硬质晶体的化学键、晶体结构与力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两方面的主要内容:一是从化学键合的观点出发建立了硬质晶体的宏观力学性质——硬度和强度与晶体的微观结构参数之间的定量关系;二是采用第一性原理方法在轻元素与贵金属及轻元素化合物中预测了几种新型亚稳材料,尤其是超硬材料。
     将晶体的宏观力学性质与微观结构参数联系起来,不仅可以发展定量预测晶体宏观力学性质的理论方法,而且可以帮助我们从物理本质上理解相应的宏观性质。将硬度的半经验公式与化学键的布居数离子性标度相结合,使完全采用第一性原理可计算的参数来预测硬度成为可能。在我组前期工作的基础上,本文进一步探讨了富硼化合物和纤锌矿结构中布居数P_c的取值方法和影响化学键离子性的内在因素,预测了B_6O、B_(13)C_2、新型亚稳材料BC_2N、纤锌矿半导体、B_6N、B_6P和B_6As等复杂晶体的理论硬度,其中B_6O、B_(13)C_2、BC_2N和纤锌矿半导体的理论硬度与实验硬度相当吻合。
     对于过渡金属碳化物与氮化物而言,硬度的半经验公式并不适用。通过深入探究该类晶体与金刚石、c-BN等共价晶体化学键性质的差异,发现了影响晶体硬度的另外两个因素:化学键中很小的金属性成分使硬度急剧下降的负面影响,以及参与杂化的d价电子使硬度增大的正面影响。经修正后,得到了对高共价性晶体普适的硬度表达式。
     纳米超晶格的硬度异常增高现象引起了人们的广泛关注。如何将上述硬度模型拓展到处理超晶格的硬度问题,是不断完善该硬度模型的一个新目标。将影响超晶格中带隙宽度的量子限域效应引入到超晶格的硬度计算当中,导出了描述超晶格硬度的半经验模型。该模型认为:量子限域效应的存在使超晶格体系的硬度在小调制周期时得到大幅提升。
     强度是晶体力学性能的又一个重要指标。强度与硬度都由化学键的键强所决定。本论文首先将化学键的键强定义为化学键抵抗轴向拉伸变形所能承受的极限拉力,通过引入有效成键电子数这一新概念,建立起了化学键键强与键长及有效成键电子数的定量关系。该模型可以描述纯共价化学键、极性共价键与离子键的键强,并且可用于估算某些晶体材料沿特定方向的抗拉强度。与共价晶体内聚能及离子晶体晶格能比较后发现该模型给出的键强与内聚能、晶格能有相同的趋势。
     以5种结构的C_3N_4为初始结构,我们构建了5种可能的B_4C_3相。采用第一性原理计算方法得到了各B_4C_3相的平衡晶格常数、内聚能以及电子性质,采用硬度的半经验公式预测了4种半导体性B_4C_3相的理论硬度,其中,c-B_4C_3与cs-B_4C_3具有与c-BN可比的高硬度。为了确定前人实验合成的OsC的晶体结构,我们构建了7种可能的OsC结构。通过总能量计算、稳定性判断、X射线衍射模拟结果分析及硬度计算,我们认为实验中合成的OsC应具有NiAs结构而不是WC结构。
This dissertation concentrates on two different topics: the first part is construction of the relations between macroscopic mechanical properties (including hardness and strength) and microscopic structural parameters of hard crystals in the view of chemical bonding, and the second part is prediction of several novel metastable materials, especially superhard materials, by first principles calculations.
     Connecting the macroscopic mechanical properties with the microscopic structural parameters not only can develop the theoretical methods of quantitatively predicting the mechanical properties of a crystal, but also help us to deeply understand their physical natures. To combine hardness semiempirical equations and population ionicity scale of a chemical bond makes the hardness predictions possible, in which all parameters can be calculated by first principles. Based on the previous works of our group, we further study the determination of population P_c in boron rich compounds and wurtzite-structures and the intrinsic factors influencing the chemical bond ionicity, predict the theoretical hardness of B_6O, B_(13)C_2, BC_2N, wurtzite semiconductors, B_6N, B_6P and B_6As complex crystals, where the theoretical hardness agrees well with the experimental Vicker’s hardness for B_6O, B_(13)C_2, BC_2N and wurtzite semiconductors.
