拟南芥多聚谷氨酸加尾酶AtDFC在氮限制条件下的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在植物体内,叶酸(又称维生素B9)及其衍生物大多是以带多个谷氨酸尾的形式参与生物化学反应。在叶酸合成途径中,多聚谷氨酸加尾酶(polyglutamyl synthetase, FPGS)的作用是将谷氨酸残基连接到四氢叶酸形成多聚谷氨酸四氢叶酸。在拟南芥中有3个基因编码3个FPGS亚型,它们分别定位于细胞质(AtDFD)、线粒体(AtDFC)和叶绿体(AtDFB)中。本文主要研究线粒体定位的多聚谷氨酸加尾酶(AtDFC)的功能。其T-DNA插入突变体在氮限制条件下表现出较野生型更不适应的表型,突变体主根长度较野生型更短,因此我们试图探索AtDFC在氮限制条件下的作用机理以及叶酸代谢与氮代谢之间的关系。首先通过检测植株中单尾形式的5-CH3-THF和5-CHO-THF叶酸含量,发现这两者在突变体和野生型中没有明显差异。检测游离氨基酸含量,发现突变体中多种氨基酸含量均比野生型高,说明突变体中可能参与生长发育的氮源不足,需要内源蛋白质裂解释放出游离氨基酸以维持生长。接下来确定了突变体和野生型在氮限制条件下出现明显差异的NO3-浓度为0.3 mM,在0.3 mM氮限制条件下生长10天的突变体,其主根长度及植株地上部分生物量均约为野生型的一半,说明突变体更难以适应氮限制条件。对正常生长条件下和氮限制生长条件下的植株进行real-time RT-PCR分析,分析表明当AtDFC失去功能时,氮代谢、氨基酸代谢和光呼吸相关基因表达发生明显变化,说明叶酸代谢途径受到扰动会影响氮代谢和光呼吸反应,由此AtDFC将叶酸代谢与氮代谢、光呼吸反应联系起来。最后对突变体进行了的互补实验,互补的株系幼苗对氮限制条件的反应与野生型相同,说明突变体无法适应氮限制的表型是由于AtDFC基因功能缺失造成的。
In plants, folate (or vitamin B9) and its derivatives are involved in many metabolic pathways as an important cofactor for one-carbon transfer reactions. In the folate biosynthesis pathway, the polyglutamyl synthetase (FPGS) catalyzes addition of polyglutamyl residues to theγsite of the first glutamate of tetrahydrofolate. AtDFB, AtDFC and AtDFD are folylpolyglutamate synthase (FPGS) localized in plastid, mitochondria and cytosol respectively in Arabidopsis. In this study, the function of mitochondria-targeted AtDFC was investigated using T-DNA insertion mutant. The mutant could not adapt to nitrogen limitation of 0.3 mM NO3-, mainly characterized by shorter primary root than the wild type. So we intended to uncover the molecular and physiological mechanisms underlying the inadaptability of the loss-of-function mutant Atdfc under nitrogen limitation. First, the content of the monoglutamate folate (5-CH3-THF and 5-CHO-THF) were analyzed and we found no significant difference between the wild type and the Atdfc. Then we measured the free amino acids, and found that the content of many amino acids are much higher in Atdfc than in wild type. This may indicate that the endogeneous nitrogen is not sufficient to satisfy Atdfc growth, thus the mutant needs to promote protein lysis into amino acids to maintain its development. It was found by real-time RT-PCR that the expression patterns of the genes involved in nitrogen metabolism, amino metabolism and photorespiration changed significantly in the mutant as compared to wild type when subjected to nitrogen limitation, thus AtDFC could be the connection point between the nitrogen metabolism and the photorespiration. At last, the transgenic complementation lines were obtained and the phenotype was recovered to wild type under nitrogen limitation, proving the phenotype of the mutant Atdfc was caused by the T-DNA insertion in the locus of AtDFC.
引文
[1] Bekaert S., Storozhenko S., Mehrshahi P., et al. Folate biofortification in food plan. Trends in Plant Science, 2007, 13: 1360-1385.
    [2] Basset G., Quinlivan E.P., Gregory J.F., et al. Folate synthesis and metabolism in plants and prospects for biofortification. Crop Science, 2005, 45: 449-453.
    [3] de Crécy-Lagard V, El Yacoubi B, de la Garza RD, et al. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics, 2007, 8: 245.
