sakharov, V.Yu.Davydov. Correlation of the structural and optical properties of GaN grown on vicinal (001) GaAs substrates with the plasma-assisted MBE growth conditions. J. Crys. Growth, 2001, 227-228:410-414
    [1.27] B.Gu, Y.Xu, F,W.Qin, S.S.Wang. ECR plasma in growth of c-GaN by low pressure MOCVD. Plasma Chemistry and Plasma Processing, 2002, 22 (1): 161-175
    [1.28] S.Tanaka, S.Iwai, Y.Aoyagi. Self-assembling GaN quantum dots on Al_xGa_(1-x)N surfaces using a surfactant. Appl. Phys, Lett., 1996, 69 (26): 4096-4098
    [1.29] H.Sunamuna, N.Usami, Y.Shiraki. Island formation during growth of Ge on Si(100): A study using photoluminescence spectroscopy. Appl. Phys. Lett., 1995, 66 (22):3024-3026
    [1.30] E.Wirthl, H.Straub. M.Schmid, G.Brunthaler, M.Schmid, D.Stifter, P.Bauer. AES-
    
    investigations of plasma-etched Ⅱ-Ⅵ binary compounds. Proc.of the Internal. Sympos. on Blue Lasers and LED' s, Chiba, Japan. 1996:244-247
    [1.31] M.Illing, G.Bacher, T.Kümmell, A.Forchel, T.G.Andersson, D.Hommel, B.Jobst, G.Landwehr. Lateral quantization effects in litho-graphically defined CdZnSe/ZnSe quantum dots and quantum wires. Appl. Phys. Lett., 1995, 67(1): 124-126
    [1.32] 成步文,余金中,于卓,王启明,陈坤基,黄信凡。α-Si/SiO_2多量子阱材料制备及其晶化和发光。发光学报,1997,18(3):217-222
    [1.33] V.Dmitriev, K.Irvine, A.Zubrilov, Materials Research Sociect, Boston, MA, 1995: 295
    [1.34] B.Daudin, F.Widmann, G.Feuillet, Y.Samson, M.Arlery, J.L.Rouvière. Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN. Phy. Rev., 1997, B56 (12-15): R7069 -R7072
    [1.35] C.Adelmann, J.Simon, N.T.Pelekanos, Y.Samson, G.Feuillet, B.Daudin. Growth and optical characterization of InGaN quantum dots resulting from a 2D-3D transition, Phys. Stat. Sol.(a)., 1999,176(1): 639-642
    [1.36] H.Hirayama, S.Tamaka, Y.Aoyagi. Fabrication of Self-assembling InGaN and AlGaN Quantum Dots on AlGaN Surfaces Using Anti-surfactant. Microelectronic Engineering, 1999, 47:251-253
    [1.37] P.Ramvaill, P.Riblet, S.Nomura, A.Yoshinobu, T.Satoru. Optical properties of GaN quantum dots. J, Appl. Phys., 2000, 87 (8): 3883-3890
    [1.38] 王三胜,顾彪,徐茵,除久军,杨大智。ECR-PEMOCVD法在GaAs(001)衬底上制备GaN量子点。半导体光电,2002,23(2):114-117
    [1.39] 刘宜华,张连生。稀释磁性半导体。物理学进展,1994,14(1):82-120
    [1.40] 闫发旺,梁春广。Ⅲ—Ⅴ族磁半导体材料的研究与进展。微纳电子技术,2001,38(6):2-7
    [1.41] H.Ohono. Making nonmagnetic seminconductors ferromagnetic. Science. 1998. 281 (5379): 951-955
    [1.42] H.Hidenobu, S.Saki, S.Takahiko,Y.Yamomoto. S.Shimizu, K.Suga, K.Kindo. High-T_c ferromagnetism in diluted magnetic semiconducting GaN:Mn films. Physica B., 2002,324 (1-3) :142- 150
    [1.43] T.Dietl, H.Ohno, F.Matsukura, J.Cibert, D.Ferrand. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287 (5455): 1019-1021
    [1.44] M.L.Reed, M.K.Riturms, H.H.Stadelmaier, H.H.Stadelmaier, M.J.Reed, C.A.Parker, S.M.Bedair, N.A.El-Masry. Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices. Materials Letters, 2001. 51(6): 500-503
    
    
    [1.45] S.Kuwabara, K.Ishii, S.Haneda, T.Kondo, H.Munekata. Preparation of wurtzite GaN-based magnetic alloy semiconductors by molecular beam epitaxy. Physica E., 2001, 10(1-3): 233-236
    [1.46] C.Liu, E.Alves, A.R.Ramos, et al., Lattice location and annealing behavior of Mn implanted GaN. Nucl.Instr. and Moth.in Phys.Res., 2002, B1919 (1-4): 544-548
    [1.47] R.Juza, H.Hahn, A.A.Zeítschr. ber die Kristallstrukturen von Cu_3N, GaN und InN. Chem., 1938, 239:282
    [1.48] F.Bechstedt, J.Furthmüller. Do we know the fundamental energy gap of InN? J. Cryst. Growth, 2002, 246:315-319
