长期施肥对黄土旱塬氨氧化细菌和氨氧化古菌群落多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区为中国古老的雨养农业区,耕地面积为0.18亿公顷,占全国耕地面积的19%,因此对黄土高原的进一步研究具有十分重要的意义。由于侵蚀与干旱的影响,黄土高原区粮食的产量一般低于2.0t/hm2,为全国土壤生产力的低产水平。尽管施用化学氮肥是提高作物产量的必要措施,但长期大量施用能引起硝态氮在根区以下土层的无效累积。有研究表明,由于大量施用氮肥,黄土区的农田土壤剖面已经出现了明显的硝态氮积累现象,土壤中硝态氮的高量累积不仅造成氮肥的浪费和土壤氮素肥力的降低,而且也可能污染地下水。氨氧化作用是硝化作用的第一个反应步骤,也是限速步骤,是全球氮素循环的中心环节。因此,研究氨氧化微生物(细菌和古菌)具有重要的环境意义。研究土壤中氨氧化细菌和氨氧化古菌群落多样性及其结构变化,将为了解土壤硝化作用的特征提供必要的理论依据。
     本试验样品采集于中国科学院长武农业生态站长期定位施肥基地。试验采用完全随机区组设计方案,设置5个处理:①CK(无肥区)、②M、③NM、④PM、⑤NPM。各处理每种肥料的施入量为:有机肥(牛粪)7500 kg/hm2,N肥(尿素)120 kg/hm2,P肥(过磷酸钙)60 kg/hm2。采用直接法提取土样微生物总DNA,分别采用amoA和Arch-amoA引物扩增基因片段,建立氨氧化细菌和氨氧化古菌的克隆文库,用限制性内切酶进行PCR-RFLP分析。本研究的主要结果如下:
     1.通过对5种施肥制度下氨氧化细菌amoA基因群落多样性的分析表明:
     (1)5种施肥处理分别得到59/150、56/150、83/150、71/150、42150个RFLP酶切类型。库容值分别为80.67%、80.67%、60.00%、66.67%和84.56%。各处理均出现了明显的优势菌群。
     (2)α多样性指数表明不同施肥处理的多样性存在差异,NM处理多样性最高,NPM处理多样性最低。Shannon-Wiener指数(H)与物种丰富度指数(E)数值上均为NM>PM>CK>M>NPM,优势度Simpson指数(Ds)数值上为NM>CK>PM>NPM>M, Margalef指数(dMa)为PM>NM>CK>M>NPM。p多样性指数表明M与NPM之间Sorenson指数为0.61,群落相似性最高;NM、PM与CK之间Sorenson指数均为0.15,群落相似性最低;其余均介于0.23-0.38。表明长期施肥改变了氨氧化细菌的多样性。
     (3)基于amoA氨基酸序列建立的系统进化树表明,各处理均以Nitrosospira cluster3为优势种群,但不同处理间属于Nitrosospira cluster 3a和3b中克隆子所占的比例大小不同,同时发现有Nitrosospira cluster 4种属。说明不同的土壤肥力环境对氨氧化细菌种属的长期选择导致种属差异。
     2.通过对氨氧化古菌amoA基因群落多样性的分析表明:
     (1)CK处理得到25/150个酶切类型,库容值达到92.00%。NM处理得到29/150个酶切类型,库容值达到92.31%。
     (2).多样性指数数值为CK     (3)氨氧化古菌的系统发育分析表明,所获得的氨氧化古菌均属于Crenarchaeota(泉古菌门),说明了泉古菌是黄土旱塬的优势菌群。本试验中得到的amoA基因序列与已知的来自土壤和沉积物中获得序列更相似,同源性更高。
The loess plateau was an ancient rain-fed agricultural area in China, and the cultivated land area was 18 million hectares which account for 19% in China, so the further study of the loess plateau was significant. Due to erosion and drought, food production in the loess plateau was generally less than 2.0 t/hm2, which was lower than the national level. Although using chemical fertilizer was a necessary measure to increase crop yields, it could cause a large number of nitrate zone of invalid accumulation in the soil. Studies showed that there was a clear phenomenon of nitrate accumulation in soil by using a large number of nitrogen fertilizer in loess area. It not only caused high level of nitrogen waste and soil nitrogen fertility reduction, but also leads to the pollution for groundwater. Ammonia oxidation was the first reaction step of nitrification, rate-limiting step and the central link in the global nitrogen cycle. Therefore, the study of ammonia-oxidizing microorganisms (bacteria and archaea) had an important environmental significance. Study of soil ammonia-oxidizing bacteria and ammonia-oxidizing archaea community's structure and diversity could provide the necessary theoretical basis to understand the characteristics of soil nitrification.