     For transition metal carbides and nitrides, it was found that the semiempirical model is unsuitable for evaluating their hardness. By exploring the difference of chemical bond feature between these crystals and the covalent crystals of diamond and c-BN, we find another two factors determining the hardness of these crystals. One is a negative factor that a small metallic component of chemical bonds decreases obviously hardness, and second is a positive factor that d valence electrons increase hardness. After introducing the two factors, a universal hardness expression is established for covalence-dominant crystals.
     The abnormal enhancement of superlattice hardness attracts great attention of physical and material scientists. How to expand the hardness model of a crystal to treat the issue of superlattice hardness is a challenge work. By introducing the quantum confinement effect into the hardness calculation of superlattice, we derive an empirical model describing the superlattice hardness. In this model, the existence of the quantum confinement effect enhances significantly the hardness of superlattices with small stipulation period.
     Strength is another important mechanical property of crystals. Both strength and hardness is dependent on bond strength. In this dissertation, we define the bond strength as the maximum tensile force that a chemical bond can suffer when tensile deformation is along the axis of the bond. By introducing a new concept, effective bonding valence electrons, we construct the quantitative relationship between the bond strength and the bond length and the effective bonding valence electrons. This model can describe the bond strength of pure covalent, polar covalent and ionic bonds, and can predict the tensile strength of some crystals along specific directions. Compared to the cohesive energy of covalent crystals and the lattice energy of ionic crystals, the bond strength calculated with this model has the same tendency to them.
     Based on the five reported C_3N_4 structures, we construct five phases of B_4C_3. The equilibrium lattice constants, cohesive energy and electron properties are obtained by performing first-principles calculations. Theoretical hardness of four semiconducting B_4C_3 phases is estimated by using the semiempirical hardness model, where the cubic and cubic spinal phase has the hardness comparable to that of cubic boron nitride. In order to determine the crystal structure of previously-synthesized OsC, we construct seven possible OsC structures. Based on total energy calculation, mechanical stability judgment, X ray diffraction simulation, and hardness calculation, we conclude that the experimentally-synthesized OsC should be in NiAs structure not in WC structure.
引文
1 A. Jayaraman. Diamond-anvil cell and high-pressure physical investigations. Rev. of Mod. Phys., 1983, 55(1):65-108
    2 J. Haines, J. M. Léger, and G. Bocquillon. Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 2001, 31(1):1-23
    3 F. M. Gao, J. L. He, E. D. Wu, S. M. Liu, D. L. Yu, D. C. Li, S. Y. Zhang, and Y. J. Tian. Hardness of Covalent Crystals. Phys. Rev. Lett., 2003, 91(1):015502
    4 A. ?im?nek, and J. Vacká?. Hardness of Covalent and Ionic Crystals: First-Principle Calculations. Phys. Rev. Lett., 2006, 96(8):085501
    5 F. M. Gao. Theoretical model of intrinsic hardness. Phys. Rev. B, 73(13):132104
    6 K. Y. Li, X. T. Wang, F. F. Zhang, and D. F. Xue. Electonegativity Identification of Novel Superhard Materials. Phys. Rev. Lett., 2008, 100(23):235504
    7 J. J. Gilman. Why Silicon is Hard. Science, 1993, 261(5127):1436-1439
    8 S. H. Jhi, S. G. Louie, M. L. Cohen, and J. Ihm. Vacancy Hardening ans Softening in Transition Metal Carbides and Nitrides. Phys. Rev. Lett., 2001, 86(15):3348-3351
    9 A. ?im?nek. How to estimate hardness of crystals on a pocket calculatior. Phys. Rev. B. 2007, 75(17):172108
    10 Z. Y. Liu, X. J. Guo, J. L. He, D. L. Yu, and Y. J. Tian. Comment on“Hardness of Covalent and Ionic Crystals: First-Principle Calculations”. Phys. Rev. Lett. 2007, 98(10):109601