    [1.49] V.Yu, Davydov, A.A,Klochikhin, R.P.Seisyan, V.V.Emtsev, S.V.Ivanov, F.Bechstedt. J.Furthmüller, H.Harima, A.V.Mudryi, J.Aderhold, O.Semchinova, J.Graul. Absorption and emission of hexagonal InN evidence of narrow fundamental bandgap. Phys. Stat. Sol., 2002, B 229:r1-r3
    [1.50] J.Wu, W.W.Walukiewicz, K.M.Yu, J.W.Ager Ⅲ, E.E.Haller, H.Lu, W.J. Schaff, S.Yoshiki, N.Yasushi. Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett., 2002, 80 (21) :3967-3969
    [1.51] R.J.Shul, G.A.Vawter, C.G.Willison, M.M.Bridges, J.W.Lee, S.J.Pearton, C.R.Abernathy. Comparison of plasma etch techniques for Ⅲ-Ⅴ nitrides. Solid State Electronics., 1998, 42 (12): 2259-2267
    [1.52] E.Lakshmi. Dielectric properties of reactively sputtered gallium nitride films. Thin Solid Films, 1981, 83:L137
    [1.53] Y. Morimoto. Few characteristics of epitaxial GaN etching and thermal decomposition. J Electrochem. Soc., 1974, 121:1383
    [1.54] K.Ito, H.Amano, K.Hiramatsu, I.Akasaki. Cathodoluminescence properties of undoped and Zn-doped Al_xGa(1-x)N grown by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys., 1991, 30:1604
    [1.55] D. Basak, T. Nakanishi, S. Sakai. Reactive ion etching of GaN using BCl_3, BCl_3/Ar and BCl_3/N_2, gas plasmas. Solid State Electronics, 2000, 44 (4): 725-728
    [1.56] S.Schiestel, B.Molnal, C.A.Carosella, R.M.Stroud, D.Knies, K.Edinger. Patterning of GaN by ion implantation-dependent etching. Mat. Sci. and Engi., 2001, B82 (1-3):111-113
    [1.57] 章蓓,黄其煜,黄大勇,戴伦,张国义。氮化物半导体GaN的光辅助湿法腐蚀。半导体学报,1998,19(9):698-701
    [1.58] 张锦,冯伯儒,杜春雷,王永茹,周礼书,侯德胜,林大键。反应离子刻蚀工艺因素研究。光电工程,1997,24(S1):46-51
    [1.59] C.Hyun, J.Hong, T.Maeda, et al., Novel plasma chemistries for highly selective dry etching of In_xGaN_(1-x): BI_3 and BBr_3. Mat. Sci. and Engi., 1999, B59 (1-3): 340
    
    
    [1.60] C.F.Shu, C.K.Lee, C.C.Yu, Y.K.Wang, J.Y.Tsai, C.R.Yang, S.C.Wang. High etching rate of GaN films by KrF excimer laser. Mat. Sci. and Engi., 2001, B82 (1-3): 42-44
    [1.61] D.C.Hays, H.Cho, K.B.Jung, C.R.Abernathy, S.J.Pearton. Selective dry etching using inductively coupled plasmas: Part Ⅱ. InN/GaN and InN/AlN. Appl. Surf. Sci., 1999. 147 (1-4): 134-139
    [1.62] M.Furtado, G.Jacob. Study on the influence of annealing effects in GaN VPE. J. Crys. Growth, 1983, 64:257
    [1.63] M.E.Lin, B.N.Sverdlow, H.Morkoq. Thermal stability of GaN investigated by lowtemperature photoluminescence spectroscopy. Appl. Phys. Lett., 1993, 63 (26): 3625- 3627
    [1.64] R.Dingle, M.Ilegems. Donor-acceptor pair recombination in GaN. Solid State Commun., 1971. 9:175
    [1.65] R.Dingle, D.D.Sell, S.E.Stokowaki, P.J.Dean, M.Ilegems. Absorption, Reflectance, and Luminescence of GaN Single Crystals. Phys. Rev., 1971, B3:497-500
    [1.66] R.Dingle, D.D.Sell, S.E.Stokowaki, M.Ilegems. Absorption, reflectance, and luminescence of GaN epitaxial layers. Phys. Rev., 1971, B4 (4) : 1211-1218
    [1.67] J.I.Pankove, J.E.Berkeyheiser, H.P.Maruska, J.Wittke. Luminescent properties of GaN. Solid State Commun., 1971,8:1051
    [1.68] B.Monemar. Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev., 1974, B10 (2): 676-681
    [1.69] D.L.Camphausen, G.A.N.Connell. Pressure and temperature dependence of the absorption edge in GaN. J. Appl. Phys.. 1971, 42:4438
    [1.70] D.D.Manchon. A.S.Barker, P.J.Dean, R.B.Zetterstrom. Optical studies of the phonons and electrons in gallium nitride. Solid State Commun., 1970, 8:1227
    [1.71] B.Monemar, O.Lagerstsdt, H.P.Gislason. Properties of Zn-doped VPE-grown GaN. Ⅰ. Luminescence data in relation to doping conditions. J. Appl. Phys., 1980, 51 (1): 625-639
    [1.72] R.Cingolani, M.Ferrara, M.Lugara, G.Scamarcio. First order Raman scattering in GaN. Solid State Commun., 1986, 58:823
