Ⅲ族氮化物及AlN基稀磁半导体纳米材料的制备与高压物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用直流电弧等离子体方法成功合成出了III族氮化物和过渡金属及稀土元素掺杂AlN基稀磁半导体的多种纳米结构,并对III族氮化物纳米结构进行了原位的高压同步辐射研究。
     1.首次利用直流电弧等离子体方法制备出了AlN的多种纳米结构,主要包括:树状、海胆状、玫瑰花状、单边梳、单边钉等结构,并详细研究了这些特殊纳米结构的光学性质和生长机理。
     2.对现有的直流电弧等离子体设备进行改造,成功的制备出了AlN分级和海胆分支结构。并对它们的发光性质进行了研究和比较。详细论述了这些新形貌生长的机理。
     3.首次利用直流电弧等离子体方法制备出了GaN的多孔纳米结构,并对其光学性质和生长机制进行了讨论。
     4.首次利用直流电弧等离子体方法制备出了过度金属Fe掺杂AlN的纳米线和六重纳米结构,对其生长机理和磁性进行了研究。
     5.首次利用直流电弧等离子体方法制备出了稀土元素Sc和Y掺杂AlN的纳米六棱柱和六重纳米结构。对其进行了磁性表征。并利用理论计算的方法分析了这些非磁性稀土掺杂稀磁半导体磁性的来源。
     6.首次利用高压原位同步辐射X-ray衍射技术,对同一压腔内AlN纳米线和纳米晶、GaN纳米线、InN纳米晶进行了系统的高压相变研究。并对其体弹模量和相变压力进行了讨论。
III-nitride compounds with various structures and morphologies have in recent years attracted increasing attention due to their significant applications in optoelectronic and field-emission devices. III-nitride nanostructures, in particular, are expected to have important applications in field emitters, flexible pulse-wave sensors and ultraviolet nanolasers, due to their excellent optical and electronic properties and large area surface. However, there are few reports on the synthesis of hierarchical nanostructures of group III nitride. Hence, the synthesis of AlN nanostructures with controlled shapes and sizes is an important topic worthy of exploration. Especially hierarchical structured nanomaterials, which have dual or multiple morphologies and structures, have attracted increasing interest because of their structural complexity and greater functionality.
     Aluminum nitride (AlN), as the largest band gap group III nitrides, has various unique properties such as excellent thermal conductivity, low dielectric loss, high melting point, high mechanical strength, and high piezoelectric response. It has attracted increasing attention in recent years. Recently, many efforts have been devoted to fabricating AlN based DMS due to the wide gap 6.2 eV of AlN. Magnetic transition metals TMs such as Mn, Cr, Co, and Fe are frequently used as magnetic dopants to fabricate AlN based DMS. Although, many efforts have been made to explore the synthesis and magnetic properties of AlN-based DMS bulk materials and films, there are very few research groups reported the synthesis of nanostructures. It has been reported that Al vacancies in AlN resulting in a ferromagnetic ground state with a magnetic moment of 3.0μB using ab initio calculation. However, they predicted sufficient Al vacancy concentration may be difficult to achieve in thermal equilibrium due to its high formation energy. Thus, viable and simple methods are highly desired for the synthesis of ferromagnetic semiconductors by reducing the formation energy of cation vacancies.
     In recent years, the high-pressure studies on nanomaterials have stimulated great enthusiasm in order to improve our understanding of the structural stability and the mechanical properties of nanomaterials. However, the high-pressure behavior of III nitrides nanomaterials is less known.
     In this paper, we report the synthesis of various morphologies of III nitrides and rare-earth doping III nitrides nanostructures by direct current arc discharge plasma method, including the analysis of their structures and growth mechanism and measurements of their photoluminescence and magnetic properties. In addition, we report a high-pressure study on the synthesized III nitrides nanostructures using an in situ synchrotron radiation X-ray diffraction technique in diamond anvil cell. The obtained main innovative results are as follow:
     1. We firstly synthesized a great deal of new nanostructures of AlN, such as nanobranches, nanourchins, microroses and nanonails, etc., by direct current arc discharge plasma method. These nanostructures can be controlled by the growth conditions include the gas pressure, direct current, reaction time and reaction time. The polar surface induced growth and the supersaturated Al vapor are proposed to explain the growth of AlN nanostructures, especially the synthesis AlN microroses. In this work, the adding NH3 plays an important role in the formation of AlN single-sided nanocombs and single-sided nanonails on nanowires.
     2. We firstly controlled fabrication of AlN branched nanostructures with tree shapes and sea urchin shapes through an improved direct current arc discharge plasma method without any catalyst and template. Differing from our previous setup, we designed a Mo plate as the upper collection substrate located near the tip of W cathode, and used Al anode as the nether substrate. As the Mo upper substrate is added on the W cathode, a small circulation of reactive vapors between the Mo upper substrate and Al nether substrate is formed, which results in high fluxes of Al and N vapors toward the Mo upper and Al nether substrates. In this work, we demonstrated that the improved DC arc discharge plasma method provides a simple route to fabricate branched nanostructures with various morphologies.
