机械合金化制备非化学计量比CrN_x及其烧结特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CrN具有许多优异的物理和化学性能,比如其优异的耐磨性和其他过渡金属氮化物不具备的反铁磁性,加热处理时分解出的高活性的N也可以作为氮源提高某些金属烧结体的性能。然而由于Cr的活性较低,制备立方结构的CrN很困难且CrN的脆性较高,对其烧结体的研究也非常少。因此简化其合成方法具有非常重要的理论和现实意义。本论文以球磨的方法制备非化学计量比的CrN_x粉末,并将制备的CrN_x粉末进行SPS烧结,研究了不同温度下制备的烧结体的性能。
     以Cr_2N和Cr为原料进行球磨制备非化学计量比的CrN_x,利用X射线衍射(XRD)、差热分析仪(DSC)和扫描电子显微镜(SEM)对球磨后粉体进行结构分析和形貌观察。将球磨制备的CrN_x粉末在不同烧结温度条件下进行SPS烧结,对烧结体的断口进行SEM观察,并对烧结体的机械性能进行测试。通过粉体结构分析得出:相同球磨时间的条件下,随着Cr含量的增加,CrN_x的晶粒先变大,后减小;加热处理后分解N_2逐渐增大。相同原料配比的条件下,随着球磨时间的增加,CrN_x晶粒逐渐变小,加热处理后分解N_2逐渐增大。通过粉末形貌观察得出:相同球磨时间的条件下,随着Cr含量的增加,粉体颗粒均存在颗粒团聚的情况,颗粒度先变大后减小;相同原料配比的条件下,随着球磨时间的增加,粉体颗粒度逐渐变小,最终达到平衡。通过烧结体结构和性能分析得出:随着烧结温度的增加,烧结体晶粒度逐渐减小,烧结体的致密度、硬度、抗折强度增加。Cr_2N与Cr按1:0.5摩尔比混合,经50h球磨处理后的CN5粉末,在1100℃和40 MPa条件下得到烧结体的硬度、致密度和抗折强度分别达到22.09GPa、99.5%和239.1MPa。
Chromium nitride (CrN) are widely used because they possess many excellent physical and chemical properties. Like the high wear resistance, antiferromagnetism which other transition metal don’t possess and the properties of decomposeing high activity nitrogen (N_2) when it’s heaten. Nevertheless, preparing CrN is very difficult because of the low activity of Cr, and because of its high brittleness, study of sintering samples is very little, either. Therefore, simplifying the preparation of CrN is an issue for the widely application of refractory compounds. The CrN_x powders fabricated by means of MA were sintered by SPS. The sintered samples possess excellent mechanical properties.
     The mixed powders of Cr_2N and Cr were mechanical alloyed to synthesize nonstoichiometric CrN_x. An X-ray diffractometer (XRD) and a sanning electron microscope (SEM) were used to analyze the structures and observe the morphologies of the milled powders. A differential scanning calorimetry (DSC) was used to analyze the structure of the mixed powders after being heaten up.The CrN_x powder fabricated by means of MA was sintered at different temperature under vacuum and at the pressure of 20 MPa. The fracture surfaces of the sintered samples were investigated by SEM and the mechanical properties were tested.
     The results of structure analyze of mixed powders showed that with the Cr content increased ,the grain size of CrN_x was increaseand at first then decreased and the change of N_2 content which was been decomposed after heaten was the same under the condition of same MA time. with the MA time increased ,the grain size of CrN_x was decreased gradually and the change of N_2 content which was been decomposed after being heaten up was decreased under the condition of same proportion of rough material. The result of SEM showed that with the Cr content increased ,the degree of aggregation of the MAed powders was increased ,and the granularity were increase at first, then decreased under the condition of same MA time; with the MA time increased , the granularity was decreased gradually then reach the balance finally under the condition of same proportion of raw material. The results of structure analyze and mechanical properties of the sintered samples showed that as sintering temperature increased, the grain size of the sintering samples was decreases, desity, microhardness, breaking strength were increased. The mechanical properties for the sintering sample of the Cr_2N and Cr powders mixed as 1:0.5 molar ratio milled for 50h are optimum. The desity, microhardness, and rupture strength are 22.09GPa, 99.5% and 239.1MPa.