    [1.73] S.Nakamura, T.Mukai, M.Senoh. Si and Ge doped GaN films grown with GaN buffers layers. Jpn.J.Appl.Phys., 1992, 31:2883
    [1.74] N.Shuji, S.Masayuki, N.Shin-ichi, I.Naruhito, Y.Takao, M.Yoshio, K.Hiroyuki, S.Yasunobu. Characteristics of InGaN multi-quantum-well-structure laser diodes. Appl.Phys.Lett., 1996, 68 (23): 3269-3271
    [1.75] M.E.Lin. Z.Ma, F.Y.Huang. Z.F.Fan, L.H.Allen, H.Morkoc. Low resistance ohmic
    
    contacts on wide band-gap GaN. Appl.Phys.Lett., 1994, 64 (8): 1003-1005
    [1.76] Z.F.Fan, S.N.Mohanmmad, W.Kim, .Aktas, A.E.Botchkarev, H.Morkoc. Very low resistance multilayer Ohmic contact to n-GaN. Appl.Phys.Lett., 1996, 68 (12): 1672-1674
    [1.77] J. Karpinski. J.Jun, S.Porowski. Equilibrium pressure of N_2 over GaN and high pressure solution growth of GaN. J. Crys. Growth, 1984, 66:1
    [1.78] H.Morkoq, S.Strite, G.B.Gao, M.E.Lin, B.Sverdlov, M.Burns. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl. Phys., 1994, 76 (3): 1363-1398
    [1.79] N.Shuji, S.Masayuki, N.Shin-ichi, I.Naruhito, Y.Takao, M.Toshio, K.Hiroyuki, S.Yasunobu, K.Tokuya, U.Hitoshi, S.Masahiko, C.Kazuyuki. Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates. Appl. Phys. Lett., 1998, 72 (16): 2014-2016
    [1.80] H.Yang, L.X.Zheng, J.B.Li, X.J.Wang, D.P.Xu, Y.T.Wang, X.W.Hu, P.D.Han. Cubic-phase GaN light-emitting diodes. Appl. Phys. Lett., 1999, 74 (17): 2498-2500
    [1.81] H.Yang, D.G.Zhao, S.M.Zhang. Proc. China-Japan Workshop on Nitride Semiconductor Materials and Devices, 12-17 March, Shanghai, P. R. China, 2001:104
    [1.82] A.Yamamoto, Y.Yamauchi, M.Ohkubo, et al., Heteroepitaxial growth of InN on Si(11Ⅰ) using a GaAs intermediate layer. Solid State Eletronics, 1997, 41(2): 149-154
    [1.83] J.Kang, T.Ogawa. Lattice images of dislocations with edge components in GaN epilayers grown on Al_2O_3 substrates. J. Crys. Growth, 2000, 210 (1-3): 157-161
    [1.84] T.Detchprohm, K.Hiramatsu, H.Amano, I.Akasaki. Hydride vapor phase epitaxial growth of a high quality GaN film using a ZnO buffer layer. Appl. Phys. Lett., 1992, 61 (22): 2688-2690
    [1.85] H. Lee, J.S.Harris. Schematic apparatus of the GaN vapor phase epitaxy system. J. Crystal Growth, 1996, 169:689-696
    [1.86] R. J.Molnar, P.Maki, R.Aggarwal, Z.L.Liau, E.R.Brown, I.Melngailis, W.Gotz, L.T.Romano, N.M.Johnson. Mater. Soc. Symp. Proc., 1996,423:221
    [1.87] J.Karpinski, S.Porowski, S.Miotkowska, High pressure vapor growth of GaN. J. Crystal Growth, 1982, 56 (1): 77-82
    [1.88] G.Y.Zhang, Y.Z.Tong, Z.X.Qin. Proceedings of China-Japan Workshop on Nitride Semiconductor Materials and Devices, 12-17 March, Shanghai, P. R. China, 2001:3
    [1.89] C.H.Chen, H.Liu, D.Steigerwald, W.Imler, C.P.Kuo, M.G.Craford, M.Ludowise, S.Lester, J.Amano. A study of parasitic reactions between NH_3 and TMGa or TMAl. J. Electron. Mater., 1996, 25 (6): 1004-1008
    [1.90] H.Liu, A.G.Thompson, C.S.Chern. Presented at the 1995 Fall meeting of the
    
    Electrochemical Society, Miami, FL, Oct. 1995:9-14
    [1.91] J.Wang, Z.Q.Zhu, Ki-tae Park, K.Hiraga. T.Yao. Low-temperature growth of GaN films on GaAs(100) substrates by hot plasma chemical vapor deposition. J. Cryst. Growth, 1997, 177 (3-4): 181-184
    [1.92] 周玉刚,沈波,陈志忠,陈鹏,张荣,施毅,郑有炓。光加热金属有机物化学气相淀积生长氮化镓。半导体学报,1999,20(2):147-151
    [1.93] B.Gu, Y.Xu, F.W.Qin, S.S.Wang, Roles of plasma in heteroepitaxy of cubic GaN. Proc. Inte. Topical Meeting on Ⅲ-Ⅴ Nitride Material and Devices, China, Beijing, Aug 17-22,1998:49-51