     3. We also studied the optical properties and the impact of defects of the as-synthesized novel nanostructures. A strong emission appears ranging from 550 to 570 nm. Those emissions are attributed to the the nitrogen vacancy and the radiative recombination of a photon- (or electron-) generated hole with an electron occupying the nitrogen vacancy. The emission intensity is related to AlN nanostructures. The AlN nanostructures have complex structures with large surface/volume ratio which could result in the enhancement of emission intensity.
     4. We firstly fabricated GaN porous nanostructure using direct current arc discharge plasma method. This nanostructure has large surface/volume ratio and many holes. PL spectra of the GaN porous nanostructures were measured under an ultraviolet excitation from He-Cd laser at 325 nm at room temperature. A strong emission centered at 678.6 nm appears ranging from 550 to 750 nm as well as a weak emission around 391.2 nm. The emission band at 391.2 nm is attributed to band edge emission of GaN. The emission band at 678.6 may be correspond to the nitrogen vacancy in surface or subsurface of GaN porous nanostructures. In the formation of GaN porous nanostructures, lower N2 pressure was used than that for the growth of AlN hierarchical nanostructures. The lower N2 pressure could induce small quality of evaporation of Ga.
     5. We firstly synthesized Fe-doped AlN nanowires and 6-fold-symmetrical hierarchical nanostructures using direct current arc discharge plasma method without introducing any catalysts and templates. In this work, metal nanoparticles were found on the tips of the nanowires. Therefore, the formation mechanism of these nanostructures should be related to the VS mechanism. The plot of the magnetization (M) versus magnetic field strength (H), measured by VSM at 300 K, clearly indicated ferromagnetism at room temperature. The saturation magnetization and the coercive fields (Hc) of the AlN:Fe nanostructures are about 0.256 emu g-1 and 131 Oe, respectively. The origin of ferromagnetism in AlN:Fe could be from the Fe3+-VN-Fe3+ groups and Fe.
     6. We firstly fabricated Sc and Y-doped AlN hexagonal nanoprisms and 6-fold-symmetrical hierarchical nanostructures though direct current arc discharge plasma method. These hexagonal nanoprisms have diameters around 100-180 nm and lengths around 150-200 nm. The plot of the magnetization (M) versus magnetic field strength (H), measured by VSM at 300 K, clearly indicated ferromagnetism at room temperature. The saturation magnetization and coercive fields (Hc) of the AlN:Sc hexagonal nanoprisms are measured to be 0.049 emu g-1 and 299 Oe respectively. The saturation magnetization and the coercive fields (Hc) of the AlN:Sc nanostructures are about 0.04 emu g-1 and 200 Oe, respectively. The saturation magnetization and coercive fields (Hc) of the AlN:Y hexagonal nanoprisms are about 0.050 emu g-1 and 101 Oe respectively. Our first-principles calculations have established that the observed ferromagnetism in AlN:Sc and AlN:Y hexagonal nanoprisms is not from Sc and Y atoms, but from the Al vacancies. The calculated formation energy of Al vacancies in AlN:Sc (3.556 eV) is much smaller than that in pure AlN (6.405 eV), implying that doping Sc has significantly reduced the formation energy of Al vacancies. The calculated formation energy of Al vacancies in AlN:Y is 4.876 eV is bigger than that in AlN:Sc due to the bigger radius of Y3+ ions. All this results together point out that the doping nonmagnetic element, such as Sc and Y, in semiconductors can induce an enhancement magnetic property resulting from high cation vacancy concentration that is a visible method to develop a novel class DMSs.
     7. We firstly reported a series of high-pressure studies on AlN nanocrystals and nanowires (in a single diamond anvil cell), GaN nanowires and InN nanocrystals using in situ synchrotron radiation X-ray diffraction technique in diamond anvil cell. As for AlN nanocrystals and nanowires in a single diamond anvil cell, an onset pressure of 21.5 GPa from the wurtzite to rocksalt phase transition is observed in AlN nanocrystals and nanowires, respectively. Furthermore, the transition to the rocksalt phase is completed up to 27.8 GPa, which is very swift due to the effect of hydrostaticity. Such same high pressure behaviors in AlN nanocrystals and nanowires might be attributed to them with the similar size and diameter. The bulk modulus of rocksalt phase of AlN nanocrystals and nanowires are B0=312.6±22.7 GPa, and B0=324.9±15.8 GPa, respectively. Therefore, this indicates that the reduction of particle size can significantly lead to an enhancement of the bulk modulus. As for GaN nanowires, an onset pressure of 44.3 GPa from the wurtzite to rocksalt phase transition, the transition to the rocksalt phase is completed up to 52.7 GPa. The bulk modulus of wurtzite and rocksalt phases of GaN nanowires are B0=175±7 GPa, and B0=263.6±5 GPa, respectively. As for InN nanocrystals, an onset pressure of 12.6 GPa from the wurtzite to rocksalt phase transition, the transition to the rocksalt phase is completed up to 17.4 GPa. The bulk modulus of wurtzite and rocksalt phases of GaN nanowires are B0=161.8±9 GPa, and B0=263.6±5 GPa, respectively. These findings further confirmed the reduction of particle size can significantly lead to an enhancement of the bulk modulus.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社, 2001.
    [2] S. Y. Chou, P. R. Krauss, W. Zhang, J. Vac.Sci. Technol, 1997, B15, 2897.