    11 L. Pauling. The nature of the chemical bond and the structure of molecules and crystals.卢嘉锡,黄耀曾,曾广植,陈元桂等译校.上海:上海科学技术出版社, 1966:87-92
    12 C. A. Coulson, L. B. Redei, and D. Stocker, Proc. Roy. Soc. London. 1962, 270:357
    13 J. C. Phillips. Dielectric Theory of Cohesive Energies of Tetrahedrally Coordinated Crystals. Phys. Rev. Lett., 1969, 22(13):645-647
    14 J. C. Phillips. Resonating-Bond Theory of Tetrahedrally Coordinated Crystals. Phys. Rev. Lett., 1969, 23(9):482-484
    15 J. C. Phillips. Ionicity of Chemical Bond in Crystals. Rev. Mod. Phys. 1970, 42(3):317-356
    16 B. F. Levine. Bond Susceptibilities and Ionicities in Complex Crystal-Structures. J. Chem. Phys.,1973, 59(3)1463-1486
    17 J. L. He, E. D. Wu, H. T. Wang, R. P. Liu, and Y. J. Tian. Ionicities of Boron-Boron Bonds in B12 icosahedra. Phys. Rev. Lett. 2005, 94(1):015504
    18肖晓玲.纳米多层膜的研究进展.材料研究与应用. 2007, 1(1):1-10
    19 U. Helmersson, S. Todorova, S. A. Barnett, J. -E. Sundgren, L. C. Markert, and J. E. Greene. Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys., 1987, 62(5):481-484
    20 M. Shinn, L. Hultman, S. A. Barnett. Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res., 1992, 7(4):901-911
    21 X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde, and S. A. Barnett. Deposition and properties of polycrystalline TiN/NbN superlattice coatings. J. Vac. Sci. Technol. A, 1992, 10(4):1604-1609
    22 D. B. Lewis, D. Reitz, C. Wüstefeld, R. Ohser-Wiedemann, H. Oettel, A. P. Ehiasarian and P. Eh. Hovsepian. Chromium nitride/niobium nitride nano-scale multilayer coatings deposited at low temperature by the combined cathodic arc/unbalanced magnetron technique. Thin Solid Films, 2006, 503(1-2):133-142
    23 A. Rizzo, M. A. Signore, M. Penza, M. A. Tagliente, F. De Riccardis and E. Serra. RF sputtering deposition of alternate TiN/ZrN multilayer hard coatings. Thin Solid Films, 2006, 515(2):500-504
    24 D. Li, X. W. Lin, S. C. Cheng, V. P. Dravid, Y. -W. Chung, M. S. Wong, and W. D. Sproul. Structure and hardness studies of CNx/TiN nanocomposite coatings. Appl. Phys. Lett. 1996, 68(9):1211-1213
    25 M. L. Wu, X. M. Lin, V. P. Dravid, Y.–W. Chung, M. S. Wong, and W. D. Sproul. Preparation and characterization of superhard CNx/ZrN multilayers. J. Vac. Sci. Technol. A, 1997, 15(3):946-950
    26 H. S?derberg, M. Odén, J. M. Molina-Aldareguia, L. Hultman. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys., 2005, 97(11):114327
    27 K. K. Shin and D. B. Dove. Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness. Appl. Phys. Lett., 1992, 61(6):654-656
    28 X. Wang, A. Kolitsch, W. M?ller. Roughness improvement and hardness enhancement innanoscale Al/AlN multilayered thin films. Appl. Phys. Lett., 1997, 71(14):1951-1953
    29 J. Wang, W. Z. Li, H. D. Li. Mechanical properties of nanoscaled TiC/Fe multilayers deposited by ion beam sputtering technique. Thin Solid Films, 2001, 382(1-2): 190-193
    30 J. Wang, W. Z. Li, H. D. Li, B. Shi, and J. B. Luo. Nanoindentation study on the mechanical properties of TiC/Mo multilayers. Thin Solid Films, 2000, 366(1-2):117-120
    31 C. H. Liu, W. Z. Li, H. D. Li. Simulation of nacre with TiC/metal multilayers and a study of their roughness. Mater. Sci. Eng. C, 1996, 4(3):139-142
    32 H. Holleck. Material selection for hard coatings. J. Vac. Sci. Technol. A, 1986, 4(6):2661-2669
    33 S. A. Barnett, M. Shinn. Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu. Rev. Mater. Sci., 1994, 24:481-511
    34 P. C. Yashar, W. D. Sproul. Nanometer scale multilayered hard coatings. Vacuum, 1999, 55(3-4):179-190
    35 M Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert. Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys and Compd. (2008), doi:10.1016/j.jallcom.2008.08.133. (in press)
    36 J. S. Koehler. Attempt to Design a Strong Solid. Phys. Rev. B, 1970, 2(2)547-551
    37 A. Banerjea and J. R. Smith. Continuum elasticity analysis of the enhanced modulus effect in metal-alloy superlattice films. Phys. Rev. B, 1987, 35(11):5413-5420
    38 L. Pauling The nature of the chemical bond and the structure of molecules and crystals.卢嘉锡,黄耀曾,曾广植,陈元桂等译校.上海:上海科学技术出版社, 1966:93-143.