    [1.94] S.C.Binari, H.B.Dietrich, G.Kelner, L.B.Rowland, K.Doverspike. D.K.Gaskill. Electrical characterisation of Ti Schottky barriers on n-type GaN. Electron Lett.. 1994, 30:909
    [1.95] M.A.Khan, M.S.Shur, J.N.Kuzinia, Q.Chen, J.Burm, W.Schaff. Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300℃. Appl. Phys. Lett., 1995, 66 (9):1083-1085
    [1.96] J.Burm, W.J.Schaff, L.F.Eastman. 75 GaN channel modulation doped field effect transistors. Appt. Phys. Lett., 1996, 68 (20): 2849-2951
    [1.97] Y.F.Wu, B.P.Keller, S.Keller, D.Kapolnek, P.Kozodoy, S.P.DenBaars, U.K.Mishra. Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett., 1996, 69 (10): 1438-1440
    [1.98] M.A.Khan, J.N.Kuzinia, A.R.Bhattarai, D.T.Olson. Metal semiconductor field effect transistor based on single crystal GaN. Appl. Phys. Lett., 1993, 62 (15): 1786-1787
    [1.99] M.A.Khan, J.N.Kuzinia, D.T.Olson, W.J.Schaff, J.W.Burm, M.S.Shur. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett., 1994, 65 (9): 1121-1123
    [1.100] M.A.Khan, J.N.Kuzinia, D.T.Olson, J.M.V.Hove, M.Blasingame, L.F.Reitz. Highresponsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers. Appl. Phys. Lett., 1992, 60 (23): 2917-2919
    [1.101] D.Walker, X.Zhang, P.Kung, A.Saxler, S.Javadpour, J.Xu, M.Razeghi. AlGaN ultraviolet photoconductors grown on sapphire. Appl. Phys. Lett., 1996, 68 (15): 2100-2101
    [1.102] Razeghim, A.Rogalski, Semiconductor ultraviolet detectors. J. Appl. Phys., 1996, 79 (10): 7433-7473
    [1.103] B.W.Lim, Q.C.Chen, J.Y.Yang, M.A.Khan, High responsitivity intrinsic photoconductors based on Al_xGa_(1-x)N. Appl. Phys. Lett., 1996, 68(26): 3761-3762
    [1.104] 臧岚,杨凯,张荣,沈波,陈志忠,陈鹏,周玉刚,郑有炓,黄振春。GaN/6H-SiC
    
    紫外探测器的光电流性质研究。半导体学报,1998,19(3):197-201
    [1.105] M. Meyer. Compound Semiconducter, Nov./Dec. (1997) 8
    [1.106] C.Y.Hwang, M.J.Schurman, W.E.Mayo, Y.Li, Y.Lu , H.Liu, T.Salagaj, R.A.Stall. Effect of substrate pretreatment on growth of GaN on (0001) sapphire by low pressure metalorganic chemical vapor deposition. J. Vac. Sci., Tech. 1995, A13 (3): 672-675
    [1.107] E.D.Bourret-Courchesne, K.M.Yu, S.J.C.Irvine, A.Stafford, S.A.Rushworth, L.M.Smith, R.Kanjolia. MOVPE of GaN on sapphire using the alternate precursor 1,1-dimethylhydrazine. J. Crys. Growth, 2000, 221 (1-4): 246-250
    [1.108] E.D.Bourret-Courchesne, Q.Ye, K.M.Yu, J.W.Ager. Evolution of crystallinity of GaN layers grown at low temperature on sapphire with dimethylhydrazine and triethylgallium. J.Crys.Growth, 2001,231 (1-2): 89-94
    [1.109] M.J.Paisley, Z.Sitar, J.B.Posthill, R.F.Davis. Growth of cubic phase gallium nitride by modified molecular-beam epitaxy. J. Vac. Sci. Technol., 1989, A7(3): 701-705
    [1.110] S.Strite, J.N.Rua. Z.Li, A.Salvador, H.Chen, David J.Smith, W.J.Choyke, H.Morkoc. An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy. J. Vac. Sci. Technol., 1991, B9(4): 1924-1929
    [1.111] T.Lei, M. Fanciulli, R.J.Molnar, T.D.Moustakas, R.J.Graham, J.Scanlon. Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon. Appl. Phys. Lett., 1991, 59 (8): 944-946
    [1.112] M.E.Lin, B.Sverdlow, G.L.Zhou, H.Morkoq. A comparative study of GaN epilayers grown on sapphire and SiC substrates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett., 1993, 62 (26): 3479-3481
    [1.113] M.Sato. Plasma-assisted low-pressure metalorganic chemical vapor deposition of GaN on GaAs substrates. J. Appl. Phys., 1995, 78 (3):2123-2125
    [2.1] 钱振型主编。固体电子学中的等离子体技术。北京:电子工业出版,1987:215
    [2.2] 赵化侨编著。等离子体化学与工艺。合肥:中国科学技术大学出版社,1993
    [2.3] 甄汉生。等离子体加工技术。北京:清华大学出版社,1990:109
    [2.4] 徐茵,顾彪,从吉远,季天仁。用于半导体加工的腔耦合—磁多极型ECR源的研究。核聚变与等离子体物理,1996,16(2):50-55
    [2.5] 徐茵,顾彪,秦福文,从吉远,杨树人。GaN薄膜低温外延的ECR-PAMOCVD技术。半导体技术,1998,23 r 1、:37.39