引文
1 Navinsek B,Panian P,and Cvelbar A.Characterization of low temperature CrN and TiN(PVD)hard coatings.Surface and Coatings Technology,1995,(1-3):74-75
    2 R.W.G. Wyckoff, Crystal Structures, volume 1, Interscience, John Wiley & Sons, 1963.
    3 A.R.West Basic solid state chemistry , John Wiley & Sons, 1999.
    4严密.磁学基础与磁性材料.浙江大学出版社.2006.
    5 Navinsek B,Panian P,and Cvelbar A.Characterization of low temperature CrN and TiN(PVD)hard coatings.Surface and Coatings Technology,1995,(74-75): 155-161.
    6 Da Yung Wang,Ko Wei Weng.Microstructure analyses of CrN coatings synthesized by a hybrid PVD and metal-plasma ion implantation process.Surface and Coatings Technology,2002,(156):195-200.
    7 Aguas M .D,Naowski A M,et al.Chromium nitrides(CrN,Cr2N)from solid state metathesis reactions.effects of dilution and nitriding reagent.Journal of Materials Chemistry,1998,(8): 1875-1880.
    8马绍华.氮化铬和氮化锰中夹杂物的对比实验.铁合金. 2009(3):19-22
    9 Aouaeli S.M.Growth and characterization of Cr2N/CrN multilayer. Surface&Coatings Technology,2001,140(3):26
    10 Y. Ogino,T. Yamasaki, et a1.Nitriding of transition metal powders by ball milling in nitrogen gas.Materials Transactions.1993,34(12):1212-1216.
    11 R. M. Ren.Synthesis of nanostructured chromium nitrides through m echanical activation process.Nanostructured Materials,1999,11(1):25-35.
    12 X. F. Qian,X. M. Zhang et a1.Benzene-thermal preparation of nanocrystalline chromium Nitride.Materials Reseach Bulletin,1999,34(3):433-436.
    13 Munir Z A.Microstructural and mechanistic analyses of SHS systems.Advances in Powder Metallurgy, 1992:251-268.
    14 Hirota K,Takano Y,Yoshinaka M,et a1.Hot isostatic pressing of chromium nitrides(Cr/sub 2/N and CrN)prepared by self-propagating high-temperature synthesis.Journal of the American Ceramic Society,2001:2120-2122.
    15 Martinelli A, Ferretti M. High pressure bulk nitridation of transition metals by combustion. International Journal of Self Propagating High temperature Synthesis,2001:403-416.
    16 Tessier F,Marchand R.An original way to prepare nitilde-type compounds from sulfide precusors.Journal of Alloys and Compounds,1997:410-415.
    17李耀刚,高濂.氨解法制备氮化铬粉体.无机材料学报,2003:233-237.
    18 Qiu Y,Gao L.Synthesis of nanocrystalline CrN from Cr[OC(NH2)2]6 C13coordination compound.Materials Research Bulletin,2003:1551-1557.
    19 Peijun Cai, Wanqun Zhang simple nitrification route to nanocrystalline CrN Journal of Alloys and Compounds 2006: 221-223
    20 Kapoor Rajat.Synthesis reactivity and thermochemistry of vanadium carbide and nitride.USA:Clarkson University,1994
    21颜练武非化学计量化合物与过渡族金属碳化物?氮化物研究进展硬质合金,2008:260-262
    22乌曼斯基,芬克耳什坦,布兰捷尔,基什金,法斯托夫,高列里克.中国科学院金属研究所,译.金属学物理基础.北京:科学出版社,1964
    23 J. S. Benjamin. Fundamentals of Mechanical Alloying. Materials Science Forum, 1992, (88):17
    24 C.Suryanarayana.Mechanical Alloying and Milling.Progress in Materials Science,2001,(46):1-184
    25 C. C. Koch, O. B. Cavin, C. G .McKamey.Preparation of“amorphous”Ni60Nb40 by Mechanical Alloying. 1983,(43):10-17
    26 L.Schultz.Formation of Amorphous Metals by Mechanical Alloying.Materials Science and Engineering,1988.(97):15-23
    27陈律文,吴年强,李志章.描述机械合金化过程的理论模型.材料科学与工程,1998,
    16,(1):19-23
    28 M.Atzmon.Characterization of A1Ni formed by a self-sustaining reaction during mechanical alloying.Mater.Sci.&Eng,1991:1326-1329
    29 J.Ecke.L.Schultz,K.Urban.Formation of Quasicrystalline and Amorphous Phases in Mechanically alloyed AI—based and Ti—Ni—based Alloys. 1991:1497-1506.