    39 G. E. Kimball. Directed Valence. J. Chem. Phys., 1940, 8:188-198
    40 R. Hultgren. Equivalent Chemical Bonds Formed by s, p, and d Eigenfunctions. Phys. Rev., 1932, 40:891-907
    41 L. Pauling, The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51(4):1010-1026
    42 I. D. Brown and R. D. Shannon Crystal Physics, Diffraction, Theoretical and General Crystallography. Acta Crystallogr. A 1973, 29(3):266-282
    43 G. V. Gibbs, K. M. Rosso, D. F. Cox, and M. B. Boisen, Jr. A physical basis for Pauling′s definition of bond strength. Phys. Chem. Miner. 2003, 30(5): 317-320
    44 T. Lundstr?m, Y. G. Andreev. Superhard boron-rich borides and studies of the B-C-N systemMater. Sci. Eng. A, 1996, 209(1-2):16-22
    45 D. W. He, Yusheng Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda. Boron suboxide: As hard as cubic boron nitride. Appl. Phys. Lett., 2002, 81(4)643-646
    46 E. Amberger and W. Stumpf. Gmelin Handbook of Inorganic Chemistry. Berlin: Springer-Verlag Press, 1981:112-238
    47 H. Hubert, B. Devouard, L. A. J. Garvie, M. O’Keeffe, P. R. Buseck, W. T. Petuskey, and P. F. McMillan. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature, 1998, 391:376 -378
    48 D. M. Bylander and L. Kleinman. Structure of B13C2. Phys. Rev. B, 1991, 43(2)1487-1491
    49 R. Schmechel and H. Werheit. Structural Defects of Some Icosahedral Boron-Rich Solids and Their Correlation with the Electronic Properties. J. Solid State Chemistry, 2000, 154(1):61-67
    50 H. Hubert, L. A. J. Garvie, B. Devouard, P. R. Buseck, W. T. Petuskey, and P. F. McMillan. High-pressure, high-temperature synthesis and characterization of boron suboxide (B6O). Chem. Mater., 1998, 10:1530-1537
    51 D. M. Bylander, L. Kleinman, and S. B. Lee. Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B, 1990, 42(2):1394-1403
    52 Y. Tateyama, T. Ogitsu, K. Kusakabe, S. Tsuneyuki, and S. Itoh. Proposed synthesis path for heterodiamond BC2N. Phys. Rev. B, 1997, 55(16):R10161-10164
    53 V. L. Solozhenko. Synthesis of Novel Superhard Phases in the B-C-N System. International Journal of High Pressure Research, 2002, 22(3):519-524
    54 V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. Rubie. Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 2001, 78(10):1385-1387
    55 S. N. Tkachev, V. L. Solozhenko, P. V. Zinin, M. H. Manghnani, and L. C. Ming. Elastic moduli of the superhard cubic BC2N phase by Brillouin scattering. Phys. Rev. B, 2003, 68(5):052104
    56 Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu. D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, T. W. Zerda. Superhard B-C-N materials synthesized in nanostructured bulks. J. Mater. Res. 2002, 17(12):3139-3145
    57 R. A. Andrievski. Superhard materials based on nanostructured high-melting point compounds: achievements and perspectives. Int. J. Refract. Met. Hard Mater. 2001, 19(4-6):447-452
    58 R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee. Energetics of segregation inβ-C2BN. Appl.Phys. Lett. 1999, 75(15):2259-2261
    59 H. Sun, S. H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie. Structural forms of cubic BC2N. Phys. Rev. B, 2001, 64(9):094108
    60 Z. C. Pan, H. Sun, C. F. Chen. Diverging synthesis routes and distinct properties of cubic BC2N at high pressure. Phys. Rev. B, 2004, 70(17):174115
    61 Y. Zhang, H. Sun, and C. F. Chen. Superhard Cubic BC2N Compared to Diamond. Phys. Rev. Lett., 2004, 93(19):195504
    62 J. L. He, L. C. Guo, D. L. Yu, R. P. Liu, Y. J. Tian, H. T. Wang. Hardness of cubic spinel Si3N4. Appl. Phys. Lett. 2004, 85(23):5571-5573
    63 J. L. He, L. C. Guo, X. J. Guo, R. P. Liu, Y. J. Tian, H. T. Wang and C. X. Gao. Predicting hardness of dense C3N4 polymorphs. Appl. Phys. Lett. 2006, 88(10)101906