    [3]张立德,蔡伟平,牟季美,自然科学进展, 1999,9(2),103.
    [4] W. P. Cai, L. D. Zhang, J. Phys. Condens Matter, 1996, 8, 591.
    [5] R. Leon, et al, Science, 1995, 267, 1966.
    [6] V. L. Colvin, A. P. Alivisatos, Nature, 1994, 370, 354.
    [7] M. Mark, et al, Catal. Today, 1991, 8, 467.
    [8]颜冲,于军,包大新,陈文洪,朱大中,固体电子学研究与进展,2005, 25,1.
    [9]韩秀峰,物理,2008,37,392.
    [10]都有为,高层论坛功能材料信息,2006, 3.
    [11]徐明,材料导报,2006,20,12.
    [12]詹文山,物理,2006,35,811.
    [13]刘林生,刘肃,王文新,赵宏鸣,刘宝利,蒋中伟,高汉超,王佳,陈弘,周均,电子器件, 2007,30,1125.
    [14] J. K. Furdyna,J. Appl. Phys. 1988,64, R29.
    [15]刘宜华,张连生.稀释磁性半导体[J].物理学进展, 1994, 14, 82.
    [16]常凯,夏建白,物理,2004,33,414.
    [17] I. K. Furdyna, I. Kossut, Semiconductor and Semimetals. New York : Academic Press, 1988.
    [18] M. C. Payne, M. P. Teter, Rev.Mod. Phys. 1992, 64, 1045.
    [19] J. P. Perdew, A. Zunger,Phys. Rev. B 23, 1981, 5048.
    [20] O. H. Making, Science, 1998 , 281, 9512956.
    [21] D.Vnaderbilt,Phys.Rev.B 1990, 41, 7892.
    [22]H. Munekata, H. Ohno, S. V. Molnar, Phys. Rev.Lett., 1989, 63, 1849.
    [23] H. Ohno, H. Munekata, T. Penny,Phys. Rev. Lett.,1992,68, 2664.
    [24]H, Ohno, A. Shen, F. Matsukura, Appl Phys Lett 1996, 69, 363.
    [25]T. Jungwirth, K. Y. Wang, J. Masek, Phys. Rev. B., 2005,72, 165204.
    [26] T. Dietl, H. Ohno, F. Matsukura, Science , 2000 , 287,,101921022.
    [27] W. B. Mi, H. L. Bai, H. Liu, J . Appl . Phys, 2007 , 101, 023904.
    [28]M. Ruderman,C. Kittel,Phys. Rev. 1954,96, 99.
    [29] K. Yosida,Phys.Rev. 1957, 106, 893.
    [30] T. C. Kreutz, G. Zanelatto, E. G. Gwinn, Appl. Phys Lett. 2002, 81, 4766.
    [31] T. Dietl, H. Ohno, F. Matsukura, Science, 2000, 287, 1019.
    [32] L. M. Snadratskii, P. Bruno, Phys.Rev.B 2002, 66,134435.
    [33]T. Dietl,A. Haury,Y. Meri, Phys. Rev. B.,1997,55, R3347.
    [34]H, Akai. Phys. Rev. Lett, 1998, 81, 3002.
    [35] C. Zener, Phys Rev, 1951, 82, 403.
    [36]P. W. Anderson, Phys. Rev,1950,79, 705.
    [37] P. W. Anderson, Phys.Rev.,1950,79, 350.
    [38] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat Mater, 2005, 4, 173.
    [39]S. D. Sarma, E. H. Hwang, A. Kaminski, Phys. Rev. B, 2003, 67, 155201.
    [40] M. Randeria,J. P. Sethna,R. G. Palmer,Phys. Rev. Lett. 1985,54, 1321.
    [41] Y. D. Li, X. L. Li, R. R. He, J. Am. Chem. Soc. 2002, 124, 1411.
    [42] A. M. Morales, C. M. Lieber, Science. 1998, 279, 208.
    [43] W. Q. Han, A. Zettl, Appl. Phys. Let. 2002, 80, 303.
    [44] Y. C. Kong, D. P. Yu, B. Zhang, et al. Appl. Phys. Lett. 2001, 78, 407.
    [45] H.Y. Peng, X. T. Zhou, N. Wang, et al. Chem. Phys. Let. 2000, 327, 263.
    [46] Y. L. Li, A. K. Inloch, A. H. Windle, Science. 2004, 304, 276.
    [47] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phy, 2001, 89, 5815.
    [48] H. Morkoc, S. N. Mohammad, Science, 1995, 267, 51.
    [49] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys, 1994, 76, 1363.
    [50] S. Strite,H. Morkoe, J. Vacu. Sci. Tech. 1992,B10, 127.
    [51]T. Matsuoka, T. Ohki, T. Ohno, Y. Kawaguchi, J. Cryst. Growth, 1994, 138,727.
    [52] D. A. Neumayer, J. G. Ekerdt, Chem. Mater, 1996, 8, 25.
    [53] S. Strite, H. J. Morkoc, Vac. Sci. Technol. B, 1992, 10, 1237.
    [54]S.Iijima, Nature. 1991, 354, 56.
