南极典型海洋动物粪土氨气(NH3)与磷化氢(PH3)产生与排放过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南极海洋动物粪NH3和基质结合态磷化氢(MBP)是无冰区苔原生态系统氮磷元素重要来源,对维持苔原生态系统的稳定起着重要作用;但目前对于南极典型海洋动物粪氨的挥发过程和MBP的研究仍很少有研究报道。本文采集了东南极4个企鹅聚集地企鹅粪(粪土)和1个西南极的海豹聚集地海豹粪,在室内模拟测定了这些样品的潜在的氨气排放通量,以及冻融循环与各种环境因子对氨气排放的影响。采集了东南极5个企鹅聚集地企鹅粪(土),1个湖泊沉积物以及北极黄河站附近的1个海鸟粪,1个湖泊沉积物,测量了MBP含量随深度增加的变化及其环境影响因子。NH3研究结果表明:在冻融循环过程中,冻结期间各样品的氨气排放量很小,而在融化过程中氨气的排放通量急剧增加,帝企鹅粪、阿德利企鹅粪和企鹅粪土分别达到最大值,分别为17.4 mgNH3 kg~(-1) h~(-1),3.707 mg.kg~(-1).h~(-1)和12.29 mgNH3 kg~(-1) h~(-1),表明冻融过程是影响南极典型海洋动物粪氨气排放强度的夏季变化的主要因素。在融化过程中,帝企鹅粪、阿德利企鹅粪和海豹粪的平均排放通量分别为7.66±4.33 mgNH3 kg~(-1) h~(-1),1.31±0.64 mgNH3 kg~(-1) h~(-1)和0.33±0.39 mgNH3 kg~(-1) h~(-1),明显高于企鹅粪土的排放量。企鹅粪(土)NH3-N的损失率(NH3-N/TN)存在较大的变化范围(达0.1-82.4‰)。另外,模拟结果也表明:温度,TN,TC和pH这些环境因素都对氨气排放也有重要影响。首次获得了南极海洋动物粪土氨气排放通量与温度、pH、TN和TC之间的定量关系,氨气排放通量与温度和pH呈指数变化,而与TN、TC呈明显直线相关。粪(土)干湿之间变化和通气条件的变化也是影响氨气排放的重要因素。帝企鹅粪和阿德利企鹅粪氨气排放量在通气条件下明显大于封闭条件,表明南极野外大风条件下可能加速海洋动物粪氨的挥发过程。本文研究结果表明南极海洋动物聚集地是巨大的,潜在的氨气排放源。南极夏季频繁的温度变化导致大量的动物粪沉积承受频繁的冻融过程,冻融过程会极大的增加氨气挥发量,这个过程产生的排放量占很大部分的每年排放量。MBP研究结果表明:各粪土及沉积物不同剖面MBP随深度的增加显示了不同的变化特征,高浓度MBP存在于沉积物还原性强的底层或次表层,湖泊沉积物MBP平均含量显然大于其他粪和粪土的MBP含量。比表面积较大的粘土更有利于MBP的赋存;含水量大的湖泊沉积物MBP含量相对较高;较高含量的有机C和碱性磷酸酶活性有利于MBP生成;pH接近中性的土壤和沉积物有利于MBP的保存。没有发现MBP含量与无机磷、有机磷和可溶性总磷浓度存在明显的相关性,MBP也受到各种金属盐类的影响,暗示着沉积物中MBP控制因素的复杂性。本文模拟的结果对于进一步研究南北极生物圈氨的挥发过程和MBP及其对极区苔原生态系统氮磷地球化学循环的影响具有重要意义。
Ammonia (NH3) volatilization and matrix-bound phosphine (MBP) from sea animal colonies provide an important nitrogen and phosphorus source for terrestrial ecosystems in the Antarctica. However, very little attention has been paid to quantify NH3 emissions and MBP from sea animal colonies and lake sediments. In NH3 study, penguin guano (ornithogenic materials) from four penguin colonies and the soils from one seal colony were collected in coastal Antarctica. In MBP study, penguin guano (ornithogenic materials) and one lake sediment were collected in coastal Antarctica; sea animal guano and one lake sediment were collected near the Yellow River Station in Arctica. Laboratory experiments of NH3 emission were conducted to investigate potential NH3 emissions from these samples and effects of freezing-thawing cycles (FTCs) and environmental factors on NH3 fluxes. The fluxes were extremely low (close to zero) from the frozen samples. Significantly enhanced NH3 emissions were observed following the thawing with the maximum flux of 17.4 mg NH3 kg-1 h-1 for emperor penguin guanos, 3.707 mg kg-1 h-1 for Adélie penguin guanos and 12.29 mg NH3 kg-1 h-1 for ornithogenic materials. The mean fluxes were 7.66±4.33 mg NH3 kg-1 h-1 from emperor penguin guano, 1.31±0.64 mgNH3 kg-1 h-1 from Adélie penguin guano and 0.33±0.39 mgNH3 kg-1 h-1 from seal colony soils during the thawing. NH3 emissions from penguin guano were higher than those from ornithogenic materials during FTCs. The specific NH3-N production rates (NH3-N/TN) from penguin guano and ornithogenic materials are considerably large with the range of 0.1-82.4‰. The temperature, total nitrogen concentration, total carbon concentration and pH were significant predictor variables for NH3 fluxes from penguin guano and ornithogenic materials. The NH3 fluxes exponentially increased with enhanced temperature and pH, and they showed a significant linear correlation with TN and TC concentration. The