新型奥氏体不锈钢磨损、腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以24Mn-13Cr-0.44N、24Mn-18Cr-3Ni-0.62N和1Cr18Ni9Ti三种奥氏体不锈钢为研究对象,研究了24Mn-18Cr-3Ni-0.62N在室温下的拉伸性能,该新型奥氏体不锈钢拉伸时没有明显的屈服平台,力学性能为:σ_(0.2)=525MPa,σ_b=890MPa,δ=41%,φ=57%,n=0.421,具有很高的强度和优良的塑性,拉伸时形成的滑移带粗大、密集,若金相截面和某(111),面平行或接近平行,还可发现具有正三角形的形变组织,拉伸断口为韧性断口,块状夹杂物为裂纹发源地之一,净化材料可以进一步提高材料的抗拉强度。
     同时,本文重点研究了两种高氮奥氏体不锈钢的磨粒磨损性能,并与18-8型奥氏体不锈钢作了对比探讨其磨粒磨损机理。试验结果表明,在三个低载荷下,18-8型不锈钢随载荷的增加,磨损量急剧上升,而两种高氮的奥氏体不锈钢受载荷的影响比较小。此外,磨粒的形状和粒度对材料耐磨性也有重要影响,在同样载荷下,在粗砂时要比细砂时磨损量大。磨损前期主要是磨粒磨损,最明显的特征是“犁沟”,后期以粘着磨损为主。接下来以粘着和剥落机制为主,剥落区内有部分犁沟痕迹,还有少量的微裂纹。随着载荷的增加,磨粒磨损加剧了,并且粘着磨损也提前了,出现了磨粒磨损和粘着磨损明显的交互作用。在磨损过程中,18-8型奥氏体不锈钢亚表层发生了ε马氏体相变,而两种含氮的奥氏体不锈钢很少或几乎没有ε马氏体出现,但出现了大量的位错和形变孪晶。在对磨损剖面形变层的硬度进行测试时发现,普通的不锈钢由于发生了马氏体相变,硬度增加明显,而两种含氮奥氏体不锈钢几乎没有发生马氏体相变,硬度增加不是很多,即在低载荷下,加工硬化不足。一个可能的结论是:此新型奥氏体不锈钢正如高锰钢一样,在高载荷下,它的耐磨性才表现得更为突出。
     此外,本文还研究了三种奥氏体不锈钢的耐点腐蚀性能。结果发现,两种含氮奥氏体不锈钢的耐点腐蚀性能均比18-8型奥氏体不锈钢好。不管是室温还是高温,普通不锈钢的点蚀数目明显比两种高氮奥氏体不锈钢要多,在50℃高温下,我们在24Mn13Cr0.44N高氮奥氏体钢的点蚀形貌中发现具有正三角形的结构,这就是奥氏体(111)_γ面。表明,温度升高时,含氮奥氏体不锈钢可能会优先在奥氏体的滑移面(111)_γ面发生点蚀。我们知道,不锈钢中夹杂物是重要的点蚀源之一。由于此新型奥氏体不锈钢锰含量比较高,夹杂物较多,因此,净化材料可以进一步提高此类奥氏体不锈钢的耐点腐蚀性能。
24Mn-13Cr-0.44N、24Mn-18Cr-3Ni-0.62N、1Cr18Ni9Ti-three kinds of austenitic stainless steels-were studied in this paper. Tensile properties of a new type austenitic stainless steel 24Mn-18Cr-3Ni-0.62N at room temperature were investigated. During tensile the austenitic stainless steel has not obvious yield point elongation. Tensile property parameters are:σ=525MPa,σ=890MPa,δ=41%, (?)=57%, n=0.421.It possesses very high strength and excellent plasticity. Slip bands formed were coarse and dense, regular triangle deformation microstructure can be founded if optical microscopy section is parallel or approximately parallel to (111) plane.The fracture is toughness fracture . The inclusions are one of crack headstream, and purifying materials can further enhance tensile strength of materials.