    30 R.B.Schwarz,R.R.Petrich.C.K.Saw.The Synthesis of Amorphous Ni-Ti Alloy Powder by Mechanical Alloying. 1985:281-285
    31 J.Zbiral.G Jangy,G Kord.Mechanical Alloying Development of Mieroxtructure and Alloying Mechaninsms. l992:88-90
    32 V I.Fadeeva,VA.V Leonov.Formation of AI—Fe Supersaturated Solids Solution By MechanicalAlloying. 1992,33:481-486
    33 E.1vanov, T. Grigorieva.Synthesis of NiAI by Mechanical alloying. 1988:5l-57
    34 G J.Fan.M.X.Quan.Z.Q.Hu.Metastable Phase Formation Induced By MechanicalAlloying. 1995:484-489
    35 G Coeco,I.SoLetta,L.Batezzati.M.Baricco.S.Enzo.Mechanical Alloying of the Al-Ti System. 1990:473-479
    36 C.Phlitis.Amorphous Superconducting Nb3Ge and Nb3Gel—xAIx Powders Prepared by Mechanical Alloying. 1985:286-232
    37 B.Ricardo.Schwarz.Formation of Amorphous Alloys by Solid State Reactions. 1988:71-79
    38 M.A.Morris.D.Q Morris.Mechanical Alloying of Aluminum and Iron Powders to ProduceNanoerstallineAl3Fe. 1992:529-535
    39 E.Hellstem.H.J.Fecht’C.Garland.w.L.Johnson.Structural and Thermodynamic Propeaies of Heavily Mechanically Deformed Ru and AlRu. 1989:305-311
    40 K.Y Wang, T.D.Shan,M.X.Quan.W.D.Wei.Hall—Patch Relationship in Nanocrystalline Titanium Produced by Ball-Milling. 1993:18-24
    41 E.He/Item,H.J.Fecht,Z.Fu,w.L.Johnson.Stability of CsC-Type IntermetallleCompounds Under Ball Milling. 1989:1292-1299
    42 YS.Cho,C.C.Koch.Mechanical Milling of Ordered Intermetallic Compounds:the Role of Defects in amorphization.J.Alloys.Comp. 1993: 287-295
    43 J.S.C.C.C.Koch.Amorphization and Disordering ofthe Ni3AI Ordered Intermetallic by Mechanical Milling.J.Mater.Res. 1990:49-54
    44 P.S.Gilman,J.SBenjamin,Ann.MechanicalAlloying.Rew.Maler.SCI. 1983:279
    45王尔德等.机械合金化诱导固溶度扩展机制研究进展.粉末冶金技术,2002,24(2):109-112
    46 G. B. Sehaffer, etal. On the Kinetics of Mechanical Alloying. Metallurgiea Transactions. 1992:1285-1298.
    47李树堂.晶体x射线衍射学基础.北京:冶金工业出版社.1990,5(1):151-189
    48范雄.X射线金属学.北京:机械工业出版社,1981:77-85
    49陈振华.现代粉末冶金技术.化学工业出版社.2007
    50贺可音.硅酸盐物理化学.武汉理工大学出版社.1995
    51邹庆化.热压金刚石工具材料及其致密化.中国有色金属学报, 2001, 11 (2):119-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700