掺氮碳纳米管的制备及其电催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池铂系阴极催化剂的高成本严重制约其商业化的发展。本论文旨在寻找替代铂系阴极催化剂的材料。采用了水相直接聚合方法,制备出具有高长径比的聚苯胺纳米管,然后经过碳化活化处理,得到掺氮碳纳米管,并探讨了其碱性介质中氧还原反应电催化活性。
     首先通过直接聚合法合成了聚苯胺纳米管,研究了掺杂酸的种类,浓度,反应温度等因素对聚苯胺形貌、结构的影响,在水相中成功合成出了聚苯胺纳米管,管径约170nm,壁厚约60nm,长为4-6μm。本文以多壁碳纳米管为硬模板成功合成了形貌均一的聚苯胺接枝碳纳米管复合材料。
     对前躯体材料进行碳化和活化处理,发现碳化后聚苯胺的纳米管状结构保持完整。找到了处理温度和氮结合态的关系:在600℃下不含有石墨型的氮元素,随着处理温度的提高,其吡咯型氮元素含量下降,石墨氮含量增加。得到了氮碳比为1.78-6.72%的掺氮碳纳米管,其比表面积高达2065m~2/g,其中微孔约占91.5%。
     在碱性介质中,研究了不同氮含量对于的催化氧气还原反应的影响。随着吡啶氮和石墨氮/碳含量的增加,其氧气还原反应活性增加。当吡啶氮和石墨氮/碳含量为2.43%时催化活性最高,其ORR活性高于聚苯胺接枝碳纳米管活化处理的碳材料,接近于商业铂碳催化剂。
     通过研究掺氮碳纳米管的ORR动力学过程,当啶氮和石墨氮/碳含量为2.43%时,计算得电子数为3.6-3.8,其ORR以4电子反应路径进行。
The high cost of s platinum cathode catalyst seriously restrict thedevelopment of commercial of the fuel cells. This paper aims to serach for thecathode materials to replace platinum catalyst. Through directlypolymerization methods at water phase, we got high length-diameter ratio ofpolyaniline nanotubes, we carbonized and activated this materials, then we gotN-doping carbon nanotubes, and we discusses electricity catalytic activity ofthe oxygen reduction reactions at alkaline medium.
     Firstly, we got polyailine nanotubes by the way of chemical oxidationdirectly. We study the rationship of the types of doping acid, concentration,reaction temperature and the appearance, structure of polyaniline. We got thepolyaniline nanotubes at water phase, the polyaniline diameter is about170nmand the wall thickness is about60nm, long about4-6μm.This article alsostudies the synthesis methods of as multi-walled carbon nanotubes for hardtemplate to got carbon nanotube grafted polyaniline composite materials.
     Before the precursor of material through the treatment of carbonization and activation, we found that carbon nanotubes the structure completely thesame with the polyaniline.We find the relations of the processing temperatureand nitrogen combination state:at600℃,there is not contain graphite type ofnitrogen, with the improvement of processing temperature, the content ofpyrrole-type nitrogen decreased, graphite nitrogen content increased. We gotthe nitrogen carbon ratio1.78-6.72%of the nitrogen-doped carbon nanotubeswith its specific surface area as high as2065m2/g, including91.5%.of microhole.
     In alkaline medium, we researched the influence of different nitrogencontent with the catalytic oxygen reduction. With the content of pyridinenitrogen and carbon graphite nitrogen/carbon increased, the oxygen reductionreaction activity increased. When pyridine nitrogen and graphitenitrogen/carbon content was2.43%,the catalytic activity are highest, its ORRwere higher than polyaniline grafted carbon nanotubes activation treatment ofcarbon materials,it is close to business platinum catalyst carbon.
     Through the research of kinetic process of ORR nitrogen-doped of thecarbon nanotubes, when pyridine nitrogen and graphite nitrogen/carboncontent was2.43%, we calculated that the electronic transfer number is3.6-3.8,the electronic reaction paths of ORR is4.