     The long-term field experiment was located in the Changwu State Key Experimental Station for Agriculture, Shannxi province, northwest China. The fertilization experiment included five treatments for each treatment in a randomized plot design. The five treatments were control without fertilizer (CK); those with combinations of fertilizer nitrogen, phosphorus and and organic manure:M, NM, PM, NPM. Fertilizers N, P and M were applied in the form of urea (120 kg N ha-1 per year), super phosphate (60 kg P ha-1 per year) and dairy manure (7500 kg ha-1 per year). Total DNA of five samples were extracted directly. Constructed amoA gene and Arch-amoA clone libraries, and the influence of CK, M, NM, PM and NPM fertilizer treatments on soil AOB diversity and community structure were analyzed by restriction fragment length polymorphism (PCR-RFLP). The main results were as follows:
     1. The soil ammonia-oxidizing bacteria amoA gene libraries were generated from the five treatments, the diversity and phylogenetic analysis showed that:
     (1) Total RFLP patterns of five treatments were 59(CK),56(M),83(NM),71(PM) and 42(NPM), respectively. The coverage (C value) of the clone libraries were 80.67%,80.67%, 60.00%,66.67% and 84.56%, respectively. Dominant ammonia-oxidizing bacteria existed in each treatment.
     (2) a-measurement indices analysis illuminated that there was differentia among five fertilizer treatments. The diversity was highest in NM treatment and lowest in NPM treatment. The Shannon-Wiener index and Species Evenness index represented an identical order NM>PM>CK>M>NPM, the Simpson index represented NM>CK>PM>NPM>M, and the Margalef index represented PM>NM>CK>M>NPM. The Sorenson index was 0.61 between M and NPM (M-NPM), which indicated there was a high community similarity. The lowest level of community similarity was existed in NM-CK and PM-CK, whose Sorenson indices were both 0.15. Sorenson indices of other treatments were from 0.23 to 0.38. The results indicated that long term fertilization resulted in change of AOB community.
     (3) Phylogenetic analysis of amoA gene amino acid sequences showed that Nitrosospira cluster 3 sequences was dominant in all treatments, but the proportion of clones in each treatment belonging to Nitrosospira cluster 3a or 3b was different, and some clones were affiliated with the Nitrosospira cluster 4. Different fertilizer environment could lead to the significant species variation of soil AOB.
     2. The soil ammonia-oxidizing archaea amoA gene libraries were generated from the five treatments, the diversity and phylogenetic analysis of ammonia-oxidizing archaea showed that:
     (1) Total RFLP patterns of CK treatment was 25, and the coverage (C value) of the clone library was 92.00%. Total RFLP patterns of NPM treatment was 29, and the coverage (C value) of the clone library was 92.31%.
     (2) a-measurement indices analysis illuminated that in terms of index value, CK     (3) Phylogenetic analysis of amoA gene sequences showed that all the sequences of the AOA belonged to an uncultured crenarchaeote, which was dominant in dry highland of loess plateau. The high community similarity and high homology existed in all the sequences we gained and the sequences gained from sediment and soil.
