三疣梭子蟹土池育苗对氮磷营养盐交换通量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究旨在通过现场观测与实验室模拟实验了解三疣梭子蟹土池育苗对沉积环境产生的影响。测定了1期蚤状幼体(Z1期)阶段以及大眼幼体(M期)末期三疣梭子蟹育苗土池沉积物-水界面无机氮、活性磷的交换通量;通过实验室模拟实验,分析了pH、温度、氧化还原环境以及生物扰动作用对育苗池沉积物-水界面营养盐交换通量的影响;利用本实验室自行设计的无扰动底泥采集器采集沉积物样本,检测了各类无机氮、活性磷在底泥间隙水中的垂直分布;通过对不同育苗年限的土池沉积物进行总有机(TOC)、总氮(TN)、总磷(TP)分析,探讨了TN、TP与TOC的相关性;从而为指导三疣梭子蟹土池育苗产业的可持续发展提供理论依据。
     对育苗年限不同的7个土池(A、B、C土池池龄7年,D、E、F池池龄3年,G池为空塘,作为空白对照。)营养盐通量的检测得到,Z1期7年期土池NH~(4+)-N、NO_2--N、NO_3--N、DIN的平均交换通量分别为:196.52、1.18、50.69、248.39μmol·m~(-2)·d~(-1)。3年期土池的上述无机氮平均通量分别为:168.55、0.14、15.57、184.26μmol·m~(-2)·d~(-1)。
     育苗年限高的池塘表现出较高的无机氮交换通量。氨氮(NH_4+-N)占了总无机氮(DIN)界面交换通量的大部分,占总无机氮界面交换通量的79.12%~91.47%。活性磷也表现出和无机氮类似的变化规律。
     随着温度的升高,DIN、H_2PO_4ˉ的交换通量都增高;pH对三疣梭子蟹土池无机氮交换通量的影响表现为中性>碱性>酸性;不同pH条件下磷释放量顺序为酸性>碱性>中性;在厌氧条件下氨氮的界面交换通量大大增加,加入生物抑制剂后DIN的界面交换受到抑制;富氧环境下,活性磷的界面交换通量略大于贫氧环境下的交换通量;在加入氯化汞后,活性磷的交换通量显著增加。
     2007年5月和2008年5月两个时间点的柱状沉积物间隙水DIN和H_2PO_4ˉ的浓度大体表现为小于10cm时在垂直深度上均呈现明显的降低趋势。由于偶然的机会,发现了才女虫的一种危害途径可能是通过对底质的扰动作用改变营养盐特别是氨氮的含量来影响水质的。
     由相关性分析得出,育苗池塘底泥中的TN与TOC显著正相关(R∈[0.94,0.99] P<0.05),TP与TOC负相关,但是显著性不强(R∈[-0.85,-0.46])
This study is designed to analysis the impact of swimming crab laver rearing to the sediment of the pond by simulating field observations and laboratory experiments. We tested the DIN and phosphorous flux of the pond sediment in which the lava of the swimming crab is in its zoea phase and anaphase of M. By lab simulating experiments we also testing how pH Temperature and Eh affecting the sediment-water flux of nutrition. the use of self-designed in our laboratory without disturbance sediment collector collecting sediment samples to detect various types of inorganic nitrogen , reactive phosphorus in the sediment interstitial water of the vertical distribution; through years of different nursery pond sediment soil total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) analysis, discussed the TN, TP and TOC, correlation; so as to guide three trituberculatus nursery industry in earthen ponds provide a theoretical basis for sustainable development.
     By testing the Z1 phase of 7 Year and 4 Year’s pond, which are different in the rearing age, we now know the flux of NH~(4+)-N、NO~(2-)-N、NO~(3-)-N、DIN in 7 year’s pond is 196.52、1.18、50.69、248.39μmol·m-2·d-1 respectively. And in 4 year’s pond, it is 168.55、0.14、15.57、184.26μmol·m-2·d-1 .The relatively old age pond is high in DIN flux, NH~(4+)-N occupied a huge part of the DIN sediment-water flux, about 79.12%~91.47%. The flux of the phosphorous is in the same round.
     The flux of DIN and H2PO4ˉis increased when the temperature is high. pH can also affected the DIN flux : Neutral>basic>Acid. The flux of NH~(4+)-N is inceased if there is an anaerobic environment. Flux of DIN is restricted is the Biological inhibitors is added. While the flux of phosphorous is increased once the HgCl is added in.
     In May 2007 and May 2008 two time points columnar sediment pore water concentrations of DIN and H2PO4ˉgenerally when the performance is less than the vertical depth of 10cm showed a significant reduction. Due to chance, found a talented woman worm may be by way of a hazard of sediment disturbance on the changing role of nutrients, especially nitrogen content to influence the water quality.