    [55] A. P. Alivisatos, Science. 1996, 271, 933.
    [56] Y. Cui, C. M. Lieber, Science. 2001, 291, 851.
    [57] Y.Cui, Q.Wei, H. Park, et al. Science. 2001, 293, 1289.
    [58] M. S.Gudiksen, L. J.Lauhon, J.Wang, et al. Nature. 2002, 415, 617.
    [59] X. F. Duan, Y.Huang, R. Agarwal, et al. Nature. 2003, 421, 241.
    [60]N. C. Wu, M. S. Tsai, M. C. Wang, H. S. Liu. J. Crystal Growth, 2000, 208, 189.
    [61]关波,傅正义,王玉成,王为民,张金咏,林华幌,直流电弧等离子体制备氮化铝纳米粒子,中国有色金属学报,2004, 14, 206.
    [62]宋扬,汪长安,黄勇,稀有金属材料与工程, 2005,1, 147.
    [63]尚书勇,梅丽,李兰英,印用祥,戴晓雁,广东化工,2004,3, 5.
    [64]尚书勇,梅丽,李兰英,印用祥,戴晓雁,化工新型材料,2004,7, 8.
    [65]李晓云,丘泰,沈春英,硅酸盐学报,2004,11, 1422。
    [66]秦明礼,曲选辉,林健凉,肖平安,祝宝军,粉末冶金材料科学与工程,2002,1, 50.
    [67]秦明礼,曲选辉,罗铁钢,肖平安汤春峰,段柏华,稀有金属材料与工程,2005,34, 713.
    [68]李凯,李振刚,于美燕,董守义,王琪珑,赫霄鹏,崔得良,化学学报,2004,12, 1144.
    [69] S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, L. C. Chen, Adv. Funct Mater, 2005, 15, 781.
    [70]J. Zhen, Y. Yang, B. Tu, X. B. Song, X. G. Li, ACS Nano. 2008, 2, 134.
    [71]F. Zhang, Q. Wu, P. Xiao, Y. W. Ma, Y. M. Hu, X. Z. Wand, C. Y. Wangm Z. Hu, J. Phys. Chem. C 2008, 112, 11331.
    [72]W. C. Johnson,J. B. Parsons,M. C. Crew, J. Phys. Chem.1932, 36, 2651.
    [73] T. Ogino, M. Aoki, Jpn J Appl Phys, l980, l9, 2395.
    [74] J. Neugebauer, C. G. Van De Walle, Appl Phys Lett, 1996, 69, 503.
    [75]Y. Xie,Y. T. Qian,W. Z. Wang, Y. Zhang,Y. H. Zhang,seienee,1996, 272, 1926.
    [76] A. Petersson,A. Gustafsson,L. Samueson,Y. Tanaka,Appl. Phys. Lett.,1999, 74, 3513.
    [77]W. Q. Han,S. S. Fan,Q. Li,Y. D. Hu,Seienee,1997, 277, 1287.
    [78] G. S. Cheng,L. D. Zhang,Y. Zhu,G. T. Fei,L. Li,C. M. Mo,Y. Q. Mao,Appl. Phys. Lett. 1999, 75, 2455.
    [79] X. F. Duan,C. M. Lieber, J.Am.Chem.Soe.,2000, 122, 188.
    [80] C. C. Chen,C. C.Yeh, Adv. Mater.,2000, 12, 738.
    [81] H. Y. Peng,X. T. Zhou,N. Wang,Y. F. Zheng,L. S. Liao,W. S. Shi,C. S. Lee,S. T. Lee,Chem,Phys. Lett.,2000, 327, 263.
    [82] J. Q. Hu, Y. S. Bando, J. h. Zhan, F. F. Xu, T. Sekiguchi, D. Golberg, Adv. Mater. 2004, 16, 1465.
    [83] Q. F. Meng, C. B. Jiang, S. X. Mao, J. Crys. Grow. 2007, 308, 166.
    [84]F. Xu, Y. X, X. Zhang, S. Y. Zhang, X. M. Liu, W. Xi, X. B. Tian, Adv. Funct. Mater. 2004, 14, 464.
    [85] E. Starikov, P. Shiktorov, and V. Gru?inskis, Materials Science Forum, 2002 , 384, 205.
    [86]张会肖,半导体情报,2001, 1, 22.
    [87] E. Starikov, V. Gruzinskis, P. Shiktorov, Phys. Stat. Sol. (a), 2002, 190, 287.
    [88] J. Wu, W. Walukiewicz, K. M. Yu, Appl Phys Lett ,2002 ,80, 3967.
    [89] V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, Phys. Stat . Sol. (b), 2002 , 229, R1.
    [90]T. Matsuoka , H. Okamoto , M. Nakao, Appl. Phys. Lett, 2002, 81, 1246.
    [91] Z. G. Qian, W. Z. Shen , H. Ogawa, J . Appl. Phys, 2002 , 92, 3683.
    [92] R. Juza,H. Hahn,Z. Anorg, Alleg. Chem. 1938, 239, 282.
    [93] J. W. Tranior, K. Rose, J. Electron. Mater, 1974, 3, 821.
    [94]T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, H. Luth, Nano Lett. 2006, 6, 1541.