drying-wetting conversion and the ventilated conditions also had an important effect on NH3 emissions, indicating that in Antarctic field high wind speed stimulates ammonia emissions from sea animal excreta. This study showed that penguin guano and ornithogenic materials are significant NH3 emission sources. In coastal Antarctica, the freezing-thawing frequency for sea animal excreta and ornithogenic materials is considerably high throughout the summer, and FTC-induced NH3 emissions might account for a large proportion of annual flux from sea animal colonies. Stuyies of MBP were conducted to measure the variations of MBP concentration with depths. High concentrations of MBP present in the bottom or sub-surface sediments which have the strong reducing property. The mean concentrations of MBP in lake sediments were higher than those in sea animal guanos and ornithogenic materials. Clay sediments are favorable for MBP accumulation due to large surface area and adsorption pots, and larger water content, and neutral condition is also favor to the exsistence of MBP. TOC and alkaline phosphatase activity not only proved their effect on MBP in the sediments, but also showed that biological activity may control MBP production. There was no obvious correlation between MBP and soluble phosphorus, organic phosphorus and inorganic phosphorus. Metal salts had no significant effect on the concentrations of MBP. Those imply that MBP production and elimination are complicated, and more studies should be done. The results of this study are of great significance to further study the process of ammonia volatilization and MBP production, as well nitrogen and phosphorus biogeochemical cycle of Antarctic tundra ecosystems.
引文
Aneja V P, Bunton B, Walker J T, Malik B P. Measurement and analysis of atmospheric ammonia emissions from anaerobic lagoons. Atmospheric Environment, 2001, 35: 1949-1958.
    Aneja V P, Chauhan J P, Walker J T. Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. Journal Geophysical Research-Atmosphere, 2000a, 105: 11535-11545.
    Aneja V P, Roelle P A, Murray G C, Southerland J, Erisman J W, Fowler D, Asman W A H, Patni N. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment. Atmospheric Environment, 2000b, 35: 1903-1911.
    Aneja V P, Arya S P, Rumsey I C. Characterizing ammonia emissions from swine farms in eastern North Carolina: Reduction of emissions from water-holding structures at two candidate superior technologies for waste treatment. Atmospheric Environment, 2008, 42, 3291–3300.
    Asman W A H, Cellier P,Genermont S,Hutchings N J, Sommer S G, Ammonia emission research: from emission factors to process descriptions. Eurotrac News letter, 1998, 20, 2–10.
    Blackall T D, Wilson L J, Theobald M R, Milford C, Nemitz E, Jennifer B, Philip J B, Keith C H, Sarah W, Mark A S. Ammonia emissions from seabird colonies. Geophysical Research letters, 2007, 34, L10801, doi: 10.1029/2006GL028928.
    Blackall T D, Theobald M R, Milford C, Hargreaves K J, Nemitz E, Wilson L J, Bull J, Bacom P J, Hamer K C, Wanless S, Sutton M A. Application of tracer ratio and inverse dispersion methods with boat-based plume measurements to estimate ammonia emissions from seabird colonies. Water, Air, and Soil Pollution, 2004, Focus 4, 279–285.