    [4] Edwin A. Cossins. The fascinating world of folate and one-carbon Metabolism. Can. J. Bot, 2000, 78: 691-708.
    [5] Andrew D Hanson, Jesse F Gregory. Synthesis and turnover of folates in plants. Current Opinion in Plant Biology, 2002, 5: 244-249.
    [6] Klaus S.M., Wegkamp A., Sybesma W., et al. A nudix enzyme removes pyrophosphate from dihydroneopterin triphosphate in the folate synthesis pathway of bacteria and plants. The Journal of Biological Chemistry, 2005, 18: 5274-5280.
    [7] Suzuki Y., Brown G.M. The biosynthesis of folic acid. XII. Purification and properties of dihydroneopterin triphosphate pyrophosphohydrolase. The Journal of Biological Chemistry, 1974, 249: 2405-2410.
    [8] Basset G.J, Quinlivan E.P., Ravanel S., et al. Folate synthesis in plants: the p-aminobenzoate branch is initiated by a bifunctional PabA-PabB protein that is targeted to plastids. Proc Natl Acad Sci USA, 2004, 101: 1496-1510.
    [9] Neuburger M., Jourdain A., Nakamura S., et al. Mitochondria are a major site for folate and thymidylate Purificasynthesis in plants. The Journal of Biological Chemistry, 1996, 271: 9466-9472.
    [10] RébeilléF., Macherel D., Mouillon J.M., et al. Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO Journal, 1997, 16: 947-957.
    [11] Ravanel S., Cheress H., Jabrin S., et al. Tetrahydrofolate biosynthesis in plants: Molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2001, 98: 15360-15365.
    [12] Cossins E.A., Chen L. Folates and one-carbon metabolism in plants and fungi. Phytochemistry, 1997, 45: 437-452.
    [13] Mariette Bedhomme, Michaela Hoffmann, Erin A. McCarthy, et al. Folate Metabolism in Plants. The Journal of Biological Chemistry, 2005, 280: 34823-34831.
    [14] Besson V, Rebeille F, Neuburger M, et al. Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochemical Journal, 1993, 292: 425-430.
    [15] Takaaki Ishikawa, Chiyoko Machida, Yasushi Yoshioka. The GLOBULAR ARREST1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. The Plant Journal, 2003, 33: 235-244.
    [16] Aymeric Goyer, Eva Collakova, Roc?′o D?′az de la Garza., et al. 5-Formyl- tetrahydrofolate Is an Inhibitory but Well Tolerated Metabolite in Arabidopsis Leaves. The Journal of Biological Chemistry, 2005, 28: 26137-26142.
    [17] Eva Collakova, Aymeric Goyer, Valeria Naponelli. Arabidopsis 10-Formyl Tetrahydrofolate Deformylases Are Essential for Photorespiration. The Plant Cell, 2008, 20: 1818-1832.
    [18] Leegood, R.C., Lea, P.J., Adcock, M.D., et al. The regulation and control of photorespiration. Journal of Experimental Botany. 1995, 46: 1397-1414.
    [19] Reumann, S., Weber, A.P.M. Plant peroxisomes respire in the light: Some gaps of the photorespiratory C2 cycle have become filled-Others remain. Biochim. Biophys, 2006, 1763: 1496-1510.
    [20] Richard C. Leegood, Peter J. Lea, Michael D. Adcock, et al. The regulation and control of photorespiration. Journal of Experimental Botany, 1995, 46: 1397-1414.
    [21] Long, S.P., Zhu, X-G., Naidu, S.L. et al. Can improvement in photosynthesisincrease crop yields? Plant Cell Environ, 2006, 29: 315-330.
    [22] Bob B.Buchanan, Wilhelm Gruissem, Russell L.Jones. Biochemistry and Molecular Biology of Plants, 2002, 812-813.
    [23] Somerville C.R., Ogren W.L.. Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Botany, 1980, 5: 2684-2687.
    [24] Douce R, Bourguignon J, Neuburger M, et al. The glycine decarboxylase system:a fascinating complex. Trends in Plant Science, 2001, 6: 167-176.
    [25] Weber, A.P.M. Solute transporters as connecting elements between cytosol and plastid stroma. Current Opinion in Plant Biology, 2004, 7: 247-253.
    [26] Linka, M., Weber, A.P.M. Shuf?ing ammonia between mitochondria and plastids during photorespiration. Trends in Plant Science, 2005, 10: 461-465.