    [95]X. H. Ji, S. P. Lau, H. Y. Yang, S. F. Yu, Nanotechnology, 2005,16,3069.
    [96] R. M. Frazier, J. Stapleton, G. T. Thaler, C. R. Abernathy, S. J. Pearton, R.Rairigh, J. Kelly, A. F. Hebard, M. L. Nakarmi, K. B. Nam, J. Y. Lin. J. X. Jiang, J. M. Zayada, J. Appl. Phys. 2003, 94. 1952.
    [97] R. M. Frazier, G. T. Thaler, J. Y. Leifer, J. K. Leifer, J. K. Hite, B. P. Gila, C. R. Abernathy, S. J. Pearton, Appl. Phys. Lett. 2005, 86, 052101.
    [98]D.Kumar,J.Antifakoe, M. G. Blamire, Z. H. Barber, Appl. Phys. Lett. 2004, 84, 5004.
    [99] K. Y. Ko, Z. H. Barber, M. G. Blamire, J. Appl. Phys. 2006, 100, 083905.
    [100] J. J. Liu, M. H. Yu, W. L. Zhou, Appl. Phys. Lett. 2005, 87, 172505.
    [101] H. J. Xiang, S. H. Wei, Nano Lett. 2008, 8, 1825.
    [102] H. K. Seong, J. Y. Kim, J. J. Kim, S. C. Lee, S. R. Kim, U. Kim, T. E. Park, H. J. Choi, Nano Lett. 2007, 7, 3366.
    [103] H. K. Seong, Y. Lee, J. Y. Kim, Y. K. Byeun, K. S. Han, J. G. Park, H. J. Choi, Adv. Mater. 2006, 18, 3019.
    [104] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Nano Lett. 2005, 5, 1587.
    [105] B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. R. He, P. D. Yang, Angew. Chem. 2006, 45, 420.
    [106]X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, A.Sedhain, J. Y. Lin, H. X. Jiangm K. S. Teng, J. S. Chen, Appl. Phys. Lett. 2007, 90, 193118.
    [107]X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, J. S. Chen, Nanotechnology, 2007, 18, 105601.
    [108]R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, Appl. Phys. Lett, 2006,89, 142501.
    [109]Y. Zhang, W. Liu, P. Liang, H. B. Niu, Solid. State. Commu. 2008, 147, 254.
    [110] W. Jia, P. D. Han, M. Chi, S. H. Dang, B. S. Xu, X. H. Liu, J. Appl. Phys.2007, 101, 113918.
    [111]I. S. Elfimov,S. Yunoki, G. A. Sawatzky, Phys. Rev. Lett.,2002,89, 21640.
    [112]C. D. Pemmaraju,S. Sanvito,Phys.Rev.Lett.,2005,94, 217205.
    [113]H. Munekata,H. ohno,S. von, Phys. Rev. Lett. 1989,63, 1849.
    [114] A. J. Steckl,J. M. Zavada,MRS Bull. 1999, 24,33.
    [115] A. J. Steckl,J. C. Heikenfeld,D. S. Lee, IEEE J. Sel. ToP. Quant. 2002, 8, 749.
    [116]S. Morishima, T. Maruyama. Phys. Stat. Sol. A. 1999, 176, 113.
    [117]K. Takahei, A. Taguchi. J. Appl. Phys. 1989, 66, 4941.
    [118] A. J. Steck, R. Birkhahn, Appl. Phys. Lett. 1998, 73, 1700.
    [119] J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, A. J. Steckl. Appl. Phys. Lett. 1999, 75, 1189.
    [120] E. E. Nyein, U. Hommerich, J. Heikenfeld, D. S. Lee, A. J. Steckl, J. M. Zavada Appl. Phys. Lett. 2003, 82, 1655.
    [121] M. Garter, J. Scofield, R. Birkhahn, A. J. Steckl, Appl. Phys. Lett., 1999, 74, 182.
    [122] J. Heikenfeld, D. S. Lee, M. Garter, R. Birkhahn, A. J. Steckla, Appl. Phys. Lett., 2000, 76, 1365.
    [123] A. J. Steckl, M. Garter, D. S. Lee, J. Heikenfeld, R. Birkhahn, Appl. Phys. Lett., 1999, 75, 2184.
    [124] E. Horvath-Bordon, R. Riedel, A. Zerr, Chem. Soc. Rev., 2006, 35, 987.
    [125] S. Karmakar, Surinder M. Sharma, P. V. Teredesai, and A. K. Sood, Phys. Rev. B 2004, 69, 165414.
    [126] S. H. Tolbert, A. P. Alivisatos, Science, 1994, 265, 373.
    [127] H. D. Li, H. B. Yang, G. T. Zou, S. Yu, Adv. Mater. 1997, 9, 156.
    [128] Y. J. Zhang, J. Liu, R. R. He, Q. Zhang, X. Z. Zhang, J. Zhu, Chem. Mater. 2001, 13, 3899.
    [129] K. C. Hsu, K. Etemadi, and E. Pfender, J. Appl. Phys. 54, 1293, 1983.