引文
陈秀蓉,南志标.2002.细菌多样性及其在农业生态系统中的作用.草业科学,19(9):34-38.
    东秀珠,洪俊华.2001.原核微生物的多样性.生物多样性,9(1):18-24.
    辜运富,云翔,张小平,涂仕华,孙锡发,Kristina Lindstrom.2008.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响.中国农业科学,41(12):4119-4126.
    贺纪正,张丽梅.2009.氨氧化微生物生态学与氮循环研究进展.生态学报,29(1):406-415.
    李顺鹏.2002.环境生物学.北京:中国农业出版社,136-139.
    李振高,俞慎.1997.土壤硝化-反硝化作用研究进展.土壤,(6):281-285.
    刘勇勤,姚檀栋,康世昌.2007.珠穆朗玛峰北坡6000m以上主要生境细菌群落特征.科学通报,52(13):1542-1547.
    莫旭华,史荣久,李慧,郑佳,王元芬,徐慧.2009.华北典型旱地小麦土壤amoA基因的PCR-RFLP分析.生态科学,28(1):49-55
    冉炜,沈其荣,郑金伟.2000.土壤硝化作用过程中亚硝态氮的累积研究.土壤学报,37:474-481.
    徐阳春,沈其荣,冉炜.2002.长期免耕与施用有机肥对土壤微生物生物量、氮、磷的影响.土壤学报,39(1):89-96.
    许飞,戴欣,陈月琴.2004.南沙海区沉积物中细菌和古细菌16S rDNA多样性的研究.海洋和湖沼,35(1):89-94.
    阎章才,东秀珠.2001.微生物的生物多样性及应用前景.微生物学通报,28(1):96-102.
    姚槐应,黄昌勇.2007(2rd).土壤微生物生态学及其实验技术.北京:科学出版社,
    张逸飞,钟文辉,李忠佩,蔡祖聪.2006.长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响.生态与农村环境学报,22(4):39-44.
    郑平,徐向阳,胡宝兰.2004.新型生物脱氮理论与技术.北京:科学出版社.
    周桔,雷霆.2007.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,15(3):306-311.
    周娟,李君文,郑金来.2001.亚硝酸细菌研究进展.环境科学与技术,24(增刊):8-10.
    Allison S M, Prosser J I.1993. Ammonia oxidation at low pH by attached populations of nitrifying bacteria. Soil boil.Bioehem,25:935-941.
    Avrahami S, Liesack W, Conrad R.2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology,5(8):691-705.
    Belser L W.1979. Population ecology of nitrifying bacteria. Annu.Rev.Microbiol,33:309-333.
    Beman J M, Francis C A.2006. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary:Bahia del Tobari, Mexico. Appl. Environ. Microbiol.72 (12): 7767-7777.
    Botteher B.1996. Untersuchungen zur phylogenic des ammonia oxidizer-enden systems nitrifizierender baterien. Ph.D thesis, University Hamburg, Hamburg, Germany.
    Brussaard L, Ruiter P C, Brown G G 2007. Soil biodiversity for agricultural sustainability. Agriculture, Ecosystems and Environment,121:233-244.
    Buchanan R E, Gibbons N E.1974. Bergey's Manual of Determinative Bacteriology.8th Ed. Baltimore:The Williams and Wilkins Company.
    Bunrs M A, Stephen J R, Kowalehuk G A, ProsserJ I, Paul E A.1999. Comparative diversity of ammonia
    oxidizerl6S rRNA gene sequences in native, tilled, and successional soils. Appl. Enviorn. Micorbiol, 65:2994-3000.
    Caffrey J M, Bano N, Kalanetra K.2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. ISME J,1(7):660-662.
    Carpenter B L, Kennedy A C, Reganold J P.2000. Organic and biodynamic management:Effects on soil biology. Soil Science Society of America Journal,64:1651-1659.
    Castignetti D, Hollocher T C.1984. Heterotrophic nitrification among denitrifiers. Applied Environmental Microbiology,47(4):620-623.