     At the same time, abrasive wear properties of high nitrogen austenitic stainless steel under different loads were investigated in this paper, and compared with that of 18-8 austenitic stainless steel .The mechanism of abrasive wear was discussed. Under the three low loads , wear loss of 18-8 stainless steels is sharply increased with increasing of loads, but the influence of load on two kinds of high nitrogen austenitic stainless steel is smaller. Besides, shape and size of abrasive particles have an important effect on resistance to wear of materials. Under the same load, wear loss of coarse sands is more than that of fine sands. The earier stage of wear is mainly abrasive wear, and the most obvious feature is furrow. The advanced stage of wear is mainly adhesive wear. Then main wear mechanism is adhesion and flake, and there are part ploughing trace and a small quality of microcrack. With increasing of loads, abrasive wear is aggravating , adhesive wear advances and appears interaction between abrasive wear and adhesive wear. During wear, 18-8 austenitic stainless steel causeεmartensite transformation in the subsurface stratum, while two kinds of nitrogen-containing austenitic stainless steel few or almost not causeεmartensite transformation, instead appears large numbers of dislocations and deformation twins. The microhardness of wear profile was tested, it is found that hardness of common austenitic stainless steel increases obviously, but that of new type austenitic stainless steel increases less evidently. That is to say, work-hardening of nitrogen-containing austenitic stainless steel is not enough. One possible conclusion is : Just as high manganese steel, wear-resistance of the new type austenitic stainless steel performances more obviously under high loads.
     Furthermore, resistance to pitting corrosion properties of three kinds of austenitic stainless steel was studied. The results show that resistance to pitting corrosion of two kinds of nitrogen-containing austenitic stainless steel are better than that of 18-8 austenitic stainless steel. The number of nitrogen-containing austenitic stainless steel is less than that of 18-8 austenitic stainless steel at room temperature and high temperature. It is founded that pitting corrosion pattern of high nitrogen austenitic stainless steel 24Mn-13Cr-0.44N possesses regular triangle structure At high temperature of 50 degree centigrade, which is austenitic (111) plane. It is showed that nitrogen-containing austenitic stainless steel possibly happen pitting corrosion firstly in austenitic slip plane (111) when the temperature rises. The content of manganese of the new type austenitic stainless steel is very high and the inclusions are much more, so purifying materials can further enhance resistance to pitting corrosion properties of the new type austenitic stainless steels.
引文
[1] 陆世英,张廷凯,康喜范等.不锈钢[M].(第一版).北京:原子能出版社,1998
    [2] 杜存臣.奥氏体不锈钢在工业中的应用[J].化工设备与管道,2003,40(2):54
    [3] Richard EReed. Nitrogen in Austenitic Stainless Steels [J].JOM, March, 1989:16-21
    [4] 康喜范.我国低碳、超低碳奥氏体不锈钢的主要进展[J].钢铁,1994,29(10):77-82
    [5] 张仲秋,李新亚,娄延春等.含氮不锈钢研究的进展[J].铸造,2002,51(11):661
    [6] 赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与应用,2005,20(4):38-40
    [7] 王安东,戴起勋,程晓农.低温奥氏体钢及其断裂机理的研究进展[J].江苏理工大学学报(自然科学版),2000,21(5):59-62