    [130]马腾才,胡希伟,张银华,等离子体物理原理,中国科学技术大学出版社,1998,第一版。
    [131] P. Z. Si, E.Bruck, Z. D. Zhang, O. Tegus, W. S. Zhang, K. H. J. Buschow, J. C. P. Klaasse, Materials Research Bulletin, 2005, 40, 29.
    [132] Z. Q. Wei, P. X. Yan, W. J. Feng, J. F. Dai, Q. Wang, T. D. Xia, Materials Characterization, 2006, 57, 176.
    [133] M. H. Lin, Ceramics International, 2005, 31, 1109.
    [134]Y. M. Guo, N. Murata, K. Ono, and T. Okazaki, Journal of Nanoparticle Research, 2005, 7, 101.
    [135] Y. M. Guo, T. Okazaki, Japanese Journal of Applied Physics, 2004, 43, 720.
    [136] W. Q. Han, P. Redlich, F. Ernst, and M. Ruhle, Appl. Phys. Lett, 2000, 76, 652.
    [137] X. P. Zou, D. S. Tang, Z. Q. Liu, W. Y. Zhou, G. Wang, Y. B. Li, S. S. Xie, Journal of Crystal Growth, 2001, 223, 125.
    [138] A. V. Palnichenko, A. N. Rossolenko, V. N. Kopylov, I. I. Zverkova, A. S. Aronin, Chemical Physics Letters, 2005, 410, 436.
    [139]沈龙海,吉林大学博士毕业论文,2006,
    [140] Y. G. Cao, X. L. Chen, Y. C. Lan, J. Y. Li, Y. P. Xu, T. Xu, Q. L. Liu, J. K. Liang, J. Crys. Grow. 2000, 213, 198.
    [141] Q. Zhao, H. Z. Zhang, X. G. Xu, Z. Wang, J. Xu, D. P. Yu, Appl. Phys. Lett, 2005, 86, 193101.
    [142]C. Liu, Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, N. S. Xu, J. Am. Chem. Soc, 2005, 127, 1318.
    [143] J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, Z. L. Wang, Adv. Mater, 2006, 18, 650.
    [144] H. T. Chen, X. L. Wu, X. Xiong, W. C. Zhang, L. L. Xu, J. Zhu, P. K. Chu, J. Phys. D: Appl. Phys. 2008, 41, 025101.
    [145] S. Pacesove, L. Jastrabik, J. Phys. B, 1979, 29, 913.
    [146] R. A. Youngman, J. H. Harris, D. A. Cherno, Ceram. Trans, 1989, 5, 309.
    [147] X. H. Zhang, Y. C. Liu, X. H. Wang, S. J. Chen, G. R. Wang, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, J. Phys.: Condens. Matter., 2005, 17, 303.
    [148] C. Li, G. J. Fang, F. H. Su, G. H. Li, X. G. Wu and X. Z. Zhao, Nanotechnology, 2006, 17, 3740.
    [149] H. Q. Yan, R. R. He, J. Johnson, M. Law, R. J. Saykally and P. D. Yang, J. Am. Chem. Soc., 2003, 125, 4728.
    [150] J. Zheng, X. B. Song, B. Yu, X. G. Li, Appl. Phys. Lett. 2007, 90, 193121.
    [151] L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li, D. Golberg, Adv. Mater., 2005, 17, 110.
    [152] G. Z. Shen, Y. Bando, D. Golberg, Cryst. Growth Des. 2007, 7, 35.
    [153] Y. Jung, D. -K. Ko and R. Agarwal, Nano Lett., 2007, 7, 264.
    [154] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L. C. Chen and C. C. Chen, Adv. Func. Mater., 2004, 14, 233.
    [155] C. S. Lao, P. X.Gao, R. S.Yang, Y. Zhang, Y. Dai, Z. L. Wang, Chem. Phys. Lett. 2006, 417, 358.
    [156] A. Mu?oz, K. Kunc, Phys. Rev. B 1986, 34, 1071.
    [157] J. -E. J?rgensen, J. M. Jakobsen, J. Z. Jiang, L. Gerward, J. Staun Olsen, J. Appl. Cryst. 2003, 36, 920.
    [158]李红东,吉林大学博士论文,1998.
    [159] C. A. Arguello, D. L. Rousseau, S. P. S. Porto, Phys. Rev. 1969, 181, 1351.
    [160] T. Azuhata, T. Sota, K.Suzuki, S. Nakamura, J. Phys.:Condens. Matter 1995, 7, L129.
    [161] L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, F. Bechstedt, Phys. Status Solidi B 1996, 198, 621.
    [162] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, Phys. ReV. B 1998, 58, 12899.
    [163] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen,L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 2001, 123, 2791。
    [164]A. Tanzzka, S. Onari, T. Arai, Phys. Rev. 1993, B47,1237.
    [165]M. Fujii, S. Hayashi, K. Yamamoto, Appl. Phys. Lett. 1990, 57, 2692.
    [166] T. Yao, W. S. Yan, Z. H. Sun, Z. Y. Pan, Y. Xie, Y. Jiang, J. Ye, F. C. Hu, S. Q. We, J. Phys. Chem. C, 2009, 113, 14114.
    [167] P. Gao, Z. L. Wang, J. Phys. Chem. B, 2002, 106, 12653.