引文
[1] Pavel Kossyrev. Carbon black supercapacitors employing thin electrodes[J]. Journal ofPower Sources[J],2012,201,347-352
    [2] Xingyou Lang, Ling Zhang, Takeshi Fujita, Mingwei Chen. Three-dimensionalbicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemicalsupercapacitors[J]. Journal of Power Sources, Volume197,1January2012, Pages325-329
    [3] Feng Ligang, Cai Weiwei, Li Chenyang et al. Fabrication and performance evaluation for anovel small planar passive direct methanol fuel cell stack[J]. Journal of Power Sources,2012,197:325-329
    [4] Surbhi Sharma, Bruno G. Pollet. Support materials for PEMFC and DMFCelectrocatalysts—A review[J]. Journal of Power Sources,2012,208:96-119
    [5]Mohammad Zhiani, Hussein Gharibi, Karim Kakaei. Performing of novel nanostructureMEA based on polyaniline modified anode in direct methanol fuel cell [J]. Journal of PowerSources,2012,210:42
    [6]Yuan Zhenyu, Zhang Yufeng, Leng Jiaxing et al. Performance of air[J].
    [7]Liliana A. Diaz, Graciela C. Abuin, Horacio R. Corti. Methanol sorption and permeability inNafion and acid[J].
    [8]Cai Zhijun, Li Lei, Su Lijun et al. Supercritical carbon dioxide treated Nafion212commercial membranes for direct methanol fuel cells[J]. ElectrochemistryCommunications,2012,14:9-12
    [9]Wai Yin Wong, Wan Ramli Wan Daud, Abu Bakar Mohamad et al. Nitrogen-containingcarbon nanotubes as cathodic catalysts for proton exchange membrane fuel cells[J].Diamond and Related Materials,2012,22:12-22
    [10]LüQiu-Feng,He Zhi-Wei, Zhang Jia-Yin, et al. Fabrication of nitrogen-containing hollowcarbon nanospheres by pyrolysis of self-assembled poly(aniline-co-pyrrole)[J]. Journal ofAnalytical and Applied Pyrolysis,2012,93:147-152
    [11]Enhui Liu, Haijie Shen, Xiaoxia Xiang et al. A novel activated nitrogen-containing carbonanode material for lithium secondary batteries[J]. Materials Letters,2012,67:390-393
    [12]Baojiang Jiang, Chungui Tian, Lei Wang,et al. Highly concentrated, stable nitrogen-dopedgraphene for supercapacitors: Simultaneous doping and reduction[J]. Applied SurfaceScience,2012,258:3438-3443
    [13]Jia Yujie, Jiang Jianchun, Sun Kang, et al. Enhancement of capacitance performance ofactivated carbon—Polyaniline composites by introducing methyl orange[J]. ElectrochimicaActa, In Press,2012
    [14]Li Wenrong, Chen Dehong, Li Zheng et al. Nitrogen enriched mesoporous carbon spheresobtained by a facile method and its application for electrochemical capacitor[J].Electrochemistry Communications,2007,9:569-573
    [15]K. Jurewicz, K. Babe, R. Pietrzak, et al. Capacitance properties of multi-walled carbonnanotubes modified by activation and ammoxidation[J]. Carbon,2006,44:2368-2375
    [16]Haifang Su, Teng Wang, Shengyi Zhang et al. Facile synthesis ofpolyaniline/TiO2/graphene oxide composite for high performance supercapacitors[J]. SolidState Sciences,2012,14:677-681
    [17]A. Mirmohseni, M.S. Seyed Dorraji, M.G. Hosseini. Influence of metal oxide nanoparticleson pseudocapacitive behavior of wet-spun polyaniline-multiwall carbon nanotube fibers[J].Electrochimica Acta,2012,70:182-192
    [18]Hu Juan, Wang Huanlei, Huang Xiao. Improved electrochemical performance ofhierarchical porous carbon/polyaniline composites[J]. Electrochimica Acta, In Press,2012
    [19]Dong Xiaochen, Wang Jingxia, Wang Jing et al. Supercapacitor electrode based onthree-dimensional graphene–polyaniline hybrid[J]. Materials Chemistry and Physics, InPress,2012
    [20]Yan Jun, Wei Tong, Fan Zhuangjun, et al.. Preparation of graphene nanosheet/carbonnanotube/polyaniline composite as electrode material for supercapacitor[J]. Journal ofPower Sources,2010,195:3041-3045