    64 D. Roundy, and M. L. Cohen. Ideal strength of diamond, Si and Ge. Phys. Rev. B, 2001, 64(21):212103
    65 X. J. Guo, J. L. He, Z. Y. Liu, Y. J. Tian, J. Sun, and H. T. Wang. Bond ionicities and hardness of B13C2-like structured ByX crystals(X=C, N, O, P, As). Phys. Rev. B, 2006, 73(10)104115
    66 X. J. Guo, Z. Y. Liu, X. G. Luo, D. L. Yu, J. L. He, Y. J. Tian, J. Sun, and H. T. Wang. Theoretical hardness of the cubic BC2N. Dia. Relat. Mater. 2007, 16(3):526-530
    67 K. Shimada, S. Takayuki, and K. Suzuki. First-principles study on electronic and elastic properties of BN, AlN, and GaN. J. Appl. Phys. 1998, 84(9):4951-4958
    68 E. R. Fuller, Jr. and W. F. Weston. Relation between elastic-constant tensors of hexagonal and cubic structures. J. Appl. Phys. 1974, 45(9)3772-3776
    69 R. M. Hazen and L. W. Finger. High-pressure and high-temperature crystal chemistry of beryllium oxide. J. Appl. Phys. 1986, 59(11)3728-3433
    70ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S.–J. Cho and H. Morko?. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98(4):041301
    71 Y. N. Xu and W. Y. Ching. Electronic, optical, and structural properties of some wurtzite crystals. Phys Rev. B 1993, 48(7)4335-4351
    72 S. Q. Wang and H. Q. Ye. Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. J. Phys. : Condens. Matt., 2003, 15(30):5307-5314
    73 R. D. Carnahan. Elastic Properties of Silicon Carbide. J. Am. Ceram. Soc. 1968, 51(4):223-224
    74 http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InN/mechanic.html
    75 C. F. Cline, H. L. Dunegan, and G. W. Henderson. Elastic Constants of Hexagonal BeO, ZnS, and CdSe. J. Appl. Phys. 38(4):1944-1948
    76 N. Uchida and S. Saito. Elastic and Photoelastic Constants ofα-ZnS. J. Appl. Phys. 1972, 43(3):971-976
    77 M. A. Nusimovici and M. Balkanski. Lattice Dynamics of Wurtzite: CdS. II. Phys. Rev. B. 1970, 1(2):595-603
    78 I. Yonenaga, T. Shima, and M. H. F. Sluiter. Nano-Indentation Hardness and Elastic Moduli of Bulk Single-Crystal ALN. Jpn. J. Appl. Phys. 2002, 41(part1 No. 7A):4620-4621
    79 M. D. Drory, J. W. Ager III, T. Suski, I. Grzegory, and S. Porowski. Hardness and fracture toughness of bulk single crystal gallium nitride. Appl. Phys. Lett. 1996, 69(26):4044-4046
    80 S. E. Grillo, M. Ducarroir, M. Nadal, E. Tournié, and J. P. Faurie. Nanoindentation study of Zn1-xBexSe heteroepitaxial layers. J. Phys. D: Appl. Phys. 2002, 35(22):3015-3020
    81 T. H. Fang, W. J. Chang, and C. M. Lin. Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng. A, 2007, 452-453:715-720
    82 B. Wolf, A. Richter, and V. Weihnacht. Differential and integral hardness-new aspects of quantifying load-depth-data in depth-sensing Nanoindentation experiments. Surf. Coat. Technol. 2004, 183:141-150
    83 S. H. Jhi, J. S. Ihm, S. G. Louie, and M. L. Cohen. Electonic mechanism of hardness enhancement in transition-metal carbonitrides. Nature, 1999, 399(6732):132-134
    84 V. Richter, A. Beger, J. Drobniewski, I. Endler, and E. Wolf. Characterisation and wear behaviour of TiN- and TiCxN1-x-coated cermets. Mater. Sci. Eng. A, 1996, 209:353-357
    85 F. Lévy, P. Hones, P. E. Schmid, R. Sanjinés, M. Diserens, C. Wiemer. Electronic states and mechanical properties in transition metal nitrides. Surf. Coat. Technol. 1999, 120-121:284-290
    86 A. Zerr, G. Miehe, and R. Riedel. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat. Mater. 2003, 2(3):185-189
    87 P. Kroll. Hafnium Nitride with Thorium Phosphide Structure: Physical Properties and an Assessment of the Hf-N, Zr-N, and Ti-N Phase Diagrams at High Pressures and Temperatures. Phys. Rev. Lett. 2003, 90(12):125501
    88 M. Xu, S. Y. Wang, G. Yin, J. Li, Y. X. Zheng, L. Y. Chen, and Y. Jia. Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4. Appl. Phys. Lett. 2006, 89(15):151908