    [2.6] J.Asmussen. Electron cyclotron resonance microwave discharge for etching and thin-film deposition. J. Vac. Sci. Technol., 1989, A7(3): 883-888
    
    
    [2.7] J.Asmussen, T.A.Grotjohn, P.Mak, M.A.Perrin. The design and application of electron cyclotron resonance discharges. IEEE Transactions on Plasma Science, 1997, 25 (6):1196-1121
    [2.8] S.Iizuka, N.Sato. Electron cyclotron resonance devices with permanent magnets for production of large-diameter uniform plasmas (review). Jpn. J. Appl. Phys., 1994,33 (7B):4221-4225
    [2.9] Z.Y.Ning, Z.P.Luo, Y.C.Shi. Behavior of ECR microwave plasma formed in a mirror. Vacuum., 1992 ,43 (11):1101-1107
    [2.10] Y.Xu, B.Gu, J.Y.Cong, Y.H.Liu, Y.Li, T.R.Ji, Y.C.Zhang. A multicusp microwavecavity ECR plasma generator. Proc. 2nd Inter. Conf. Reactive Plasmas and 11th Symp. Plasma Processing. Yokohama, Japan: Organizing Committee of ICRP-2 / S- PP-11, 1994:541
    [2.11] 徐茵,顾彪,夏亚红,秦福文。氮ECR微波等离子体的电子能量分布研究。核聚变与等离子体物理,1997,17(3):45-50
    [2.12] D.C.Jordan, I.S.T.Tsong, D.J.Smith, B.J.Wilkens, R.B.Doak. Ⅲ-N semiconductor growth with activated nitrogen: State-specific study of A~(3 ∑_n~+) metastable N_2 molecules. Appl. Phys. Lett., 2000, 77(19) :3030-3032
    [2.13] P.N.Stanton, R.M.St John. J. Optical Society of America, 1969,59(3):252
    [2.14] R.W.B.Pearse, A.G.Gaydon. The Identification of Molecular Spectra. Willey. New York, 1963. 209-220
    [2.15] A.N.Wright, C.A.Winker. Active Nitrogen.Academic, New York, 1968
    [2.16] P.O.Keeffe, S.Komuro, S.Dan. Development and application of a compact electron cyclotron resonance source. Jpn. J. Appl. Phys., 1991,30(11B):3164-3168
    [3.1] 陈饮生,武步宇。大学物理。第一版。北京:科学出版社,2002年2月。154
    [3.2] T.Paskova, E.Valcheva, J.Birch, S.Tungasmita, P.A.O.Persson, P.P.Paskov, S.Evtimova, M.Abrashev, B.Monemar. Defect and stress relaxation in HVPE-GaN films using high temperature reactively sputtered AlN buffer. J.Cryst. Growth, 2001, 230:381-386
    [3.3] O.Norio, S.Jun, H.Matsunami. Lattice relaxation process of AlN growth on atomically at 6H-SiC substrate in molecular beam epitaxy. J. Cryst. Growth, 2002, 237-239: 1012-1016
    [3.4] K.Uchida, A.Watanabe, F.Yanoetal. Nature of nitridated layers formed on the sapphire surface and their effecton the growth of GaN. Inter. Symp. On Blue Laserand Light Emitting Diodes, Chiba University, Japan, March 1996, 48~53
    [3.5] L.Liu. J.H.Edgar. Substrates for gallium nitride epitaxy. Mat. Sci. and Engi.,2002, R 37:61-127
    
    
    [3.6] R.Langer, A.Barski, A.Barbier, N.T.Pelekanos, O.Konovalov, R.André, L.S.Dang. Strain relaxation in AlN epitaxial layers grown on GaN single crystals. J. Cryst. Growth, 1999, 205:31-35
    [3.7] 孟庆昌。透射电子显微学。第一版。哈尔滨:哈尔滨工业大学出版社,1998年。12-24
    [3.8] 李树棠。金属X射线衍射与电子显微分析技术。第一版。北京:冶金工业出版社,1980年。234
    [4.1] R.M.Lum, J.K.Klingert, B,V.Butt. An integrated laboratory reactor MOCVD safety system. J. Cryst. Growth, 1986, 75:421-428
    [4.2] A.Schwarz, M.Hauert, T.Riemann. Direct optical imaging of Ⅴ-groove quantum wire states. Forschungszentrum Jülich ISG Annual Reports, 2000:26-27
    [4.3] 顾星,叶志镇,赵炳辉。MOCVD生长Ⅲ族氮化物镓源的选择。半导体光电,2002,23(2):109-113
    [4.4] T.W.Weeks, M.D.Bremser, K.SAiley, E.Carlson, W.G.Perry, R.F.Davis. GaN thin films deposited via MOVPE on α (6H)-SiC(0001) using high-temperature mono-crystalline AlN buffer layers. Appl. Phys. Lett., 1995,67(3):401-403
    [4.5] C.F.Lin, G.C.Chi, M.S.Feng, J.D.Guo, J.S.Tsang, J. M. Hong. The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer. Appl. Phys. Lett., 1996, 68 (26):3758-3760