     Derived from the correlation analysis, nursery pond sediment TN and TOC in a significant positive correlation (R∈[0.94,0.99] P <0.05), TP was negatively correlated with the TOC, but the
引文
[1]王军,陈振楼,王东启,等.长江口滨岸湿地无机氮界面交换通量量算[J].地理学报, 2006,(07): 729-740.
    [2]蒋增杰,崔毅,陈碧鹃.唐岛湾网箱养殖区沉积物-水界面溶解无机氮的扩散通量[J].环境科学, 2007,(05): 1001-1005.
    [3]范成新,张路,秦伯强,等.太湖沉积物-水界面生源要素迁移机制及定量化——1.铵态氮释放速率的空间差异及源-汇通量[J].湖泊科学, 2004,(01): 10-16
    [4]杨卫华,高会旺,刘红英,等.胶州湾扇贝养殖对海域环境影响的初步研究[J].海洋湖沼通报, 2007, (02): 86-93
    [5]吴文成,吴群河,梁明易,等.珠江广州河段沉积物无机氮的分布特征和界面交换通量[J].农业环境科学学报, 2008,(03): 1128-1133
    [6] Wu RSS, MacKay DW, Lau TC, et al.. Impact of marine fish farming on water quality and bottom sediment: a casestudy in the sub-tropical environment[J]. Marine Environmental Research, 1994, 38: 115-145.
    [7] Aure J, Stigebrandt A. Quantitative estimates of the eutrophication effects of fish farming on fjords[J]. Aqaculture, 1990, 90: 135-156.
    [8] Holmer M, Kornaros M, Lyberatos G,et al.. Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment[J]. Desalination 210 2007,110–124
    [9]陈芳,夏卓英,宋春雷,等.湖北省若干浅水湖泊沉积物有机质与富营养化的关系[J].水生生物学报, 2007, 31(4)
    [10] Ingrid G, Andersen T, Vadstein O. Pelagic food web and eutrophication of coastal waters: impact of grazers on algal communities. Mar.Poll.Bull. 1997, 33(1–6): 22–35.
    [11] Eckerrot A , Pettersson K. Pore water phosphorus and iron concentrations in a shallow, eutrophic lake2indications of bacterial regulation[J]. Hydrobiologia, 1993, 263 (1-3): 165 -177
    [12] GESAMP(IMO/FAO/Unesco/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution).Reducing Evironmental Impacts of Coastal Aquaculture[R]. Rome:Rep Stud GESAMP, 1991
    [13] Samuelsen OB. Degradation of oxytetracycline in seawater at two different temperatures and light intensities and the persistence of oxytetracycline in the sediment from a fish farm[J]. Aquaculture, 1989, 83: 7-16.
    [14] Cheloss E, Vezzulli L, Milano A, et al.. Antibiotic resistance of bentic bacteria in fish-farm and control sediment of the Western Mediterranean [J]. Aquaculture, 2003, 219: 83-97.
    [15] Teuber, M. Veterinary use and antibiotic resistance. Current Opinionin Microbiology, 2001, 4: 493–499.
    [16] Samira S, Hoang NKN, Le TH, et al.. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish, 2007, (18): 1391–1396
    [17]房文红,郑国兴.水产动物药物代谢动力学研究概况[J].中国水产科学, 2004, 11(4): 380-384
    [18]胡梦红.抗生素在水产养殖中的应用、存在的问题及对策[J].水产科技情报2006, 33 (5): 217-221
    [19]杨美兰,钟彦,林燕棠,等.大鹏湾南澳养殖水域的氮、磷含量特征[J].n热带海洋, 1998, 17(2): 74-80
    [20]高爱根,方建光.夏季海水养殖区大型网箱内外沉降颗粒物通量[J].中国环境科学, 2006(26): 106-109
    [21] Fan CX. Physiochemical characteristics of sediments in Gehu Lake and simulation of its phosphorus release [J] . Journal of Lake Science, 1995, 7(4): 341 -350
    [22] Christos B, Manos D. Michael Scoullos Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions[J]. Marine Chemistry, 2007, 103: 266-275
    [23] Findlay RH, WatlingL, MayerL. Environmental impact of salmon net-pen culture on marine benthic communities in Maine[J]. A case study. Estuaries, 1995, 18 (1A): 145-179.
    [24] Karakassis I, Tsapakis M, Hatziyanni E. Mar. Ecol. Prog.Ser. 1998.162, 243-252.
    [25] Karakassis I, Tsapakis M, Hatziyanni E, et al.. Impact of bass and bream farming in cages on the seabed in three Mediterranean coastal areas[J]. ICES J. Mar. Sci. 2000, 57: 1462-1471.
    [26] Brooks C, Bikas V, Dassenakis M, et al.. Environmental impacts of coastal aquaculture in Eastern Mediterranean Bays[J]. The case of Astakos Gulf, Greece. ESPR-Environ. Sci.Pollut. Res. 2003. 10 (5), 287–295.
    [27] Belias C, Dassenakis M. Environmental problems in the development of marine fish-farming in the Mediterranean Sea[J]. Ocean Chall. 2002,12 (1): 11–16 (special European Issue).