    [8] Hans Betas. Manufacture and Application of High Nitrogen Steels[J].Z.Metallkd, 1995, 86(3): 156-163
    [9] 黄开文,陈诚德,刘晋珊等.不锈钢在我国石油工业中的应用及展望[J].焊管,2005,28(3):1-5
    [10] 任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报,2002,16(2):12-15
    [11] 傅万堂,王正,刘文昌等.18Mn-18Cr-0.5N钢氮化物等温析出动力学研究[J].钢铁,1998,33(9):45-48
    [12] P.Shankar, D.Sundararaman, S.Ranganathan. Clustering and ordering of nitrogen in nuclear grade 316LN austenitic stainless steel[J].Joumal of Nuclear Materials, 1998, 254:1-8
    [13] Yong Jun Oh, Jun Hwa Hong. Nitrogen effect on precipitation and sensitization in cold-worked Type 316(N) stainless steels[J].Journal of Nuclear Materials,2000, 278: 242-250
    [14] 胡庚祥,钱苗根等.金属学[M].上海:上海科学技术出版社,1980
    [15] Richard P. Reed. Nitrogen in Austenitic Stainless Steels [J].JOM, 1989, (3): 16-21
    [16] Delong W B. Effect of nitrogen in stabilizing austenite phase [J].Metal Process, 1960, 11(2): 98
    [17] 吴云书等.现代工程合金[M].北京:冶金工业出版社,1983
    [18] 杨福宝,李隆盛.含氮奥氏体不锈钢性能研究[D].大连:大连理工大学,1995
    [19] Peckner D, Bernsteinl M. Hand book of Stainless Steels [M].New York: Mc. Graw Hill BookCompany, 1997
    [20] Keown S.R, Picketing F B. Niobium [M].Ed. H. stuat: AIME, 1984
    [21] Jack. D H, Jack K H. Nitrides in stainless steel with niobium [J].Mater. Sci. and Eng. 1973, (11): 1
    [22] Pickering F. B. Physical metallurgical development of stainless steels[A].Stainless Steel'84[C].London: The Institute of Metals,1985
    [23] iismpel P G, Ladwein T. Effect of nitrogen on mechanical technological and corrosion properties of stainiess steels[A]. HNS 88[C].London: The Institute of Metals, 1989:272
    [24] Dai Q. X, Yuang Z.Z, Cheng X.N.et al. Numerical simulation of Nitride Age-precipitation in High Nitrogen Stainless Steels[J].Mater. Sci. Eng.A, 2004, 385:445-448
    [25] [印度]U.卡曼奇.曼德里,R.贝德威著;李晶,黄运华译.高氮钢和不锈钢—生产、性能与应用[M].北京:化学工业出版社,2006
    [26] 崔大伟,曲选辉,李科.高氮低镍奥氏体不锈钢的研究进展[J].材料导报,2005,19(12):64-71
    [27] J. W. Simmons. Strain hardening and plastic flow properties of nitrogen-alloyed Fe-17Cr-(8-10)Mn-5Ni anstenitic stainless steels[J].Acta Materialia, 1997, 45(6): 2467
    [28] 刘文昌,张静武,郑炀曾.氮强化高锰奥氏体不锈钢的应变硬化行为[J].金属热处理学报,1995,16(3):33-38
    [29] 王安东.低温奥氏体钢的力学行为及断裂机理的研究[D].镇江:江苏理工大学,2001
    [30] Picketing F B. Physical Metallurgy and the Design of Steels [M].London: Applied Science publishers, 1978
    [31] Brandis H, Heimann W. Stainless nitrogen effects in dual-phase stainless steel [A].Steel 84[C], London: The Institute of Metals, 1985:97
    [32] Speidel M O. Properties and applications of high nitrogen steels [A].HNS 88[C].London: The Institute of Metals, 1989:92
    [33] Nakazawa T, etal. Effect of nitrogen and carbon in creep properties of type 316 stainless steels [A. HNS 88 [C].London: The Institute of Metals, 1985:218
    [34] Hoke J H. Handbook of Stainless Steels [M].McGraw Hill: Eds. D. Peckner and I. M. Bernstein, 1977
    [35] 陈秋龙,蔡亦炜,彭辉等.奥氏体不锈钢氮离子注入层的研究[J].上海交通大学学报,1995,29(3):129-133
    [36] Speidel M O. Properties and applications of high nitrogen steels[A].HNS88 [C].London: The Institute of Metals, 1989:92
    [37] I. Olefjord, L. Wegrelius. The influence of nitrogen on the passivation of stainless steels[J]. Corrosion Science, 1996, 38(7): 1203
    [38] H. Baba, T. Kodama, Y. Katada. Role of nitrogen on the corrosion behavior of austenitic stainless steels[J] .Corrosion Science, 2002, 44:2393