    [4.6] A.Saxler, D.Walker, P.Kung, M.Razeghi, J.Solomon, W.C,Mitchel, H.R.Vydyanath. Comparison of trimethylgallium and triethylgallium for the growth of GaN. Appl. Phys. Lett., 1997,71(22):3272-3274
    [4.7] H.C.凯西。《异质结激光器》下册。国际工业出版社,1985。
    [4.8] C.E.C.Wood. GaInAsP Alloy Semiconductors. ed. By T.P.Pearsall, J.Wiley. 1982, ch.4 3.3
    [4.9] P.Das, D.K.Ferry. Hot electron microwave conductivity of wide band gap semiconductors. Solid State Electron, 1976,19:851
    [4.10] S.J.Peatron, C.R.Abernathy, R.Ren, J.R.Lothian, P.W.Wisk, A.Katz. Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy. J. Vac. Sci. Technol., 1993, A11 (4): 1772-1775
    [4.11] I.Adesida, A.Mahajan, E.Andideh, M.Asif Khan, D.T.Olsen, J.N.Kuznia. Reactive ion etching of gallium nitride in silicon tetrachloride plasmas. Appl. Phys. Lett., 1993,63 (20):2777-2779
    [4.12] D.J.As., F.Schmilgus, C.Wang, B.Schottker, D.Schikora, K.Lischka. The near band edge photoluminescence of cubic GaN epilayers. Appl. Phys. Lett., 1997,70 (10):
    
    1311-1313
    [4.13] N.Kondo, Y.Nanishi, M.Fujimoto. Direct growth of AlGaAs/GaAs single quantum wells on GaAs substrates cleaned by electron cyclotron resonance (ECR) hydrogen plasma. Jpn. J. Appl. Phys., 1994,2 (1B): L91 -L93
    [4.14] S.Sugata, A.Takamori, N.Takado, K.Asakawa, E.Miyauchi, H.Hashimoto. GaAs cleaning with a hydrogen radical beam gun in an ultrahigh-vacuum system. J. Vac. Sci. Technol., 1988,B6(4):1087-1091
    [4.15] A.Takamori, E.Miyauchi, H.Arimoto. Growth interrupted interfaces in multilayer MBE growth of gallium arsenide. Jpn. J. Appl. Phys., 1985, 24:L414-L416
    [4.16] H.Takasugi, Y.Limura, M.Kawabe. Extended Abstracts of the 17th Conference on Solid State Devices and Materials, Business Center for Academic Societies, Tokyo, Japan. 1985:209-212
    [4.17] S.V.Hattangady, R,A.Rudder, M.J.Mantini, G.G.Fountain, J.B.Posthill, R.J.Markunas. In situ cleaning of GaAs surfaces using hydrogen dissociated with a remote noble-gas discharge. J. Appl. Phys., 1990,68 (3):1233-1236
    [4.18] G.M.Mikhailov, P.V.Bulkin, S.A.Khudobin, A.A.Chumakov, S.Y.Shapoval. XPS investigation of the interaction between ECR-excited hydrogen and the native oxide of GaAs (100). Vacuum, 1992, 43 (3):199-201
    [4.19] K.D.Choquette, R.J.Shui, A.J.Howard, D.J.Rieger, R.J.Shul, R.C.Wetzel. Smooth reactive ion etching of GaAs using a hydrogen plasma pretreatment. J. Vac. Sci. Technol., 1995,B13(1): 40-42
    [4.20] T.Sugaya, M.Kawabe. Low-temperature cleaning of GaAs substrate by atomic hydrogen irradiation, Jpn. J. Appl. Phys., 1991,30 (3A):L402-L404
    [4.21] N.Kondo, Y.Nanishi. Low-temperature surface cleaning of GaAs by electron cyclotron resonance (ECR) plasma. Jpn. J. Appl. Phys., 1989, 28 (1): L7-L9
    [4.22] M.Yamada, Y.Ide. Direct observation of species liberated from GaAs native oxides during atomic hydrogen cleaning. Jpn. J. Appl. Phys., 1994,2(5A): L671-L674
    [4.23] 名西 惠之。ECR励起利用MBE成长法(ECR-MBE法)。应用物理,1990,59(12):1629(51)-1635(57)
    [4.24] F.W.Qin, B.Gu, Y.Xu, D.Z.Yang. Effects of substrate pretreatment conditions on quality of GaN films.半导体光子学与技术(英文版),2003,9(1):26-29
    [4.25] S.S.Wang, B.Gu, Y.Xu, F.W.Qin, D.Z.Yang. The effects of GaAs substrate nitridation with N_2-H_2 plasma on c-GaN epitaxy growth by ECR-PEMOCVD. Chinese Journal of Luminescence, 2001, 22:24-28
    [4.26] A.Delouise. Reactive N_2~+ ion bombardment of GaAs (110): A method for GaN thin film growth. J. Vac. Sci. Tech., 1992, A10:1637-1641
    [4.27] A.Kikuchi, H.Hoshi, K. Kishioo. Substrate nitridation effects on GaN grown on GaAs substrates by molecular beam epitaxy using RF-radical nitrogen source. Jpn. J. Appl.