    [21]Yuan Wang, Werayut Srituravanich, Cheng Sun,et al. Plasmonic Nearfield Scanning Probewith High Transmission[J]. Nano Lett.2008,8:2410
    [22]Amartya Mukhopadhyay, Bryan T.T. Chu, Malcolm L.H. Green,et al.Understanding themechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes inalumino-borosilicate glass ceramic[J]. Acta Materialia,2010,58:2685-2697
    [23]Wei Xia, Justus Masa, Michael Bron, et al. Highly active metal-free nitrogen-containingcarbon catalysts for oxygen reduction synthesized by thermal treatment ofpolypyridine-carbon black mixtures[J]. Electrochemistry Communications,2011,13:593-596
    [24]Xuguang Li, Gang Liu, Branko N. Popov. Activity and stability of non-precious metalcatalysts for oxygen reduction in acid and alkaline electrolytes[J]. Journal of PowerSources,2010,195:6373–6378
    [25]Tatsuya Hoshino, Shin-ichiro Sekiguchi, Hitoshi Muguruma. Amperometric biosensor basedon multilayer containing carbon nanotube, plasma-polymerized film, electron transfermediator phenothiazine, and glucose dehydrogenase[J]Bioelectrochemistry,2012,84,1-5
    [26]Xinyu Zhang and Sanjeev K. Manohar*. Microwave synthesis of nanocarbons fromconducting polymers[J]. Chem. Commun.2006,2477.
    [27]J.J. Langer, S. Golczak, Polym. Highely carbonized polyaniline micro-and nanotubes[J],Polym. Degrad. Stab.2007,92:330-334.
    [28]Aleksandra Jano evi, Igor Pa ti, Nemanja Gavrilov et al. Micro/mesoporous conductingcarbonized polyaniline5-sulfosalicylate nanorods/nanotubes: Synthesis, characterizationand electrocatalysis[J]. Synthetic Metals,2011,161:2179–218
    [29]Murai T, Fukasawa R, Muraoka T,et al. Electrical conductivity of microwave heatedpolyaniline nanotubes and possible mechanism of microwave absorption by materials[J]. JMicrow Power Electromagn Energy.2009;43:34-43.
    [30]M. Trchova, E.N. Konyushenko, J. Stejskal, et al. The conversion of polyaniline nanotubesto nitrogen-containing carbon nanotubes and their comparison with nulti-walled carbonnanotubes[J]. Polym. Degrad. Stab.2009,94:929-938.
    [31]Drew C. Higgins, Jason Wu, Wenmu Li, et al. Cyanamide derived thin film on carbonnanotubes as metal free oxygen reduction reaction electrocatalyst[J]. Electrochimica Acta2012,59:8–13
    [32]J. Tian, L. Birry, F. Jaouen, et al. Fe-based catalysts for oxygen reduction in protonexchange membrane fuel cells with cyanamide as nitrogen precursor and/or pore-filler[J].Electrochimica Acta,2011,56:3276-3285
    [33]K. Chizari, I. Janowska, M. Houllé, et al. Tuning of nitrogen-doped carbon naotubes ascatalyst support for liquid-phase reaction[J]. Appl. Catal. A-Gen.2010,380:72–80.
    [34]G. Zhang, W. Duan, B. Gu. Effect of substitutional atoms in the tip on field-emissionproperties of capped carbon nanotubes[J]. Appl. Phys. Lett.2002,80:2589.
    [35]Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, et al. Structure and electricalconductivity of nitrogen-doped carbon nanofibers[J].2009,47:1922–1929
    [36]Hyung-Suk Oh, Hansung Kim. The role of transition metals in non-preciousnitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction[J]. Journal ofPower Sources,2012,212,220-225
    [37]Shin-Yi Yang, Kuo-Hsin Chang, Yuan-Li Huang,et al. A powerful approach to fabricatenitrogen-doped graphene sheets with high specific surface area[J]. ElectrochemistryCommunications,2012,14:39-42
    [38]G. Liu, X. Li, P. Ganesan, et al. Studies of oxygen reduction reaction active sites andstability of nitrogen-modified carbon composite catalysts for PEM fuel cells[J].Electrochim. Acta.2010,55:2853–2858.