    [28] Hall POJ, Holby O, Kollberg S, et al..Chemical fluxes and mass balances in a marine fish cage farm[J]. IV.Nitrogen. Mar. Ecol. Prog. Ser. 1992, 89, 81–91.
    [29] Holby O, Hall POJ. Chemical Fluxes and mass balances in a marine fish cage farm. II. Phosphorus[J]. Mar. Ecol. Prog. Ser. 1991.70: 263-273.
    [30] Hammond R, Teresa F. Management of environmental impacts of marine aquaculture in Europe[J]. Aquaculture, 2003, 226: 139-163.
    [31]郑小宏.罗源湾氮磷营养盐变化状况分析[J].福建水产, 2006(2): 29-32
    [32]毛玉泽,杨红生,王如才,等.大型藻类在综合海水养殖系统中的生物修复作用[J].中国水产科学, 2005, 12 (2): 225-231.
    [33]杨荣敏,王传海,沈悦.底泥营养盐的释磷对富营养化湖泊的影响[J].污染防治技术, 2007, 20(1): 49-52
    [34] Angeler DG, Sanchez2Carrillo S, Garcia G, et al.. The influence of Procambarus clarkii (Cambaridae , Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland [J]. Hydrobiologia, 2001, 464(1 -3): 89-98.
    [35] Stenton-Dozey JME, Jackson LF, Busby AJ. Impact of mussel culture on macrobenthic community structure in Saldanha Bay, SouthAfrica[J]. Marine Pollution Bullentin, 1999, 39(1-2): 357-366.
    [36] Scarlatos PD. Sediment Phosphorus Release Under Turbulent, Shear and Diffusive. Conditions [J]. Water, Air and Soil Pollution. 1997, (03): 411-425.
    [37]齐振雄,李德尚,张曼平,等.对虾养殖池塘氮磷收支的实验研究[J].水产学报, 1998,(02): 49-52.
    [38] Aguado-Gimenez F, Garcia B. Assessment of some chemical parameters in marine sediments exposed to offshore cage fish farming influence: a pilot study[J]. Aquaculture, 2004, (242): 283-296.
    [39]杨庆宵,蒋岳文,张昕阳.虾塘残饵腐解对养殖环境影响的研究[J].海洋环境科学, 1999, 18 (3): 11-15
    [40] Eric A, Strauss NL, Mitchell, et al.. . Lamberti Factors regulating nitrification in aquaticsediments: effects of organic carbon, nitrogen availability, and pH,the NRC Research, 2002, 59: 554-563.
    [41] Holmer M, Kristensen E. Impacts of marine cage farming on metabolism and sulphate reduction of underlying sediments[J]. Mar EcolProg Ser , 1992, 80 :191-201
    [42]徐永健,等.海水网箱养殖对环境的影响[J].应用生态学报, 2004, 15(2): 532-536
    [43] Kwmp WM, Samou P, Caffrey J, et al.. Ammoniun recycling versus denitrification in Chesapeake Bay sediments[J]. Limnology and Oceanography, 1990, (35): 1545-1563.
    [44] Richards FA, Cline JD, Broenkow WW, .. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic fjord[J]. Limnology and Oceanography, Supplement 1965, (10): 185-201.
    [45]陈永红,陈军,王娟,等.淮河(淮南段)底泥内源氮磷释放的模拟实验研究[J].中山大学学报, 2005, 44(2): 107-110.
    [46] Dhakar SP, Burdige DJ. A coupled, non-linear, steady state model for early diagenetic processes in pelagic sediments [J]. American Journal of Science, 1996, (03): 296-330.
    [47]李宝,丁士明,范成新,等.滇池福保湾底泥内源氮磷营养盐释放通量估算[J].环境科学, 2008,(01):114-120
    [48]张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究[J].环境污染治理技术与设备, 2003, 4(2): 22-26.
    [49] Pelegri SP, Blackburn TH. Nitrogen cycling in lake sediments bioturbated by Chironomus plumosus larvae, under different degrees of oxygenation [J]. Hydrobiologia. 1996, (5): 231-238.
    [50]王庭健.城市富营养化湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究, 1994, 7(4): 12-20.
    [51]吴根福,吴雪昌,金承涛.杭州西湖底泥释磷的初步研究[J].中国环境科学,1998,1 8(2):107-110.
    [52]隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001, 22 (1): 102–105.
    [53] Bostrom B, Jansson M. Phosphorus release from lake sediment[J]. Arch. Hyarobiol, 1982, 18: 55-59.
    [54]胡文翔.象山港赤潮调查报告.海洋环境科学[J]. 1991, 10(4): 77-78
    [55]张健,邬翱宇,施青松.象山港海水养殖及其对环境的影响[J].东海海洋, 2003, 21(4):54-59.
    [56] GB/T17378.5-1998.海洋监测规范第5部分:沉积物分析[S]. 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700