    Blackall T D, Wilson L J, Bull J, Theoblad M R, Bacon P J, Hamer K C, Wanless S, Sutton M A. Temporal variation in atmospheric ammonia concentrations above seabird colonies. Atmospheric Environment, 2008, 42, 6942–6950.
    Blunden J, Aneja V P. Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina. Atmospheric Environment, 2008, 42, 3277–3290.
    Bobbink R, Hornung M, Roelofs J & M, The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecoloqy, 1998, 86, 717–738.
    Bouwman A F, Van Vuuren D P, Derwent R G, Posch M. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water, Air, and Soil Pollution, 2002, 141, 349–382.
    Bouwman A F, Lee D S, Asman W A H, Dentener F J, Van Der H K W, Oliver J G J. A globalhigh-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 1997, 11, 561–587.
    Boyd W L, Boyd J W, Soils microorganisms of the McMurdo Sound area, Antarctica. Applied Microbiology, 1963, 11, 116–121.
    Bryant D M, Furness R W. Basal metabolic rates of North Atlantic seabirds. Ibis, 1995, 137, 219–226.
    Chadwick D R, Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmospheric Environment, 2005, 39, 787–799.
    Chasteen T, Fall R, Birks J, Martin H, Glinski R. Fluorine-Induced chemiluminescence detection of phosphine, alkyl phosphines and monophosphinate esters. Chromatographia, 1991, 31: 342-346
    Dar G H. Effect of cadmium and sewage-sludge on soil microbial biomass and enzyme activities . Bioresource Technology,1995, 56: 141—145.
    Dentener F.J, Crutzen P J, A three-dimensional model of the global ammonia cycle. Journal of Atmospheric Chemistry, 1994, 19, 331–369.
    Dévai I, Felf?ldy L, Wittner I, Plósz S. Detection of phosphine: New aspects of the phosphorus cycle in the Hydrosphere. Nature, 1988, 333: 343-345
    Devai I, Delaune R. Evidence for phosphine production and emission from Louisiana and Florida marsh soils. Organic Geochemistry, 1995, 23: 277-279.
    Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. Journal of Agricultural Science, 1996, 127, 501–509.
    Du Plessis M C F, Kroontje W, The relationship between pH and ammonia equilibria in soil. Soil Science Society of America, 1964, 751-754.
    Eismann F, Glindemann D, Bergmann A, Kuschk P. Soils as source and sink of phosphine. Chemosphere, 1997, 35: 523-533
    Fangmeier A, Hadwinger-Fangmeier A, Van der Eerden L, J?ger H J. Effects of atmospheric ammonia on vegetation– a review. Environmental Pollution, 1994, 86, 43–82.
    Feng Z, Song X, Yu Z. Distribution characteristics of matrix-bound phosphine along the coast of China and possible environmental controls. Chemosphere, 2008, 73: 519-525.
    Galloway J N. The Global nitrogen cycle: past, present, and future. Science in China (series C), 2005, 48(Special Issue): 669-677.
    Galloway J N, Schlesinger W H , Hiran Levy I I, Mochaels A, Schnoor J L. Nitrogen fixation: anthropogenic enhancement-environment response. Global Biogeochemical Cycles, 1995, 9: 235-252.
    Gassmann G. Phosphine in the fluvial and marine hydrosphere. Marine Chemistry, 1994, 45:197-205.
    Gassmann G, Schorn E. Phosphine from harbor surface sediments. Naturwissenschaften, 1993, 80: 78-80.
    Gassmann G, Beusekom J V, Glindemann D. Offshore Atmospheric Phosphine.Naturwissenschaften, 1996b, 83: 129-131.
    Geng J J, Jin X C, Wang Q, Niu X J, Wang X R, Edwards M, Glindemann D. Matrix-bound phosphine formation and depletion in Eutrophic lake sediment fermentation—simulation of different environmental factors. Anaerobe, 2005, 11: 273-279.
    Glindemann D, Bergmann A, Stottmeister U, Gassmann G. Phosphine in the lower terrestrial troposphere. Naturwissenschaften, 1996a, 83: 131-133.
    Glindemann D, Stottmeister U, Bergmann A. Free phosphine from the anaerobic biosphere. Environmental Science and Pollution Research, 1996b, 3: 17-19.