    [39]J.D. Wiggins-Camacho, K.J. Stevenson. Mechanistic Discussion of the Oxygen ReductionReaction at Nitrogen-Doped Carbon Nanotubes[J]. J. Phys. Chem. C.2011,115:20002–20010.
    [40]T. Ikeda, M. Boero, S.F. Huang, et al. First-principles calculation of the electronic propertiesof graphene clusters doped with nitrogen and boron: analysis of catalytic activity for theoxygen reduction reaction[J]. J. Phys. Chem. C.2008,112:14706–14709.
    [41]Chang Hyuck Choi, Seung Yong Lee, Sung Hyeon Park,et al. Highly active N-doped-CNTsgrafted on Fe/C prepared by pyrolysis of dicyandiamide on Fe2O3/C for electrochemicaloxygen reduction reaction[J]. Applied Catalysis B: Environmental,2011,103:362-368
    [42]R.A. Sidik, A.B. Anderson, N.P. Subramanian, et al. O2reduction on graphite andnitrogen-doped graphite: experiment and theory[J]. J. Phys.Chem. B.2006,110:1787–1793.
    [43]Z. Chen, D. Higgins, Z. Chen. Electrocatalytic activity of nitrogen doped carbon nanotubeswith different morphologies for oxygen reduction reaction[J]. Electrochim. Acta In Press,2010
    [44]N. Krainara, S. Nokbin, P. Khongpracha,et al. Density functional calculations of structuraland electronic properties of a BN-doped carbon nanotube[J]. Carbon.201048:176–183.
    [45]R. Majidi, K. Ghafoori Tabrizi, S. Jalili. Effect of doping on electronic properties ofdouble-walled carbon and boron nitride hetero-nanotubes[J]. Physica B.2009,404:3417–3420.
    [46]Qu C.Q., Qiao L., Wang C.,et al. Density functional theory study of the electronic and fieldemission properties of nitrogen-and boron-doped carbon nanocones[J]. Phys. Lett. A.2010,374:782–787.
    [47]W. Zhu, A. B rjesson, K. Bolton. DFT and tight binding Monte Carlo calculations related tosingle-walled carbon nanotube nucleation and growth[J]. Carbon.2010,48:470–478.
    [48]Y.F. Zhukovskii, S. Piskunov, N. Pugno,et al. Ab initio simulations on the atomic andelectronic structure of single-walled BN nanotubes and nanoarches[J]. J. Phys. Chem.Solids.2009,70:796–803.
    [49]Zhou Z., Gao X., Yan J.,et al. Doping effects of B and N on hydrogen adsorption insingle-walled carbon nanotubes through density functional calculations[J]. Carbon.2006,44:939–947.
    [50]V.V. Strelko, N.T. Kartel, I.N. Dukhno,et al. Mechanism of reductive oxygen adsorption onactive carbons with various surface chemistry[J]. Surf.Sci.2004,54:8281–290.
    [51]Y. Okamoto. First-principles molecular dynamics simulation of O2reduction onnitrogen-doped carbon[J]. Appl. Surf. Sci.2009,256:335–341.
    [52]Zhong H., Zhang H., Liu G.,et al. A novel non-noble electrocatalyst for PEM fuel cell basedon molybdenum nitride[J]. Electrochem. Commun.2006,8:707–712.
    [53]Z. Shi, J. Zhang, Z.-S. Liu,et al. Current status of ab initio quantum chemistry study foroxygen electroreduction on fuel cell catalysts[J]. Electrochim. Acta.2006,51:1905–1916.
    [54]V.G. Khomenko, V.Z. Barsukov, A.S. Katashinskii. The catalytic activity of conductingpolymers toward oxygen reduction[J]. Electrochim. Acta.2005,50:1675–1683.
    [55]A.J. Bard, L.R. Faulker. Electrochemical Methods: Fundamentals and Applications[J].Wiley, New York,2001.