    [168] P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharmaa, R. Ahuja, J. M. O. Guillen, B. Johansson, G. A. Gehring, Nat. Mater. 2003, 2, 673.
    [169] H. Ohno, Science 1998, 281, 951.
    [170] R. M. Frazier, G. T. Thaler, J. Y. Leifer, J. K. Hite, B. P. Gila, C. R. Abernathy, S. J. Pearton, Appl. Phys. Lett. 2005, 86, 052101.
    [171] J. J. Liu, M. H. Yu, W. L. Zhou, Appl. Phys. Lett. 2005, 87, 172505.
    [172] J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 2004, 84, 1332.
    [173] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 2001, 79, 988 [174 L. H. Ye, A. J. Freeman, B. Delley, Phys. Rev. B 2006, 73, 033203.
    [175] H. J. Xiang, S. H. Wei, Nano Lett. 2008, 8, 1825.
    [176] H. K. Seong, J. Y. Kim, J. J. Kim, S. C. Lee, S. R. Kim, U. Kim, T. E. Park, H. J. Choi, Nano Lett. 2007, 7, 3366.
    [177] H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J.Y. Lin, Y. P. Feng, J. Ding, L. H. Van, J. H. Yin, Phys. Rev. Lett. 2007, 99, 127201.
    [178] I. S. Elfimov, S. Yunoki, G. A. Sawatzky, Phys. Rev. Lett. 2002. 89, 216403.
    [179] C. D. Pemmaraju, S. Sanvito, Phys. Rev. Lett. 2005, 94, 217205.
    [180] J. Osorio-Guille′n, S. Lany, S.V. Barabash, A. Zunger, Phys. Rev. Lett. 2006, 96, 107203.
    [181] R. Frazier, G. Thaler, M. Overberg, B. Gila, C. R. Abernathy, S. J. Pearton, Appl. Phys. Lett. 2003, 83, 1758.
    [182] D. Kumar, J. Antifakos, M. G. Blamire, Z. H. Barber, Appl. Phys. Lett. 2004, 84, 5004.
    [183] R. M. Frazier, J. Stapleton, G. T. Thaler, C. R. Abernathy, S. J. Pearton, R. Rairigh, J. Kelly, A. F. Hebard, M. L. Nakarmi, K. B. Nam, J. Y. Lin, H. X. Jiang, J. M. Zavada, R. G. Wilson, J. Appl. Phys. 2003, 94, 1592.
    [184] X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, A. Sedhain, J. Y. Lin, H. X. Jiang, K. S. Teng, J. S. Chen, Appl. Phys. Lett. 2007, 90, 193118.
    [185] R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, Appl. Phys. Lett. 2006, 89, 142501.
    [186] P. E. Bl?chl, Phys. Rev. B 1994, 50, 17953.
    [187] G. Kresse, J. Heffner, Phys. Rev. B 1996, 54, 11169.
    [188] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
    [189] Y. Zhang, W. Liu, P. Liang, H. B. Niu, Solid State Commun. 2008, 147, 254.
    [190] Y. Zhang, W. Liu, H. B. Niu, Phys. Rev. B 2008, 77, 035201.
    [191]M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature 2004, 430, 630.
    [192] M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet, A. Hernando, Nano Lett. 2007, 7, 1489.
    [193] C. Madhu, A. Sundaresan, C. N. R. Rao, Phys. Rev. B 2008, 77, 201306(R).
    [194] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C. N. R. Rao, Phys. Rev. B, 2006, 74, 161306(R).
    [195] J. Osorio-Guillen, S. Lany, S. V. Barabash, A. Zunger, Phys. Rev. B 2007, 75, 184421.
    [196] S. H. Tolbert and A. P. Alivisatos, Science, 1994, 265, 373.
    [197]V. Swamy, A. Kuznetsov, L. S. Dubrovinsky,P. F. McMillan, V. B. Prakapenka,G. Y. Shen, Phys. Rev. Lett, 2006, 96, 135702
    [198]S. Karmakar, Pawan K. Tyagi, D. S. Misra, and Surinder M. Sharma, Phys. Rev. B, 2006, 73, 184119.
    [199]S. Karmakar, Surinder M. Sharma, P. V. Teredesai, and A. K. Sood, Phys. Rev. B 2004, 69, 165414.
    [200]B. Kiefer, S. R. Shieh, T. S. Duffy, Phys. Rev. B 2005, 72, 014102.
    [201] K. A. Gschneidner, Metallurgy at High Pressures and High Temperatures Gordon and Breach Science Publishers,New York, Chapter 1964, 4, 144.
    [202]A. Jayaraman Rev. Mod. Phys. 1983, 55, 65.
    [203] M. Ueno, A. Onodera, O. Shimomura, K. Takemura, Phys. Rev. B 1992, 45, 10123.
    [204] S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, K. Takemura, J. Phys. Chem. Solids 1997, 58, 2093.
    [205] J. Z. Zhang, Y. S. Zhao, B. Palosz, Appl. Phys. Lett. 2007, 90, 043112.
    [206] H. Wang, J. F. Liu, Y. He, Y. Wang, W. Chen, J. Z. Jiang, J. S. Olsen, L. Gerward, J. Phys.: Condens. Matter 2007, 19, 156217.