    [27] Douce, R., Neuburger, M. Biochemical dissection of photorespiration. Current Opinion in Plant Biology, 1999, 2: 214-222.
    [28] Zhang H, Forde BG. Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 2000, 51: 51-59.
    [29] Betsche T. Aminotransfer from alanine and glutamate to glycine and serine during photorespiration in oat leaves. Plant Physiology, 1983, 71: 961-965.
    [30] Igor C. Oliveira, Timothy Brears, Thomas J. Knight, et al. Overexpression of Cytosolic Glutamine Synthetase. Relation to Nitrogen, Light, and Photorespiration. Plant Physiology, 2002, 129: 1170-1180.
    [31] Keys, A. J., Bird, I. F., Cornelius, M. J., et al. Photorespiratory nitrogen cycle. Nature, 1978, 275: 741-743.
    [32] Aziz Jamai, Patrice A. Salome′, Stephen H., et al. Arabidopsis Photorespiratory Serine Hydroxymethyltransferase Activity Requires the Mitochondrial Accumulation of Ferredoxin-Dependent Glutamate Synthase. The Plant Cell, 2009, 21: 595-606.
    [33] Richard C. Leegood, Peter J. Lea, Michael D., et al. The regulation and control of photorespiration. Journal of Experimental Botany, 1995, 46: 1397-1414.
    [34] Blackwell RD, Murray AJS, Lea PJ. Photorespiratory mutants of the mitochondrialconversion of glycine to serine. Plant Physiology, 1990, 94: 1316-1322.
    [35] Wingler, A., Lea, P.J., Quick, W.P., et al. Photorespiration: metabolic pathways and their role in stress protection. Philisophical Transactions of the Royal Society. 2000, 355: 1517-1529.
    [36] Chen, L., Chan, S.Y., Cossins, E.A. Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahydrofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol, 1997, 115: 299-309.
    [37] Forde BG.. Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology, 2002, 53: 203-224.
    [38] Linkohr BI, Williamson LC, Fitter HA, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 2002, 29: 751-760.
    [39] Zhang H, Jennings A, Barlow PW, et al. Dual pathways for regulation of root branching by nitrate. Proceedings of National Academy of Sciences USA, 1999, 96: 6529-6534.
    [40] Tian QY, Chen FJ, Zhang FS, et al. Possible involvement of cytokinin in nitrate-mediated root growth in maize. Plant and Soil, 2005, 100: 1-12.
    [41] Giuseppe Orsomando, Roc?′o D?′az de la Garza, Brian J. Green, et al. Plantγ-Glutamyl Hydrolases and Folate Polyglutamates. The Journal of Biological chemistry, 2005, 280: 28877-28884.
    [42] P.J. Lea , R.A. Azevedo. Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Annals of Applied Biology, 2006, 149: 243-247.
    [43]许振柱,周广胜.植物氮代谢及其环境调节研究进展.应用生态学报, 2004, 3: 511-516.
    [44] Robinson D. The responses of plants to non-uniform supplies of nutrients. New Phytol, 1994, 127: 635-674.
    [45] Besson, F. Rebeille, M. Neuburger, R. Douce, et al. Effects of tetrahydrofolate polyglutamates on the kinetic properties of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochemical Journal. 1993, 292: 425-430.
    [46] Crawford NM, Glass ADM. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 1998, 3: 389-395.
    [47] Yi-Fang Tsay, Julian I. Schroeder, Kenneth A. Feldmann.t, et al. The Herbicide Sensitivity Gene CM1 of Arabidopsis Encodes a Nitrate-Inducible Nitrate Transporter. Cell, 1993, 72: 705-713.
    [48] Little, DY, et al. The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci USA, 2005, 102: 13693-13698.
    [49] Cheng-Hsun, Shan-Hua Lin, Heng-Cheng Hu, et al. CHL1 Functions as a Nitrate Sensor in Plants. Cell, 2009, 138: 1184-1194.
    [50] Frink CR, Waggoner PE, Ausubel JH. Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA, 1999, 96: 1175-1180.
    [51] Socolow RH. Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA, 1999, 96: 6001-6008.
    [52] Mingsheng Peng ,Yong-Mei Bi , Tong Zhu. Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol, 2007, 65: 775-797.