    [56]Yeong-Soon Gal, Sung-Ho Jin, Jong-Wook Park, et al.Electro-optical and electrochemicalproperties of an ionic polyacetylene derivative with azobenzene anisole moieties[J]. Journalof Industrial and Engineering Chemistry.2012,18:55-60
    [57]Yong X. Gan.Structural assessment of nanocomposites[J]. Micron.2012,43:782-817
    [58]Long Yun-Ze, Li Meng-Meng, Gu Changzhi,et al. Recent advances in synthesis, physicalproperties and applications of conducting polymer nanotubes and nanofibers[J]. Progress inPolymer Science,2011,36:1415-1442
    [59]AvlyanovJK, MinYG, MaediarmidAG. Polyaniline: eonformational changes indueedinsolution by variation of solvent and doping level[J]. Synthetic Metals,1995,72:65-71
    [60]汪雨明,蔡映。丙烯酸酯离聚体改性聚苯胺导电性能的研究[J]。华中理工大学学报,1995,23(9):124-128.
    [61]Oh Misoon, Kim Seok. Effect of dodecyl benzene sulfonic acid on the preparation ofpolyaniline/activated carbon composites by in situ emulsion polymerization[J].Electrochimica Acta,2012,59:196-201
    [62]Ye Song, Longfei Jiang, Weixing Qi,et al. Fabrication of solid aluminum electrolyticcapacitors utilizing conductive polyaniline solutions[J]. Synthetic Metals,2012,162:368-374
    [63]Ahmed M. Youssef, Magda Ali El-Samahy, Mona H. Abdel Rehim. Preparation ofconductive paper composites based on natural cellulosic fibers for packagingapplications[J]. Carbohydrate Polymers, In Press,2012
    [64]Indrajit Shown, Toyoko Imae, Seiji Motojima. Fabrication of carbon microcoil/polyanilinecomposite by microemulsion polymerization for electrochemical functionalenhancement[J]. Chemical Engineering Journal,2012,187:380-384.
    [65]Toshimasa Homma, Mizuki Kondo, Takashi Kuwahara,et al. Electrochemicalpolymerization of aniline in the presence of poly(acrylic acid) and characterization of theresulting films[J]. Polymer,2012,53:223-228
    [66]M.M. Gvozdenovi, B.Z. Jugovi, D.I. Bezbradica,et al. Electrochemical determination ofglucose using polyaniline electrode modified by glucose oxidase[J]. Food Chemistry,2011,124,:396-400
    [67]P. Paulraj, N. Janaki, S. Sandhya, K. Pandian. Single pot synthesis of polyanilineprotected silver nanoparticles by interfacial polymerization and study its application onelectrochemical oxidation of hydrazine[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2011,377:28-34
    [68]Long Zhang, Peng Liu, Tingmei Wang. Preparation of superparamagnetic polyanilinehybrid hollow microspheres in oil/water emulsion with magnetic nanoparticles ascosurfactant[J]. Chemical Engineering Journal,2011,171:711-716
    [69]L. Di, L.-P. Wang, Y.-N. Lu, L. He, et al. Protein adsorption and peroxidation of rat retinasunder stimulation of a neural probe coated with polyaniline[J]. Acta Biomaterialia,2011,7:3738-3745
    [70]夏林,宁平.可溶导电聚苯胺材料的合成研究[J].合成材料老化及应用,2002,31(4):8-11
    [71]Wessling B. Dispersion as the link between basic research and commercial applications ofconductive palymers(Polyaniline)[J]. Synth Met,1998,93(2):144-154
    [72]邓宇强,葛玲梅,周安宁。煤基聚苯胺防腐蚀性能的研究[J]。腐蚀与防护,2004,25(8):323-325.
    [73]Sukeerthi S,Contractor A Q. Molecular sensors and sensors arrays based on polyanilinemicrotubes[J]. Anal Chem,1999,71:2231-2236
    [74]Yun-Ze Long, Meng-Meng Li, Changzhi Gu,et al. Recent advances in synthesis, physicalproperties and applications of conducting polymer nanotubes and nanofibers[J]. Progress inPolymer Science,2011,36:1415-1442
    [75]L. Genieá s*, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinumnanoparticles in alkaline media[J]. Electrochimica Acta,1998,44:1317-1327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700