    
    Phys., 1994, 33:688-693
    [4.28] P.Hill, D.I.Westwood, L.Haworth, J.Lu. Nitridation of the GaAs (001) surface using atomic nitrogen. J.Vac.Sci. Technol., 1997,B15 (4):1133-1138
    [4.29] M.Losurdo, P.Capezzuto, G.Bruno. Ⅲ-Ⅴ surface plasma nitridation: A challenge for Ⅲ-Ⅴ nitride epigrowth. J.Vac.Sci. Technol,, 1999,A17 (4):2194-2201
    [4.30] M.Kasu, T. Makimoto, N.Kobayashi. Anisotropic surface morphology of GaAs(001) surfaces passivated with nitrogen radicals. Appl. Phys. Lett., 1996,68(7): 955-957
    [4.31] S.Gwo, H.Tokumoto, S.Miwa. Atomic-scale nature of the (3 × 3)-ordered GaAs(001): N surface prepared by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett., 1997,71(3) :362-364
    [4.32] H.Amano, I.Akasaki, K.Hiramatsu, N.Koide, N.Sawaki. Effects of the buffer layer in metalorganic vapor phase epitaxy of GaN on sapphire substrate. Thin Solid Films, 1988,163:415-420
    [4.33] S.Nakamura. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys., 1991.30(10A):L1705-L1707
    [4.34] R.Kimura, Y.Gotoh, T.Matsuzawa, K.Takahashi. High-purity cubic GaN grown on a AlGaAs buffer layer by molecular beam epitaxy. J. Crys. Growth., 2000,209:382-386
    [4.35] T.Lei, M.Fanciulli, R.J.Molnar, T.D.Moustakas, R.J.Graham, J. Scanlon. Epitaxial growth of zinc blende and wurtizitic gallium nitride thin films on (001) silicon. Appl. Phys. Lett., 1991,59 (8) : 944-946
    [4.36] K.H.Ploog, O.Brandt, H.Yang, B.Yang, A.Trampert. Nucleation and growth of GaN layers on GaAs, Si, and SiC substrates. J Vac. Sci. Technol., 1998, B16(4): 2229-2236
    [4.37] X.L.Sun, H.Yang, Y.T.Wang, L.X.Zheng, D.P.Xu, D.G.Zhao, S.F.Li. Z.G.Wang. Effect of buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs (001) substrates. J. Crys. Growth, 2000, 212:397-401
    [4.38] H.Tsuchiya, K.Sunaba, T.Suemaasu, F.Hasegawa. Growth condition dependence of GaN crystal structure on (001)GaAs by hydride vapor-phase epitaxy. J. Crys. Growth. 1998,189/190:395-400
    [4.39] E.Butter, G.Fitzi, D. Hirsch, G.Leonhardt, W.Seifert, G.Preschel. The deposition of group Ⅲ nitrides on silicon substrates. Thin Solid Films, 1979,59(1):25
    [4.40] S.W.Choi, K.J.Bachmann, G.Lucovsky. Growth kinetics and characteriza- tions of gallium nitride thin films by remote PECVD. J. Mater. Res., 1993, 8(4):847
    [4.41] Y.Hiroyama, M.Tamura. Effect of very thin SiC layeron heteroepitaxial growth of cubic GaN on Si(001). Jpn. J. Appl. Phys., 1998, 37(6A):L360
    [4.42] T.Inushima, T.Oda, T.Ashino, T.Matsushita, T.Shiraishi, S.Yasaka, S.Ohoya. Crystal growth of GaN at resonance point of nitrogen-ECR plasma. J. Cryst.Growth, 1998,189/190:354-358
    
    
    [4.43] H.Lahrèche, P.Vennéguès, O.Tottereau, M.Laugt, P.Lorenzini, M.Leroux, B.Beaumont. P.Gibart. Optimisation of AlN and GaN growth by metalorganic vapour phase epitaxy (MOVPE) on Si(111). J. Crys. Growth, 2000, 217(1-2):13-25
    [4.44] O.Brandt, H.Yang, K.H.Ploog. Surface kinetics of zinc-blende (001) GaAs. Phys. Rev., 1996, B54, (7):4432-4435