    Ceccherini M T, Castaldini M, Piovanelli C, Hastings R C, McCarthy A J, Bazzicalupo M, Micluas N.1998. Effects of swine manure fertilization on autotrophic ammonia-oxidizing bacteria in soil. Applied Soil Ecology,7:149-157.
    Chang Y J, Hussain A K M A, Stephen J R, Mullen M D, White D C, Peacock A.2001. Impact of herbicides on the abundance and structure of indigenous (3-subgroup ammonia-oxidizer communities in soil microcosms. Environmental Toxicology and Chemistry,20:2462-2468.
    Chen X P, Zhu Y G.2008. Ammonia-oxidizing archaea:important players in paddy rhizosphere soil. Environmental Microbiology,45:1-10.
    Chu H Y, Fujii T, Morimoto S, Lin X G, Yagi K, Hu J L, Zhang J B.2007. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology,73(2):485-491.
    Chu H Y, Lin X G, Fujii T, Morimoto S, Yagi K, Hu J L, Zhang J B.2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry,39:2971-2976.
    Costa Engracia, Perez Julio, Kreft.J U.2006. Why is metabolic labour divided in nitrification? [J].Trends in Microbiology,14:213-219.
    Crecchio C, Curci M, Pellegrino A, Ricciuti P, Tursi N, Ruggiero P.2007. Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry,39:1391-1400.
    Delong E F.2004. Microbial population genomics and ecology:the road ahead. Environ Microbiol,6(9): 875-878.
    Deni J, Penninckx M J.1996. New approach for detecting and detrining the diversity of the genu nitrobacter in soil. Archives of physiology and biochemistry,104:787.
    Deni J, Penninckx M J.1999. Nitrification and autotrophic nitrifying bacteria in a hydrocarbon-polluted soil. Appl.Environ.Microbiol,65:4008-4013.
    Francis C A, Beman J M, Kuypers M M M.2007. New processes and players in t he nit rogen cycle:The microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J,1 (1):19-27.
    Gabor E M, Devries E J, Janssen D B.2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology,44(2):153-163.
    Hao Y J, Wu S W, Wu W X.2007. Research progress on themicrobial ecology of aerobic ammonia-oxidizing bacteria. Acta Ecologica Sinica,27(4):1573-1582.
    Hawksworth D L.1991. The fungal dimension of biodiversity:magnitude, significance, and conservation. Mycol.Res.,95(6):641-655.
    He J Z, Shen J P, Zhang L M, Zhu Y G, Zheng Y M, Xu M G, Di H J.2007. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology, 9(9):2364-2374.
    Herfort L, Schouten S, Abbas B.2007. Variations in spatial and temporal distribution of archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol,62(3):242-257.
    Hermansson A, Lindgren P E.2001. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmenta Microbiology,67:972-976.
    Horz H P, Barbrook A, Field C B, Bohannan B J M.2004. Ammonia-oxidizing bacteria respond to multifactorial global change. PNAS,101(42):15136-15141.
    Hu S J, van Bruggen A H C, Grunwald N J.1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Applied Soil Ecology,13(1):21-30.
    Hyman M R.1998. Interaction of ammonia monooxygenase from Nitrosomona europaea with alkanes, alkenes, and akynes. Appl.Environ.Microbiol,64:3187-3190.
    Jiang S, Fu W, Chu W, Fuhrman J A.2003. The vertical distribution and diversity of marine bacteriophage at a station of southern California. Microbial Ecology,45(4):399-410.
    Jordan F L, Cantera J J L, FennM E.2005. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Applied and Environmental Microbiology, 71:197-206.
    Keener W K, Arp D J.1994. Transformation of aromatic compounds by Nitrosomonas europaea. Appl. Environ. Microbiol.,60:1914-1920.
    Kemp P F, Aller J Y.2004. Bacterial diversity in aquatic and other environments:what 16SrDNA libraries can tell us. FEMS Microbiology Ecology,47:161-177.