    Glindemann D, Edwards M, Kuschk P. Phosphine gas in the upper troposphere. Atmospheric Environment, 2003, 37: 2429-2433.
    Hachfeld B, Jurgens N. Climate patterns and their impact on the vegetation in a fog driven desert: The Central Namib Desert in Namibia, Phytocoenologia, 2000, 30, 567–589.
    Hilton G M, Houston D C, Furness R W. Which components of diet quality affect retention time of digesta in seabirds? Functional Ecology, 1998, 12, 929–939.
    Han S H, Zhuang Y H, Liu J A, Glindemann D. Phosphorus cycling through phosphinein paddy fields. Science of the Total Environment, 2000, 258: 195-203.
    Iverson W. Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio Desulfuricans. Nature, 1968, 217: 1265-1267.
    Kandeleer E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fert Soils, 1996, 23: 299—306.
    Kissel D E, Brewer H L, Arkin G F. Design and test of a sampler for ammonia volatilization. Soil Science Society of America Journal, 1977, 42, 1133–1138.
    Knox G A. The Biology of the Southern Ocean, Cambridge University Press, 1994, New York. Koponen H T, Fl?jt L, Martikainen P J. Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biology & Biochemistry, 2004, 36: 757-766.
    Lancaster J, Lancaster N, Seely M K. Climate of the central Namib Desert, Madoqua, 1984, 14, 5–61.
    Legrand M F, Ducroz D, Wagenbach R, Mulvaney, Hall J. Ammonium in coastal Antarcticaerosol and snow: Role of polar ocean and penguin emissions. Journal Geophysical Research, 1998, 103.
    Lekkerkerk L J A, Heij G J, Hootsmans M J M. Dutch priority programme on acidification,ammonia: the facts. Secretariat Additional Programme on Acidification Research, 1995, Report No. 300-06, April.
    Lindeboom H J. The nitrogen pathway in a penguin rookery. Ecology, 1984, 65:269-277.
    Liu J A, Zhuang Y H, Cao H F, Kuschk P, Eismann F, Glindemann D. Phosphine in theUrban Air of Beijing and Its Possible Sources. Water, Air & Soil Pollution, 1999, 116:104.
    Martins O, Dewes T. Loss of nitrogenous compounds during composting of animal wastes. Bioresource Technology, 1992, 42, 103–111.
    Marzadori C, Ciavata D.Effect of lead pollution on diferent soil enzyme activities. Blot Fertil Soil, 1996, 23(6):581—587.
    Mizutani H, Wada E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. 1988, Ecology 69, 340–349.
    Muck R E, Steenhuis T S. Nitrogen losses from manure storages. Agricultural Wastes, 1982, 4, 41–54.
    Müllera C, Martina M, Stevensb R J, Laughlinb R J, Kammannc C, Ottowa, J C G, J?ger H-J. Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology & Biochemistry 2002, 34: 1325-1331.
    Nascimento E M, Machado L E, Ribeiro E M S, Brescansind L M, Lee M-T. A theoretical study on the photoionization of the valence orbitals of phosphine. J. Braz.Chem. Soc., 2006, 17: 162-167.
    Nishida N, Kimata M, Arakawa Y. Native Zinc, Copper, and Brass in the Red-Clouded Anorthite Megacryst as Probes of the Arc-Magmatic Process. Naturwissenschaften, 1994, 81: 498-502.
    Niu X J, Geng J J, Wang X R, Wang C H, Gu X H. Edwards, M. Glindemann, D.,Temporal and Spatial Distributions of Phosphine in Taihu Lake,China. Science of the Total Environment, 2004, 323: 169-178
    Paul A R, Aneja V P, Characterization of ammonia emissions from soils in the upper coastal plain, North Carolina. Atmospheric Environment, 2002, 36: 1087-1097.
    Pearce I S K, van der Wal R. Effects of nitrogen deposition on growth and survival of montane Racomitrium lanuginosum heath, conservation biology , 2002, 104, 83–89.
    Roels J, Verstraete W. Biological Formation of Volatile Phosphorus Compounds. Bioresource Technology, 2001, 79: 243 -250
    Schimel J P, Clein J S. Microbial response to freeze–thaw cycles in tundra and taiga soils. SoilBiology and Biochemistry, 1996, 28, 1061–1066.