    [4.45] 顾彪,徐茵,孙凯,秦福文。(001)GaAs衬底上异质外延的立方GaN薄膜与界面。半导体学报,1998,19(4):241-244
    [4.46] B.Yang, O.Brandt, A.Trampert, B.Jenichen, and K.H.Ploog. Growth of cubic GaN on Si(001) by plasma-assisted MBE. Appl. Surf. Sci., 1998,123/124:1
    [4.47] 张昊翔,叶志镇,卢焕明,赵炳辉,阙端麟。硅基GaN薄膜的外延生长。半导体学报,1999,20(2):143-146
    [4.48] R.Graupner, Q.Ye, T. Warwick. E.Bourret-Courchesne. Study of interface reactions between Si and GaN at high temperature using scanning photoelectron microscopy and Ⅹ-ray absorption spectroscopy. J. Crys.Growth, 2000, 217(1-2):55-64
    [4.49] Y.Xu, B.Gu. F.W.Qin, X.N.Li, S.S.Wang. Investigation of GaN growth directly on Si (001) by ECR plasma enhanced MOCVD.半导体学报,23(12)(2002):1238-1244
    [4.50] 角谷正友,福家俊郎。MOCVD六方晶GaN薄膜成长极性構造。应用物理,2001,70(2):178
    [4.51] K.Balakrishnan, H.Okumura, S.Yoshida. Study on the initial stages of hetero-epitaxial growth of hexagonal GaN on sapphire by plasma assisted MBE. J. Cryst. Growth. 1998, 189/190:244-249
    [5.1] H.Yang, O.Brandt and K.Ploog. MBE growth of cubic GaN on GaAs substrates. Phys.Stat.Sol.(b)., 1996,194:109-120
    [5.2] N.Kuwano, Y.Nagatomo, K.Kobaysshi, K.Oki. S.Miyoshi, H.Yaguch, K.Onabe, Y.Shiraki. Transmission electron microscope observation of cubic GaN grown by metalorganic vapor phase epitaxy with dimethyl-hydrazine on (001) GaAs. Jpn. J. Appl. Phys., 1994, 33(1): 18-22
    [5.3] S.Strite, J.Ran, Z.Li, A.Salvador, H.Chen, David J. Smith, W. J.Choyke, H.Morkoc. An investigation of the properties of cubic GaN grown on GaAs by plasma-assisted molecular-beam epitaxy. J. Vac. Sci.Technol., 1991, B9 (4):1924-1929
    [5.4] 赵彦立,钟国柱,范希武,李长华。射频磁控反应溅射生长AlN薄膜。发光学报,1999,20:165-169
    [5.5] 黄继颇 王连卫 祝向荣,多新中,林成鲁。脉冲激光沉积制备c轴取向AlN薄膜。压电与声光,1999,21:387-389
    [5.6] K.Balakrishnan, H.Okumura, S.Yoshida. Study on the initial stages of heteroepitaxial growth of hexagonal GaN on sapphire by plasma assisted MBE. J. Cryst. Growth.
    
    1998, 189/190:244-249
    [5.7] S.Okubo, N.Shibata, T.Saito. Formation ofcubic-AIN layer on MgO(100) substrate. J. Cryst. Growth, 1998, 189/190:452-456
    [5.8] H.P.D.Schenk, G.D.Kipshidze, U.Kaiser, A.Fissel, J.Kruβlich, J.Schulze, W.Richter. Investigation of two-dimensional growth of AlN(0001) on Si(111) by plasma-assisted molecular beam epitaxy. J. Cryst. Growth, 1999. 200 : 45-54
    [5.9] Z.Y.Fan, G.Rong, J.Browning, N.Newman. High temperature growth of AlN by plasma-enhanced molecular beam epitaxy. Mater.Sci. and Engi.,1999, B67:80-87
    [5.10] T.Shibata, K.Asai,Y.Nakamura, M.Tanaka, K.Kaigawa, J.Shibata, H.Sakai. AlN epitaxial growth on off-angle R-plane sapphire substrates by MOCVD. J. Cryst. Growth,2001,229:63-68
    [5.11] Y.Tanaka, Y.hasebe,T, Inushima, A.Sandhu, S.Ohoya. Comparison of AlN thin flms grown on sapphire and cubic-SiC substrates by LP-MOCVD. J.Cryst.Growth. 2000.209:410-414
    [5.12] 彭英才。Ⅲ族氮化物半导体的气相外延生长及其热力学分析(1)。半导体杂志,1999,24(1):19-24
    [5.13] 彭英才。Ⅲ族氮化物半导体的气相外延生长及其热力学分沂(2)。半导体杂志,1999,24(2):16-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700