    89 E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. K. Mao, and R. J. Hemley. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 2004, 3(5): 294-297
    90 J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson. Synthesis and Characterization of the Nitrides of Platinum and Iridium. Science, 2006, 311(5803):1275-1278
    91 B. R. Sahu, and L. Kleinman. PtN: A zinc-blende metallic transition-metal compound. Phys. Rev. B, 2005, 71(4):041101
    92 J. Uddin, and G. E. Scuseria. Structures and electronic properties of platinum nitride by density functional theory. Phys. Rev. B 2005, 72(3):035101
    93 M. B. Kanoun, and S. Goumri-Said. Electronic properties of the binary noble metal nitride PtN: First-principles calculations. Phys. Rev. B 2005, 72(11):113103
    94 J. V. Appen, M. W. Lumey, R. Dronskowski. Mysterious Platinum Nitride. Angew. Chem. Int. Ed., 2006, 45(26):4365-4368
    95 R. Yu, Q. Zhan, and X. F. Zhang. Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor. Appl. Phys. Lett. 2006, 88(5):051913
    96 A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao. Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2. Phys. Rev. Lett. 2006, 96(15):155501
    97 F. J. Ribeiro, P. Tangney, S. G. Louie, and M. L. Cohen. Hypothetical hard structures of carbon with cubic symmetry. Phys. Rev. B, 2006, 74(17):172101
    98 J. H?glund, G. Grimvall, T. Jarlborg, A. F. Guillermet. Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. Phys. Rev. B. 1991, 43(18)14400-14408
    99 H. O. Pierson. Handbook of refractory carbides and nitrides. Noyes Publications, Westwood, 1996, Chapter 3, Chapter 10, and Chapter 11.
    100 C. Kittel著.项金钟,吴兴惠译.固体物理导论.化学工业出版社. 2005:99
    101 J. Shackelford and W. Alexander. Materials Science and Engineering Handbook. 3rd edition. CRC press, 2001:471
    102 X. J. Chen, V. V. Struzhkin, Z. G. Wu, M. Somayazulu, J. Qian, S. M. Kung, A. N. Christensen, Y.S. Zhao, R. E. Cohen, H. K. Mao, and R. J. Hemley. Hard superconducting Nitrides. Proc. Natl. Acad. Sci. USA. 2005, 102(9):3198-3201.
    103 http://www.ultramet.com/ceramic_protective_coatings.html
    104 G. R. Lee, J. J. Lee, C. S. Shin, I. Petrov, and J. E. Greene. Self-organized lamellar structured tantalum-nitride by UHV unbalanced-magnetron sputtering. Thin Solid Films 2005, 475(1):45-48
    105 M. Chhowalla, and H. E. Unalan. Thin films of hard cubic Zr3N4 stabilized by stress. Nat. Mater. 2005, 4(4):317-322
    106 Z. W. Chen, X. J. Guo, Z. Y. Liu, M. Z. Ma, Q. Jing, G. Li, X. Y. Zhang, L. X. Li, Q. Wang, Y. J. Tian, and R. P. Liu. Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase. Phys. Rev. B 2007, 75(5):054103
    107 J. A. Montoya, A. D. Hernandez, C. Sanloup, E. Gregoryanz, and S. Scandolo. OsN2: Crystal structure and electronic properties. Appl. Phys. Lett. 2007, 90(1)011909
    108 F. Occelli, D. L. Farber, J. Badro, C. M. Aracne, D. M. Teter, M. Hanfland, B. Canny, and B.Couzinet. Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium. Phys. Rev. Lett. 2004, 93(9)095502
    109 R. B. Kaner, J. J. Gilman, and S. H. Tolbert. Designing Superhard Materials. Science 2005, 308(5726):1268-1269
    110 S. H. Kim, Y. J. Baik, D. Kwon. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatinds. Surf. Coat. Technol. 2004, 187(1):47-53
    111 V. Pankov, M. Evstigneev, and R. H. Prince. Enhanced stability of rocksalt-type AlN phase in AlN/TiN superlattices synthesized by room-temperature pulsed laser deposition. J. Appl. Phys. 2002, 92(8):4255-4260
    112 F. H. Mei, N. Shao, J. W. Dai, and G. Y. Li. Coherent growth and superhardness effect of AlN/TiN nanomultilayers. Mater. Lett. 2004, 58(27-28):3477-3480