    Sommer S G, Ammonia volatilization from farm tanks containing anaerobically digested animal slurry. Atmospheric Environment, 1997, 31: 863-868.
    Sommer S G, Olesen J E, Christensen B T, Effects of temperature, wind speed, and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 1991, 117: 91-100.
    Sutton M A, Pitcairn C E R, Fowler D. The exchange of ammonia between the atmosphere and plant communities. Advances in Ecological Research, 1993, 24, 301–393.
    Sun L G, Liu X D, Yin X B, Zhu R B, Xie Z Q, Wang Y H. A 1,500-year record of Antarctic seal population in response to climate change. Polar Biology, 2004, 27: 495-501.
    Sun L G, Xie Z Q, Zhao J L. A 3,000-year record of penguin population. Nature, 2000, 407: 858.
    Sun L G, Zhu R B, Yin X B. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar biology, 2004a, 27: 670—678.
    Sun L G, Zhu R B, Xie Z Q. Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmospheric Environment, 2002, 36: 4977-4982.
    Sun L G, Liu X D, Yin X B, Zhu R B, Xie Z Q, Wang Y H. A 1,500-year record of Antarctic seal populations in response to climate change, Polar biology, 2004b, 27, 495–501.
    Sun L G, Xie Z Q, Zhao J L. The sediments of lake on the Ardley Island, Antarctica: Identification of penguin-dropping soil. Chinese Jounal of Polar Research, 2001, 12 (1): 1—8.
    Sutton M A, Dragosits U, Tang Y S, Fowler D. Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment, 2000, 34, 855–869.
    Sutton M A, Pitcairn C E R, Fowler D. The exchange of ammonia between the atmosphere and plant communities. Advances in Ecological Research, 1993, 24, 301–393.
    Tatur A, Myrcha A. Ornithogenic soil on King George Island, South Shetland Island (Maritime Antarctic Zone). 1984, Pol. Polar Res 4, 113-128.
    Teepe R, Brumme R, Beese F. Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology and Biochemistry, 2001, 33: 1269-1275.
    Tian G M, Cao J L, Cai Z C, Ren L T. Ammonia volatilization from winter wheat field top-dressed with urea. Pedosphere, 1998, 8, 331–336.
    Theobald M R, Crittenden P D, Hunt A P, Tang Y S, Dragosits U, Sutton M A. Ammonia emissions from a Cape fur seal colony, Cape Cross, Naminia. Geophysical Research letters, 2006, 33, L03812, doi: 10.1029/2005GL024384.
    Ugolini F C. Ornithogenic soil of Antarctic. In: Llano, G. A. (Ed.), Antarctic terrestrial biology. Antarct. Res. Ser., 1972, vol. 20, pp, 181-193.
    Vogler A, Kunkely H. Excited state properties of transition metal phosphine complexes. Coordination Chemistry Reviews, 2002, 230: 243-251.
    Wada E, Shibata R, Torii T. 15N abundance in Antarctica: Origin of soil nitrogen and ecological implications. Nature, 1981, 292, 327– 329.
    Warneck P. Chemistry of the natural atmosphere, Academic Press, 1988, New York, pp. 426–441.
    Whitehead M D, Johnstone G W. The distribution and estimated abundance of Adelie penguins breeding in Prydz Bay, Antarctica. Polar Biology, 1990, 3, 91–98.
    Whitehead D C, Raistrick N. Effects of some environmental factors on ammonia volatilization from simulated livestock urine applied to soil. Biology and Fertility of Soils, 1991, 11, 279–284.
    Wilson L J, Bacon P J, Bull J, Dragosits U, Blackall T D, Dunn T E, Hamer K C, Sutton M A, Wanless S. Modelling the spatial distribution of ammonia emissions from seabirds in the UK. Environmental Pollution, 2004, 131, 173–185.
    Xie Z Q, Sun L G, Wang J J, Liu B Z. A potential source of atmospheric sulfur from penguin colony emissions. Journl of Geophysical Research, 2002, 107(D22), doi: 10.1029/2002JD002114.
    Yu, Z. M., Song, X. X., Matrix-Bound Phosphine: A New Form of Phosphorus Found in Sediment of Jiaozhou Bay. Chinese Science Bulletin, 2003, 48: 31-35.