    Kent A D, Smith D J, Benson B J, Triplett E W.2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology,69(11):6768-6776.
    Klotz M G 1997. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia-oxidizing bacteria:a third member of the amo operon. FEMS Microbiol. Lett,150:65-73.
    Kong P, Richardson P A, Hong C X.2005. Direct colony PCR-SSCP for detection of multiple pythiaceous oomycetes in environmental samples. Journal of Microbiological Methods,61:25-32.
    Konneke M, Bernhard A E, Torre de la Jose'R.2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,437(22):543-546.
    Kowalchuk G A, Stiensrta A W, Heilig G H J, Stephen J R, Woldendorp J W.2000. Molecular analysis of ammonia-oxidizing bacteria in soil of successional grasslands of the drentche A(The Netherlands).FEMS Microbiol.Ecol,31:207-215.
    Kowalchuk G A, Stephen J R.2001. Ammonia-oxidizing bacteria:a model for molecular microbial ecology. Annu. Rev. Microbiol,55:485-529.
    Kowalchuk G A, Stephen J R, De B W, Prosser J I, Embley T M, Woldendorp J W.1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology,63(4):1489-1497.
    Kumar S, Tamura K, Nei M.2004. MEGA 3:Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics,5:150-163.
    Leininger S, Urich T, Schloter M.2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature,442:806-809.
    Luo H F, Qi H Y, Xue K.2003. Influence of application of GC clamp on study of soil microbial diversity by PCR-DGGE. Acta Ecologica Sinica,23 (10):2170-2175.
    Ma Y X, Hom S C, Web B J.2003. Application of denaturing gradient gel electro phoresis (DGGE) in microbial ecology. Acta Ecologica Sinica,23 (8):1561-1569.
    Macaig A E, Phillips C J, Stephen J R, Kowalchuk G A, Harvey S M, Herbert R A, Embley T M, Prosser J I. 1999. Nitrogen cycling and community structure of proteobacterial β-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Applied and Environmental Microbiology,65(1): 213-220.
    Mac Donald R M.1986. Nitrification in soil:an introductory history. See Ref,141:117-126.
    Magurran A E.1988. Ecological diversity and its measurement. New Jersey:Princeton University Press.
    Mctavish H.1993. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J.Bacteriol,175:2436-2444.
    Mendum T A, Hirsch P R.2002. Changes in the population structure of β-group autotrophic ammonia-oxidizing bacteria in arable soil in response to agricultural practice. Soil biology and biochemistry,34:1479-1485.
    Menendez S, Lopez-Bellido R J, Benitez-Vega J, Gonzalez-Murua C, Lopez-Bellido L, Estavillo J M.2008. Long-term effect of tillage, crop rotation and N fertilization to wheat on gaseous emissions under rainfed Mediterranean conditions. Europe Journal of Agronomy,28:559-569.
    Murray A E, Blakis A, Massana R.1999. A time series assessment of plank tonic archaeal variability in the santa barbara channel. Aquat Microb Ecol,20(2):129-145.
    Murray A E, Preston C M, Massana R.1998. Seasonal and spatial variability of bacterial and archaeal assemblages in t he coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol,64(7): 2585-2595.
    Nicol G W, Schleper C.2006. Ammonia-oxidizing crenarchaeota:important players in the nitrogen cycle?[J]. Trends in Microbiology,14(5):207-212.
    Nicolaisen M H, Ramsing N B.2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods,50(2):189-203.
    Okano Y, Hristova K R, Leutenegger C M, Jackson L E, Denison R F, Gebreyesus B, Lebauer D,Scow K M. 2004. Application of Real-Time PCR To Study Effects of Ammonium on Population Size of Ammonia-Oxidizing Bacteria in Soil. Appl Environ Microbiol,70(2):1008-1016.
    Oved T, Shaviv A, Goldrath T, Mandelbaum R T, Minz D.2001. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology,67(8):3426-3433.