    113 J. J. Lao, N. Shao, F. H. Mei, G. Y. Li, and M. Y. Gu. Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers. Appl. Phys. Lett. 2005, 86(1):011902
    114 J. J. Lao, Z. H. Han, J. W. Tian, and G. Y. Li. Mechanical property investigation of ALN/VN nanomultilayers with microindentation technique. Mater. Lett. 2004, 58(6):859-862
    115 M. S. Wong, G. Y. Hsiao, and S. Yu Yang. Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings. Surf. Coat. Technol. 2000, 133-134:160-165
    116 S. L. Lehoczky. Strength enhancement in thin-layered Al-Cu laminates. J. Appl. Phys. 1978, 49(11):5479-5485
    117 X. J. Guo, L. Li, Z. Y. Liu, D. L. Yu, J. L. He, R. P. Liu, B. Xu, Y. J. Tian, and H. T. Wang. Hardness of covalent compounds: Roles of metallic component and d valence electrons. J. Appl. Phys. 2008, 104(2):023503
    118 W. P. Halperin. Quantum size effects in metal particles. Rev. Mod. Phys. 1986, 58(3):533-606
    119 A. Karimi, G. Allidi, and R. Sanjines. Relative orientation of the constituents on the degree of crystallographic coherence in AlN/TiN superlattices. Surf. Coat. Technol. 2006, 201(7):4062-4067
    120 G. Y. Li, J. J. Lao, J. W. Tian, Z. H. Han, and M. Y. Gu. Coherent growth and mechanical properties of AlN/VN multilayers. J. Appl. Phys. 2004, 95(1):92-96
    121 E. -L. Florin, V. T. Moy, and H.E.Gaub. Adhesion forces between individual ligand-receptor pairs. Science, 1994, 264(5157):415-417
    122 F. Kühner, L. T. Costa, P. M. Bisch, S. Thalhammer, W. M. Heckl, and H. E. Gaub. LexA-DNA Bond Strength by single Molecule Force Spectroscopy. Biophys. J. 2004, 87(4):2683-2690
    123 R. S. Mulliken. Electronic Population Analysis on LCAO-MO Molecular Wave Functions (I) J. Chem. Phys. 1955, 23(10):1833-1840
    124 Y. Zhang, H. Sun, and C. F. Chen. Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study. Phys. Rev. B, 2006, 73(14):144115
    125 R. F. Zhang, S. H. Sheng, and S. Veprek. First principles studies of ideal strength and bonding nature of AlN polymorphs in comparison to TiN. Appl. Phys. Lett. 2007, 91(3):031906
    126 D. Roundy, C. R. Krenn, M. L. Cohen, and J. W. Morris, Jr. Ideal Shear Strength of fcc Aluminum and Copper. Phys. Rev. Lett. 1999, 82(13):2713-2716
    127 A. Mujica, A. Rubio, A. Mu?oz, and R. J. Needs. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 2003, 75(3)863-912
    128 J.–P. Salvetat, J.–M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli. Mechanical properties of carbon nanotubes. Appl. Phys. A, 1999, 69(3): 255-260
    129 A. Kis and A. Zettl. Nanomechanics of carbon nanotubes. Phil. Trans. R. Soc. A, 2008, 366(1870):1591-1611
    130 S. B. Sinnott and R. Andrews. Carbon nanotubes: synthesis, Properties, and Applications. SolidState Mater. Sci. 2001, 26(3):145-249
    131 J. P. Lu. Elastic Properties of Carbon Nanotubes and Nanoropes. Phys. Rev. Lett. 1997, 79(7):1297-1230
    132 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 2000, 287(5453):637-640
    133 B.G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334(1-2):173-178
    134 Y. Baskin and L. Meyer. Lattice Constants of Graphite at Low Temperatures. Phys. Rev. 1955, 100(2):544-544
    135 C. G. Lee, X. D. Wei, J. W. Kysar, and J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321(5887):385-388
    136 E. Hernández, C. Goze, P. Bernier, and A. Rubio. Elastic Properties of C and BxCyNz Composite Nanotubes. Phys. Rev. Lett. 1998, 80(20):4502-4505
    137 Y. F. Zhang and H. C. Huang. Stability of single-wall silicon carbide nanotubes-molecular dynamics simulations. Comput. Mater. Sci. 2008, 43(4):664-669
    138 M. Mirzaei, A. Seif, and N. L. Hadipour. The C-doped zigzag AlN nanotube: A computational NMR study. Chem. Phys. Lett. 2008, 461(4-6):246-248
    139 B. F. Decker and J. S. Kasper. The crystal structure of a simple rhombohedral form of boron. Acta Cryst. 1959, 12(7):503-506