    [207] S. Rekhi, S. K. Saxena, P. Lazor, J. Appl. Phys. Lett. 2001, 89, 2968.
    [208] J. Z. Jiang, J. S. Olsen, L. Gerward, S. Morup, Europhys. Lett. 1998, 44, 620.
    [209] Z. Wang, S. K. Saxena, V. Pischedda, H. P. Liermann, C. S. Zha, Phys. Rev. B 2001, 64 012102.
    [210] Z. W. Wang, S. K. Saxenal, V. Pischeddal, H. P. Liermann, C. S. Zha, J. Phys.: Condens. Matter 2001, 13, 8317.
    [211] Z. W. Wang, K. Tait, Y. S. Zhao, D. Schiferl, C. S. Zha, J. Phys. Chem. B 2004, 108, 11506.
    [212] L. H. Shen, X. F. Li, Y. M. Ma, K. F. Yang, W. W. Lei, Q. L. Cui, G. T. Zou, Appl. Phys. Lett. 2006, 89, 141903.
    [213] H. D. Li, G. T. Zou, H. Wang, H. B. Yang, D. M. Li, M. H Li,.;S. Yu, Y. Wu, Z. F. Meng, J. Phys. Chem. B 1998, 102, 8692.
    [214] L. H. Shen, X. F Li,. J. Zhang, Y. M. Ma, F. Wang, G. Peng, Q. L. Cui,; G. T. Zou, Appl. Phys. A: Mater. Sci. Process. 2006, 84, 73.
    [215] H. Z. Liu, J. S. Tse, H. K. Mao, J. Appl. Phys. 2006, 100, 093509.
    [216] H. Z. Liu, J. Z. Hu, J. F. Shu, D. H?usermann, H. K. Mao, Appl. Phys. Lett. 2004, 85, 1973.
    [217] A. P. Hammersley, S. O.Svensson, M. Hanfland, A. N. Fitch, D. H?usermann,High Press. Res. 1996, 14, 235.
    [218] Powder Diffraction File No. 76-0566, Jeffrey, G. A.; Parry, G. S.; Mozzi, R. L. J. Chem. Phys. 1956, 25, 1024.
    [219] T. D. Shen, C. C Koch,. T. Y. Tsui, G. M. Pharr, J. Mater. Res. 1995, 10, 2892.
    [220] P. Villain, P. Goudeau, P. O. Renault, K. F. Badawi, Appl. Phys. Lett. 2002, 81, 4365.
    [221] J. E. Spanier, R. D. Robinson, F. Zhang, S. W. Chan, I. P. Herman, Phys. Rev. B 2001, 64, 245407.
    [222] S. T. Tolbert, A. P. Alivisatos,;Science 1994, 265, 373.
    [223] J. Y. Zhang, X. Y. Wang, M. Xiao, L. Qu, X. Peng, Appl. Phys. Lett. 2002, 81, 2076.
    [224] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, A. Polian, Phys. Rev. B 1992, 45, 83.
    [225] H. Xia, Q. Xia , A. L. Ruoff Phys. Rev. B 1993, 47, 12 925.
    [226] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, K. Takemura, Phys. Rev. B 1994, 49, 14.
    [227] S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, K. Takemura, J. Phys. Chem. Solids 1997, 58, 2093.
    [228] Q. Cui, Y. Pan, W. Zhang, X. Wang, J. Zhang, T. Cui, Y. Xie, J. Liu, G. Zou, J. Phys.: Condens. Matter 2002, 14, 11041.
    [229] W. Lv, L. L. Wu, Y. S. Wu, R. C. Xv, H. D. Gai, K. Zou, J. Crys. Grow. 2007, 307, 1.
    [230] S. K. O’Leary, B. E. Foutz, M. S. Shur, U. V. Bhapkar, L. F. Eastman J. Appl. Phys. 1998, 83, 826.
    [231] L. W. Yin, Y. Bando, D. Golberg, M. S. Li Adv. Mater. 2004, 16, 1833.
    [232] M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, A. Zettl Appl. Phys. Lett. 2004, 85, 5670.
    [233] T. Tang, S. Han, W. Jin, X. L. Liu, C. Li, D. H. Zhang, C. W. Zhou J. Mater.Res. 2004, 19, 423.
    [234] Y. J. Bai, Z. G. Liu, X. G. Xu, D. L. Cui, X. P. Hao, X. Feng, Q. L. Wang J. Cryst. Growth 2002, 241, 189.
    [235] C. Pinquier, F. Demangeot, and J. Frandon, J. W. Pomeroy and M. Kuball, H. Hubel, N. W. A. van Uden, and D. J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, B. Gil, Phys. Rev. B 200, 470, 113202.
    [236] C. Pinquier, F. Demangeot, and J. Frandon, J.-C. Chervin, A. Polian, B. Couzinet, and P. Munsch, O. Briot, S. Ruffenach, B. Gil, and B. Maleyre, Phys. Rev. B 2006, 73, 115211.
    [237]S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomurac, K.Takemura, J. Phys. Chum Solids 1997, l58, 2093.
    [238]M. Ueno, M. Yoshida, A. Onodera, Phys. Rev. B 1994, 49, 14.
    [239]谷怡蓬,吉林大学硕士论文,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700