    Park H D, Wells G F, Bae H.2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors[J]. Appl.Environ. Microbiol.,72(8):5643-5647.
    Phillips C J, Harris D, Dollhopf S L, Gross K L, Prosser J I, Paul E A.2000. Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Applied and Environmental
    Microbiology,66(12):5410-5418.
    Prosser J I.1989. Autotrophic nitrification in bacteria. Adv. Microb. Physiol,30:125-81.
    Purkho, Pommerening, Juretschko S.2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis. Microbiol,6:5368-5382.
    Rasehe M E.1990. Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J.bacteriol,172:5368-5373.
    Richard C H, Ceccherini M T.1997. Direct molecular biological analysis of ammonia-oxidizing bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiology Ecology,23: 45-54.
    Rottauwe J H.1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing population. Appl.Environ.Microbiol, 63(12):4702-4712.
    Rotthauwe J H, Deboer W, Liesack W.1995. Comparative analysis of gene sequences encoding ammonia mono oxygenase of Nitro sospirasp. Microbiology Letters,133:131-135.
    Shen J P, Zhang L M, Zhu Y G, Zhang J B, He J Z.2008. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology,10(6):1601-1611.
    Sinigalliano C D.1995. Amplification of the amoA gene from diverse species of ammonium-xidizing bacteria and from a indigenous bacterial population form seawater. Appl. Environ. Mibiol,61: 2712-2706.
    Smit E, Leefland P, Wernars K.1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Micorbiol.Ecol,4:249-261.
    Stark J M, Firestone M K.1996. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biology Biochemistry,28(10):1307-1317.
    Stephen J R., Chang Y J, Macnaughton S J, Kowalchuk G A.1999. Effects of toxic metals on indigenous soilβ-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated meatl-resistant bacteria. Appl.Enviorn.Micorbiol,7:95-101.
    Stephen J R, MeCaig A E, Smith Z, Porsser J I, Embley T M.1996. Molecular diversity of soil and marine 16S rDNA sequences related to β-subgroup ammonia-oxidizing bacteria. Appl. Enviorn. Microbiol,62: 4147-4154.
    Sun H Y, Deng S P, Raun W R.2004. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Applied and Environmental Microbiology,70(10):5868-5874.
    Tiquia S M, Lloyd J, Herms D A, Hoitink H A J, Michel F C.2002. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology,21(1):31-48.
    Vannelli T.1990. Degradation of halogenated hydtocatbon aliphatic compounds by the ammonia oxidizing bacterium Nitrosomonas europaea. Appl.Environ.Microbiol,56:1169-1171.
    Watve M G, Gangal R M.1996. Problems in measuring bacterial diversity and a possible solution. Appl. Environ. Microbiol,62(11):4299-4301.
    Webster G, Embley T M, Prosser J I.2002. Grassland management regimens reduce small-scale heterogeneity and species diversity of P-Proteobacterial ammonia oxidizer populations. Applied and Environmental Microbiology,68(1):20-30.
    Wuchter C, Abbas B, Coolen M J L.2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America,103:12317-12322.
    Yakimov M M, La C V, Denaro R.2007. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L'Atalante, Eastern Mediterranean Sea. ISME J, 1(8):743-755.
    Yuan F, Ran W, Hu J.2005. Ammonia-oxidizing bacteria communities and their influence on the nitrification potential of Chinese soils measured by denaturing gradient gel electrophoresis (DGGE). Acta Ecologica Sinica,25(6):1318-1324.
    Yutaka O, Krassimira R H, Christian M L, Louise E J, Ford D R, Binyam G, David L, Kate M S.2004. Application of Real-Time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl.Enviorn.Micorbiol,1:1008-1016.
    Zhou J Z, Bruns M A, Tiedjie J M.1996. DNA recovery from soil of diverse composition. Applied and Environmental Microbiology,62:316-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700