    [39] Sakamoto T, Abo H. Alloys for the 80.sClimax Molybdenum[R].Ann: Arbor, 1980
    [40] 陈志强.高氮不锈钢研究的发展近况[J].宝钢技术,2005,(5):11-17
    [41] Vaughan D, Phalen D. Anti-corrosion behavior of nitrogen con- tained steel [J].Corrosion, 1965, 19:315
    [42] Kendal A, Trumen J E. Properties of AISI304 and AISI316 stainless steels with addition of 0.2% nitrogen [A].HNS88 [C].London: The Institute of Metals, 1989:405
    [43] 王洪发.金属耐磨材料的现状与发展[J].铸造,2000,(49):577-591
    [44] T.S.Eyre. Review of abrasivestudy[J].Tribology Internation-al, 1978, (11): 91-98
    [45] 邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988
    [46] 材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990:2
    [47] 张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,1991
    [48] M.A. Moor, F. S. King. Abrasive wear of brittle solids[J].Wear, 1980, (60): 123-139
    [49] K.H. Zum Gagr. Modelling of two-body abrasive wear[J], wear, 1988, (124): 87-103
    [50] 张德康.不锈钢局部腐蚀[M].北京:科学出版社,1982
    [51] Q.X.Dai, A.D Wang, X.N Cheng et al. Effect of alloying elements and temperature on strength of cryogenic austenitic steels[J].Mater.Sci.Eng.A, 2001, 311(1/2): 205-210
    [52] 张旺峰,陈瑜眉,朱金华.一种新型的拉伸应力应变曲线规律研究[J].西安交通大学学报,1999,33(10):64-67
    [53] 束德林.金属力学性能[M].北京:机械工业出版社,1995:21
    [54] Yuang Z.Z, Dai Q. X, Cheng X.N.et al. In situ SEM tensite test of high-nitrogen austenitic stainless steels[J].Mater. Charact.,, 2006, 56:79-83
    [55] Bymes, M.L.G., Grujici, M.and Owen, W.S., Acta.Met.1987, 35:1853
    [56] Noskova, N.I., Pavlov, V.A.and Nemnonov, S.A., Phy.Met.Metallography.1965, 20:920
    [57] Hirth J P, Lothe J. Theory of Dislocation(2 Ed).McGraw-Hill Book Co..New York, 1982
    [58] 张青.含氮奥氏体钢低温稳定性与设计专家系统(ASES)的研究[D].镇江:江苏大学,2004
    [59] 钢的结构[M].北京:冶金出版社,1961
    [60] 汪复兴.金属物理[M].机械工业出版社,1981
    [61] Dai Q. X., Yuang Z.Z., Cheng X.N.et al. Structual Parameters of martensite Transformation for Austenitic Steels[J].Mater. Charact., 2003, 49(4): 367-371
    [62] 戴起勋.奥氏体钢马氏体相变点Ms、Mεs[J].钢铁,1995,30(8):52-57.
    [63] 郎宇平,康喜范.超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响[J].钢铁研究学报,2001,13(1):30-35
    [64] Gavriljuk, V.G. and Betas, H., High Nitrogen Steels (structure manufacture applications) Springervedag Berlin, 1999, 289
    [65] 文言.影响奥氏体不锈钢中ε马氏体形核数的主要因素研究[J].十堰大学学报(自然科学版).1998,1:22-24
    [66] 陈希杰.高锰钢[M].北京:机械工业出版社,1989
    [67] 程晓农,戴起勋.奥氏体钢设计与控制[M].北京:国防工业出版社,2005:32
    [68] 戴起勋,王安东,程晓农.低温奥氏体钢的层错能[J].钢铁研究学报.2002,14(4):34-37
    [69] J.弗里埃德尔.位错[M].科学出版社,1984
    [70] 马鸣图,沙维.材料科学和工程研究进展(第1集)IM].北京:机械工业出版社,2000:278-279
    [71] Sedriks A J. Effects of Alloy Composition and Microstructure on the Passivity of Stainless Steels[J].Corrossion, 1986, 42 (7): 376-389
    [72] Grabke H. The Role of Nitrogen in the Corrosion of Iron and Steels [J].ISIJ Inter, 1996, 36(7): 777-786
    [73] Randy R. Properties of Nitrogen-Containing Stainless Alloy Designed for High Resistance to Pitting [J].Corrosion, 1985, 41(4): 228-233
    [74] Lu Y C. Surface Enrichment of Nitrogen during Passivation of a Highly Resistant Stainless Steel [J].J Electrochem.Soc, 1983, 130:1774-1776
    [75] Lu Y C. Synergism of Alloying Elements and Pitting Corrosion Resistance of Stainless Steels [J].Corr Sci, 1993, 35(1): 89-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700