    140 S. Okada and S. Saito. Electronic structure and energetics of pressure-induced two-dimensional C60 polymers. Phys. Rev. B 1999, 59(3):1930-1936
    141 D. L. Dorset and M. P. McCourt. Disorder and the molecular packing of C60 buckminsterfullerene: a direct electron-crystallographic analysis. Acta Cryst. A, 1994, 50(3):344-351
    142 D. R. Lide. Handbook of Chemistry and Physics. 84th edition. CRC Press, 2003-2004:Section 12:22-31
    143 A. Y. Liu and M. L. Cohen. Prediction of New Low Compressibility Solids. Science, 1989, 245(4920)841-842
    144 D. M. Teter, R. J. Hemley. Low-Compressibility Carbon Nitrides. Science, 1996, 271(5245):53-55
    145 D. M. Teter. Computational Alchemy: The Search for New superhard Materials. MRS Bull., 1998, 23(1): 22-27
    146 S. D. Mo, L. Z. Ouyang, W. Y. Ching, I. Tanaka, Y. Koyama, and R. Riedel. Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4. Phys. Rev. Lett. 1999, 83(24):5046-5049
    147 C. M. Sung, M. Sung. Carbon nitride and other speculative superhard materials. Mater. Chem. Phys. 1996, 43(1):1-18
    148 F. Birch. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300K. J. Geophys. Res. 1978, 83(B3):1257-1268
    149 M. Catti. Orthorhombic Intermediate State in the Zinc Blende to Rocksalt Transformation Path of SiC at High Pressure. Phys. Rev. Lett. 2001, 87(3):035504
    150 T. Sekine. Sixfold-coordinated carbon as a postdiamond phase. Appl. Phys. Lett. 1999, 74(3):350-352
    151 E. Soignard, M. Somayazulu, J. J. Dong, O. F. Sankey, and P. F. McMillan. High pressure-high temperature synthesis and elasticity of the cubic nitride spinelγ-Si3N4. J. Phys. Condens. Matter 2001, 13(4):557-563
    152 J. Z. Jiang, F. Kragh, D. J. Frost, K. St?hl, H. Lindelov. Hardness and thermal stability of cubic silicon nitride. J. Phys. Condens. Matter 2001, 13(24):L515-L520
    153 H. Cynn, J. E. Klepeis, C.–S. Yoo, and D. A. Young. Osmium has the Lowest Experimentally Determined Compressibility. Phys. Rev. Lett. 2002, 88(13):135701
    154 R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner. Osmium Diboride, An Ultra-Incompressible, Hard Material. J. Am. Chem. Soc. 2005, 127(20):7264-7265
    155 C. P. Kempter and M. R. Nadler. Preparation and Crystal Structures of RuC and OsC. J. Chem. Phys. 1960, 33(5):1580-1581
    156 J. C. Zheng. Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, OsN. Phys. Rev. B, 2005, 72(5):052105
    157 M. Zemzemi, M. Hebbache, D. Zivkovic, L. Stuparevic,“Does Osmium Carbide Exist? Abinitio Investigation”in Materials Research at High Pressure, edited by M. Riad Manaa, Alexander F. Goncharov, Russell J. Hemley, and Roberto Bini (Mater. Res. Soc. Symp. Proc. 987, Warrendale, PA, 2007).
    158 Z. W. Chen, M. X. Gu, C. Q. Sun, X. Y. Zhang, and R. P. Liu. Ultrastiff carbides uncovered in first principles. Appl. Phys. Lett. 2007, 91(6):061905
    159 L. N. Finnie. Structures and compositions of the silicides of ruthenium, osmium, rhodium and iridium. J. Less Common Metals 1962, 4(1):24-34
    160 K. Suzuki, T. Kaneko, H. Yoshida, H. Morita, H. Fujimori. Crystal structure and magnetic properties of the compound CoN. J. Alloy Compd. 1995, 224(2):232-236
    161 K. G?ransson, I. Engstr?m, and B. Nol?ng. Structure refinements for some platinum metal monosilicides. J. Alloy Compd. 1995, 219(1-2):107-110
    162 J. M. D. Coey and H. R. Buisson. Electronic properties of (Ni1-xFex)S solid solutions. Mater. Res. Bull. 1979, 14(5):711-716
    163 E. J. Fasiska. Some defect structures of iron sulfide. Phys. Status. Solidi (a). 1972, 10(1):169-173
    164 R. B. Levy and M. Boudart. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. Science, 1973, 181(4099):547-549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700