    Zhu R B, Liu Y S, Ma E D, Sun J J, Xu H, Sun L G. Greenhouse gas emissions from penguin guanos and ornithogenic soils in coastal Antarctica: Effects of freezing–thawing cycles. Atmospheric Environment, 2009, 43, 2336–2347.
    Zhu R B, Kong D M, Sun L G. Tropospheric phosphine and its sources in coastal Antarctica, Environmental Science and Technology, 2006a, 40: 7656—7661.
    Zhu R B, Liu Y S, Xu H. Methane emissions from three sea animal colonies in the maritime Antarctic. Atmospheric Environment, 2008a, 42: 1197—1205.
    Zhu R B, Sun L G, Methane fluxes from tundra soils and snowpack in the maritime Antarctic. Chemosphere, 2005, 59: 1583—1593.
    Zhu R B, Sun L G, Ding W X. Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic. Chemosphere, 2005, 59: 1667—1675.
    Zhu R B, Sun L G, Kong D M. Matrix-bound phosphine in Antarctic biosphere. Chemosphere, 2006b, 64: 1429—1435.
    Zhu R B, Liu Y S, Xu H. Nitrous oxide emissions from sea animal colonies in the maritime Antarctic. Geophysical Research letters, 2008b, 35, L09807, doi:10.1029/2007 GL032541.
    Zhu R B, Glindemann D, Kong D M, Sun L G, Geng J J, Wang X R. Phosphine in the marine atmosphere along a hemispheric course from china to Antarctica. Atmospheric Environment, 2007a, 41:1567-1573.
    Zhu R B, Kong D M, Sun L G, Geng J J, Wang X R. The first determination of atmospheric phosphine in Antarctica. Chinese Science Bulletin, January 2007b, Vol.52, No.1:131-135.
    Zhu R B, Liu Y S, Sun J J, Sun L G, Geng J J. Stimulation of Gaseous Phosphine Production from Antarctic Seabird Guanos and Ornithogenic Soils. Journal of Environmental Sciences, 2009, 21: 150-154.
    耿金菊,王强,牛晓君。模拟环境条件下湖泊沉积物中磷化氢的行为.农业环境科学学报,2005。
    龚子同,张效朴。中国的红树林与酸性硫酸盐土。土壤学报, 1994, 31: 86-94
    郝余祥.土壤微生物[M],1982,北京:科学出版社.
    李建兵,2009,中国沿海部分区域磷化氢的生物地球化学研究,博士论文。
    刘志培,王宝军,贾省芬等。样品磷化氢含量与某些微生物群落及酶活的关系。微生物学报,2006,46 (4) :608—612.
    母清林,宋秀贤,俞志明。磷化氢在胶州湾沉积物中的分布特征。环境科学,2005
    鲁如坤.土壤农业化学分析方法·北京:中国农业科技出版社。2000,82.
    牛晓君,王彩虹,耿金菊.气相色谱-氮磷检测器分析痕量磷化氢。分析测试学报2004.
    薛雄志,洪华生。厦门西海域沉积物中碱性磷酸酶活力分布、动态及其与各形态磷的关系。海洋学报,1995,17 (5):8—87.
    于群英。土壤磷酸酶活性及其影响因素研究。安徽技术师范学院学报,2001,15(4):5—8.
    俞志明,宋秀贤。一种海洋环境中易被忽略的磷化合物——磷化氢。海洋与湖沼2002.
    袁林喜,龙楠烨,谢周清等。北极新奥尔松地区现代污染源及其指示植物研究。极地研究,2006,18(1):10—19.
    史秀华,刘予宇,浮田正夫。日本酸雨及其对环境生态系统的影响。内蒙古农业大学学报,2000,21(1): 109-114.
    张潜,王立人,杨祥龙,郭希山,周益明。养殖场氨气检测方法研究现状。农业环境科学学报2007,26增刊: 309- 312.
    张青松.南极韦斯特福尔德丘陵区晚第四纪地质和地貌研究。南极科学论文集,1985,北京:科学出版社。
    张峰。我国酸雨污染现状对策。上海化工,2005,30(2): 1-6.
    朱兆良,邢光熹编著,氮循环-维系地球生命生生不息的一个自然过程。2002,北京:清华大学出版社;广州:暨南大学出版社.
    [苏]Φ. X哈兹耶夫土壤酶活性[M],1980,北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700