    [53] Rongchen Wang, Xiujuan Xing, Nigel Crawford. Nitrite Acts as a Transcriptome Signal at Micromolar Concentrations in Arabidopsis Roots. Plant Physiology, 2007, 145: 1735-1745.
    [54] Zhi-Liang Zheng. Carbon and nitrogen nutrient balance signaling in plants. Plant Signaling & Behavior, 2009, 7: 584-591.
    [55] Coruzzi G, Bush DR. Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol, 2001, 125: 61-64.
    [56] Coruzzi GM, Zhou L. Carbon and nitrogen sensing and signaling in plants: emerging‘matrix effects’. Current Opinion in Plant Biology, 2001, 4: 247-253.
    [57] Malamy JE, Ryan KS. Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol, 2001, 127: 899-909.
    [58] Peng Gao, Zeyu Xin, Zhi-Liang Zheng. The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen NutrientBalance Response in Arabidopsis. PLoS ONE, 2008, 3: e1387.
    [59] Payam Mehrshani. Characterising the functional importance of folate polyglutamation in plants. PhD Summary Report. No. 10,February 2009.
    [60] Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L. Nitric oxide is required for root organogenesis. Plant Physiology, 2002, 129: 954-956.
    [61] Hon-Ming Lam, Piu Wong, Hiu-Ki Chan, et al. Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis. Plant Physiology, 2003, 132: 926-935.
    [62] Tony Remans, Philippe Nacry, Marjorie Pervent, et al. A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis. Plant Physiology, 2006, 140: 909-921.
    [63] Yan Xiong, Anthony L. Contento1, Diane C. Bassham. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. The Plant Journal, 2005, 42: 535-546.
    [64] Hideki Hanaoka, Takeshi Noda, Yumiko Shirano, et al. Leaf Senescence and Starvation-Induced Chlorosis Are Accelerated by the Disruption of an Arabidopsis Autophagy Gene. Plant Physiology, 2002, 129: 1181-1193.
    [65] Timothy J. TRANBARGER, Yves AL-GHAZI, Bertrand MULLER, et al. A Macroarray-based Screening Approach to Identify Transcriptional Factors Involved in the Nitrogen-related Root Plasticity Response of Arabidopsis thaliana. Agronomie, 2003, 23: 519-528.
    [66] Cawas B. Engineer, Robert G. Kranz. Reciprocal Leaf and Root Expression of AtAmt1.1 and Root Architectural Changes in Response to Nitrogen Starvation. Plant Physiology, 2007, 143: 236-250.
    [67] Andrea Kandlbinder, Iris Finkemeier, Dennis Wormuth, et al. The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiologia Plantarum, 2004, 120: 63-73.
    [68] Jed H. Doelling, Joseph M. Walker, Eric M. Friedman, et al. TheAPG8/12-activating enzyme APG7 is reauired for proper nutrient recycling and senscence in Arabidopsis thaliana. The Journal of Biological Chemistry, 2002, 277: 33105-33114.
    [69] Christopher D.,Todd Peiyu Zeng, Alicia M. Rodriguez Huete Mary Elizabeth Hoyos Joe C. Polacco. Transcripts of MYB-like genes respond to phosphorous and nitrogen deprivation in Arabidopsis. Planta, 2004, 219: 1003-1009.
    [70] Miriam L. Gifford, Alexis Dean, Rodrigo A., et al. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA, 2008, 105: 803-808.
    [71] Grégory Vert1, and Joanne Chory. A Toggle switch in Plant nitrate Uptake. Cell, 2009, 138: 1064-1066.
    [72] Fuentes SI, Allen DJ, Ortiz-Lopez A, et al. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. Journal of Experimental Botany, 2001, 52: 1071-1081.
    [73] Sung H., Liu L.-F., Kao C. H.. The decrease in polyamine levels is not associated with growth inhibition in suspension-cultured rice cells under nitrogen deficiency. Biologia Plantarum, 1995, 37: 213-217.
    [74] Ni Ni Tun, Claudete Santa-Catarina, Tahmina Begum, et al. Polyamines Induce Rapid Biosynthesis of Nitric Oxide (NO) in Arabidopsis thaliana Seedlings. Plant Cell Physiol, 2006, 47: 346-354.
    [75] Novitskaya, L., Trevanion, S.J., Driscoll, S., et al. How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant Cell Environ, 2002, 25: 821-835.
    [76] Rashad Kebeish, Markus Niessen, Krishnaveni Thiruveedhi, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 2007, 25: 593-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700